Skip to main content
Top

18-12-2014 | Ankylosing spondylitis | Book Chapter | Article

Quantitative Monitoring of Bone Formation in Ankylosing Spondylitis Using Computed Tomography

Author: Sovira Tan

Publisher: Springer International Publishing

Abstract

Ankylosing Spondylitis, an inflammatory disease affecting mainly the spine, can be characterized by abnormal bone structures (syndesmophytes) growing at intervertebral disk spaces. Monitoring the evolution of these syndesmophytes has been a challenge because of their slow growth rate, a problem compounded by the use of radiography and a mainly qualitative rating system. To improve the low sensitivity to change of radiographic reading, we designed a computer algorithm that fully quantitates syndesmophytes in terms of volume using the 3D imaging capabilities of computed tomography. Its reliability was assessed by computing the difference between the results obtained from 2 scans performed on the same day in 9 patients. A longitudinal study performed over 2 years with 33 patients shows that the method holds promise for longitudinal clinical studies of syndesmophyte development and growth. At the end of the first year, 73 % of patients had a volume increase computed by the algorithm compared to only 12 % for the reading of radiographs.
Literature
1.
Sieper J, Braun J, Rudwaleit M et al (2002) Ankylosing spondylitis: an overview. Ann Rheum Dis 61(Suppl III):iii8–iii18
2.
Braun J, Sieper J (2007) Ankylosing spondylitis. Lancet 369:1379–1390CrossRef
3.
Braun J, Brandt J, Listing J et al (2002) Treatment of active ankylosing spondylitis with infliximab: a randomised controlled multicentre trial. Lancet 359:1187–1193CrossRef
4.
Davis JC, van der Heijde D, Braun J et al (2003) Recombinant human tumor necrosis factor receptor (etanercept) for treating ankylosing spondylitis: a randomized, controlled trial. Arthritis Rheum 48(11):3230–3236
5.
van der Heijde D, Kivitz A, Schiff MH et al (2006) Efficacy and safety of adalimumab in patients with ankylosing spondylitis: results of a multicenter, randomized, double-blind, placebo-controlled trial. Arthritis Rheum 54(7):2136–2146CrossRef
6.
Baraliakos X, Listing J, Rudwaleit M et al (2005) Radiographic progression in patients with ankylosing spondylitis after 2 years of treatment with the tumour necrosis factor alpha antibody infliximab. Ann Rheum Dis 64:1462–1466CrossRef
7.
Baraliakos X, Listing J, Brandt J et al (2007) Radiographic progression in patients with ankylosing spondylitis after 4 yrs of treatment with the anti-TNF-alpha antibody infliximab. Rheumatology 46:1450–1453
8.
van der Heijde D, Landewé R, Baraliakos X et al (2008) Radiographic findings following two years of infliximab therapy in patients with ankylosing spondylitis. Arthritis Rheum 58:3063–3070CrossRef
9.
van der Heijde D, Landewé R, Einstein S et al (2008) Radiographic progression of ankylosing spondylitis after up to two years of treatment with etanercept. Arthritis Rheum 58:1324–1331CrossRef
10.
van der Heijde D, Salonen D, Weissman BN et al (2009) Assessment of radiographic progression in the spines of patients with ankylosing spondylitis treated with adalimumab for up to 2 years. Arthritis Res Ther 11:R127CrossRef
11.
Baraliakos X, Listing J, Rudwaleit M et al (2008) The relationship between inflammation and new bone formation in patients with ankylosing spondylitis. Arthritis Res Ther 10:R104CrossRef
12.
Bennett AN, McGonagle D, O’Connor P et al (2008) Severity of baseline magnetic resonance imaging-evident sacroiliitis and HLA–B27 status in early inflammatory back pain predict radiographically evident ankylosing spondylitis at eight years. Arthritis Rheum 58(11):3413–3418CrossRef
13.
Maksymowych WP, Chiowchanwisawakit P, Clare T et al (2009) Inflammatory lesions of the spine on magnetic resonance imaging predict the development of new syndesmophytes in ankylosing spondylitis: evidence of a relationship between inflammation and new bone formation. Arthritis Rheum 60:93–102CrossRef
14.
Chiowchanwisawakit P, Lambert RG, Conner-Spady B et al (2011) Focal fat lesions at vertebral corners on magnetic resonance imaging predict the development of new syndesmophytes in ankylosing spondylitis. Arthritis Rheum 63:2215–2225
15.
Pedersen SJ, Chiowchanwisawakit P, Lambert RG et al (2011) Resolution of inflammation following treatment of ankylosing spondylitis is associated with new bone formation. J Rheumatol 38:1349–1354CrossRef
16.
van der Heijde D, Machado P, Braun J et al (2012) MRI inflammation at the vertebral unit only marginally predicts new syndesmophyte formation: a multilevel analysis in patients with ankylosing spondylitis. Ann Rheum Dis 71:369–373CrossRef
17.
Lories RJ, Dougados M (2012) Inflammation and ankylosis: still an enigmatic relationship in spondyloarthritis. Ann Rheum Dis 71:317–318CrossRef
18.
Maksymowych WP, Morency N, Conner-Spady B et al (2013) Suppression of inflammation and effects on new bone formation in ankylosing spondylitis: evidence for a window of opportunity in disease modification. Ann Rheum Dis 72:23–28CrossRef
19.
Maksymowych WP, Landewé R, Conner-Spady B et al (2007) Serum matrix metalloproteinase 3 is an independent predictor of structural damage progression in patients with ankylosing spondylitis. Arthritis Rheum 56:1846–1853CrossRef
20.
Pedersen SJ, Sørensen IJ, Lambert RGW et al (2011) Radiographic progression is associated with resolution of systemic inflammation in patients with axial spondylarthritis treated with tumor necrosis factor alpha inhibitors: a study of radiographic progression, inflammation on magnetic resonance imaging, and circulating biomarkers of inflammation, angiogenesis, and cartilage and bone turnover. Arthritis Rheum 63(12):3789–3800
21.
van Tubergen A, Ramiro S, van der Heijde D et al (2012) Development of new syndesmophytes and bridges in ankylosing spondylitis and their predictors: a longitudinal study. Ann Rheum Dis 71:518–523CrossRef
22.
Poddubnyy Denis, Haibel Hildrun, Listing Joachim et al (2012) Baseline radiographic damage, elevated acute-phase reactant levels, and cigarette smoking status predict spinal radiographic progression in early axial spondylarthritis. Arthritis Rheum 64(5):1388–1398CrossRef
23.
Ward MM, Hendrey MR, Malley JD et al (2009) Clinical and immunogenetic prognostic factors for radiographic severity in ankylosing spondylitis. Arthritis Rheum 61:859–866CrossRef
24.
Appel H, Ruiz-Heiland G, Listing J et al (2009) Altered skeletal expression of sclerostin and its link to radiographic progression in ankylosing spondylitis. Arthritis Rheum 60:3257–3262CrossRef
25.
Diarra D, Stolina M, Polzer K et al (2007) Dickkopf-1 is a master regulator of joint remodeling. Nat Med 13:156–163CrossRef
26.
Daoussis D, Liossis SN, Solomou EE et al (2010) Evidence that Dkk-1 is dysfunctional in ankylosing spondylitis. Arthritis Rheum 62:150–158CrossRef
27.
Ruiz-Heiland G, Appel H, Poddubnyy D et al (2012) High level of functional dickkopf-1 predicts protection from syndesmophyte formation in patients with ankylosing spondylitis. Ann Rheum Dis 71:572–574CrossRef
28.
MacKay K, Mack C, Brophy S, Calin A (1998) The bath ankylosing spondylitis radiology index (BASRI). Anew, validated approach to disease assessment, Arthritis Rheum. 41:2263–2270
29.
Creemers MC, Franssen MJ, van’t Hof MA et al (2005) Assessment of outcome in ankylosing spondylitis: an extended radiographic scoring system. Ann Rheum Dis 64:127–129
30.
Wanders AJ, Landewé RB, Spoorenberg A et al (2004) What is the most appropriate radiologic scoring method for ankylosing spondylitis? A comparison of the available methods based on the Outcome Measures in Rheumatology Clinical Trials filter. Arthritis Rheum 50:2622–2632CrossRef
31.
Spoorenberg A, de Vlam K, van der Linden S et al (2004) Radiological scoring methods in ankylosing spondylitis. Reliability and change over 1 and 2 years. J Rheumatol 31:125–132
32.
Tan S, Yao J, Ward MM et al (2008) Computer aided evaluation of ankylosing spondylitis using high-resolution CT. IEEE Trans Med Imaging 27:1252–1267CrossRef
33.
Tan S, Yao J, Yao L et al (2012) Improved precision of syndesmophyte measurement for the evaluation of ankylosing spondylitis using CT: a phantom and patient study. Phys Med Biol 57:4683–4704CrossRef
34.
Lorensen WE, Cline HE (1987) Marching cubes: a high resolution 3D surface construction algorithm. Comput Graph (Proc SIGGRAPH) 21:163–169CrossRef
35.
McInerney T, Terzopoulos D (1999) Topology adaptive deformable surfaces for medical image volume segmentation”. IEEE Trans Med Imaging 18(10):840–850CrossRef
36.
Kang Y, Engelke K, Kalender WA (2003) A new accurate and precise 3-D segmentation method for skeletal structures in volumetric CT data. IEEE Trans Med Imaging 22(5):586–598CrossRef
37.
Ghebreab S, Smeulders AWM (2004) Combining strings and necklaces for interactive three-dimensional segmentation of spinal images using an integral deformable spine model. IEEE Trans Biomed Eng 51(10):1821–1829CrossRef
38.
Mastmeyer A, Engelke K, Fuchs C, Kalender WA (2006) A hierarchical 3D segmentation method and the definition of vertebral body coordinate systems for QCT of the lumbar spine. Med Image Anal 10:560–577CrossRef
39.
Yao J, O’Connor SD, Summers RM (2006) Automated spinal column extraction and partitioning. In: Proceedings of the IEEE international symposium on biomedical imaging, pp 390–393
40.
Klinder Tobias, Ostermann Jörn, Ehm Matthias et al (2009) Automated model-based vertebra detection, identification, and segmentation in CT images. Med Image Anal 13:471–482CrossRef
41.
Aslan MS, Ali A, Rara H, Farag AA (2010) An automated vertebra identification and segmentation in CT images. In: Proceedings of the IEEE international conference on image processing, pp 233–236
42.
Stern Darko, Likar Bostjan, Pernus Franjo et al (2011) Parametric modelling and segmentation of vertebral bodies in 3D CT and MR spine images. Phys Med Biol 56:7505–7522CrossRef
43.
Sethian JA (1999) Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision and materials science. Cambridge University Press, Cambridge, 1999
44.
Caselles V, Kimmel R, Sapiro G (1997) Geodesic active contours. Int J Comput Vision 22:61–79CrossRefMATH
45.
Tan S, Yao J, Ward MM et al (2006) Level set based vertebra segmentation algorithm for the evaluation of ankylosing spondylitis. In: Proceedings of the SPIE medical imaging, vol 6144, pp 58–67, San Diego, CA
46.
Ibanez L, Schroeder W, Ng L, Cates J (2003) The ITK software guide. Kitware Inc., Clifton Park
47.
Koenderink JJ (1990) Solid shape. The MIT Press, Cambridge
48.
Tan S, Yao J, Yao L et al (2013) High precision semiautomated computed tomography measurement of lumbar disk and vertebral heights. Med Phys 40:011905CrossRef
49.
Besl PJ, McKay ND (1992) A method for registration of 3D shapes. IEEE Trans Pattern Anal Mach Intell 14:239–256
50.
Herring JL, Dawant BM (2001) Automatic lumbar vertebral identification using surface-based registration. J Biomed Inform 34:74–84CrossRef
51.
Tamura Y, Sugano N, Sasama T et al (2005) Surface-based registration accuracy of CT-based image-guided spine surgery. Eur Spine J 14:291–297CrossRef
52.
Tan S, Yao J, Yao L (2008) Summers R M and Ward M M Vertebral surface registration using ridgelines/crestlines. Proc SPIE Med Imaging 6914:69140HCrossRef
53.
Friedman L, Glover GH, Krenz D et al (2006) Reducing inter-scanner variability of activation in a multicenter fMRI study: role of smoothness equalization. Neuroimage 32:1656–1668CrossRef
54.
Yushkevich PA, Piven J, Hazlett HC et al (2006) User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31:1116–1128CrossRef
55.
Zou KH, Warfield SK, Bharatha A et al (2004) Statistical validation of image segmentation quality based on a spatial overlap index. Acad Radiol 11:178–189CrossRef
56.
Tan S, Yao J, Flynn JA et al (2014) Quantitative measurement of syndesmophyte volume and height in ankylosing spondylitis using CT. Ann Rheum Dis. 73:544–550
57.
Hothorn T, Hornik K, van de Wiel MA et al (2008) Implementing a class of permutation tests: the coin Package. J Stat Softw 28:1–23
58.
Barrett JF, Keat N (2004) Artifacts in CT: recognition and avoidance. Radio Graph 24:1679–1691
59.
Gluer CC, Blake G, Lu Y et al (1995) Accurate assessment of precision errors: how to measure the reproducibility of bone densitometry techniques. Osteoporos Int 5:262–270CrossRef
60.
Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310CrossRef
61.
Euser AM, Dekker FW, le Cessie S (2008) A practical approach to Bland-Altman plots and variation coefficients for log transformed variables. J Clin Epidemiol 61:978–982CrossRef
62.
Tan S, Yao J, Flynn JA et al (2013) Quantitative syndesmophyte measurement in ankylosing spondylitis using CT: longitudinal validity and sensitivity to change over 2 years. Ann Rheum Dis. doi:10.​1136/​annrheumdis-2013-203946 (Published Online First December 2, 2013)
63.
Braun J, Baraliakos X, Golder W et al (2004) Analysing chronic spinal changes in ankylosing spondylitis: a systematic comparison of conventional x rays with magnetic resonance imaging using established and new scoring systems. Ann Rheum Dis 63:1046–1055CrossRef
64.
Ostergaard M, Maksymowych WP, Pedersen SJ, et al (2009) Structural lesions detected by magnetic resonance imaging in the spine of patients with spondyloarthritis—definitions, assessment system, and reference image set. J Rheumatol 36(Suppl 84). doi:10.​3899/​jrheum.​090617
65.
Chiowchanwisawakit P, Ostergaard M, Pedersen SJ et al (2009) Validation of definitions for structural lesions detected by magnetic resonance imaging in the spine of patients with spondyloarthritis. J Rheumatol 36(Suppl 84). doi:10.​3899/​jrheum.​090619
66.
Madsen KB, Jurik AG (2010) MRI grading method for active and chronic spinal changes in spondyloarthritis. Clin Radiol 65:6–14CrossRef
67.
Baraliakos X, Davis J, Tsuji W et al (2005) Magnetic resonance imaging examinations of the spine in patients with ankylosing spondylitis before and after therapy with the tumor necrosis factor alpha receptor fusion protein etanercept. Arthritis Rheum 52(4):1216–1223CrossRef
68.
Hara AK, Paden RJ, Silva AC et al (2009) Iterative reconstruction technique for reducing body radiation dose at CT: feasibility study. AJR Am J Roentgenol 193(3):764–771CrossRef
69.
Winklehner A, Karlo C, Puippe G et al (2011) Raw data-based iterative reconstruction in body CTA: evaluation of radiation dose saving potential. Eur Radiol 21(12):2521–2526CrossRef