Skip to main content
Top

30-08-2018 | Diet and nutrition | Article

Coffee consumption and the risk of rheumatoid arthritis and systemic lupus erythematosus: a Mendelian randomization study

Journal: Clinical Rheumatology

Authors: Sang-Cheol Bae, Young Ho Lee

Publisher: Springer London

Abstract

We aimed to analyze the causal association between coffee consumption and the risk of rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). We performed a two-sample Mendelian randomization (MR) analysis using the inverse-variance weighted (IVW), MR-Egger regression, and weighted median methods. We used publicly available summary statistics datasets of coffee consumption genome-wide association studies (GWASs) as an exposure variable and RA and SLE GWASs as outcomes. Four single-nucleotide polymorphisms (SNPs) from GWASs of coffee consumption were selected as instrumental variables (IVs) to improve inference: NCARD (rs16868941), POR (rs17685), CYP1A1 (rs2470893), and LAMB4 (rs382140). The IVW method showed a causal association between coffee consumption and RA (beta = 0.770, SE = 0.279, p = 0.006). MR-Egger regression revealed that directional pleiotropy was unlikely to be biasing the result (intercept = − 0.145, p = 0.451). While the MR-Egger analysis showed no causal association between coffee consumption and RA (beta = 2.744, SE = 1.712, p = 0.355), the weighted median approach demonstrated a causal association between coffee consumption and RA (beta = 0.751, SE = 0.348, p = 0.031). However, the associations based on the weighted median analyses after the Bonferroni correction were not significant (adjusted p values = 0.091). The IVW, MR-Egger analysis, and weighted median methods showed no causal association between coffee consumption and SLE risk (beta = 0.594, SE = 0.437, p = 0.209; beta = 3.100, SE = 3.632, p = 0.550; beta = 0.733, SE = 0.567, p = 0.196). MR analysis results do not support causal associations between coffee consumption and the development of RA and SLE.
Literature
1.
Lee YH, Bae S-C, Choi SJ, Ji JD, Song GG (2012) Genome-wide pathway analysis of genome-wide association studies on systemic lupus erythematosus and rheumatoid arthritis. Mol Biol Rep 39:10627–10635CrossRefPubMed
2.
Kim Y, Shim SC (2018) Wolves trapped in the NETs the pathogenesis of lupus nephritis. J Rheum Dis 25:81–99CrossRef
3.
Lee YH, Bae S-C, Song GG (2014) Coffee or tea consumption and the risk of rheumatoid arthritis: a meta-analysis. Clin Rheumatol 33:1575–1583CrossRefPubMed
4.
Kiyohara C, Washio M, Horiuchi T, Asami T, Ide S, Atsumi T, Kobashi G, Takahashi H, Tada Y, Group KSSS (2014) Modifying effect of N-acetyltransferase 2 genotype on the association between systemic lupus erythematosus and consumption of alcohol and caffeine-rich beverages. Arthritis Care Res 66:1048–1056CrossRef
5.
Sharif K, Watad A, Bragazzi NL, Adawi M, Amital H, Shoenfeld Y (2017) Coffee and autoimmunity: more than a mere hot beverage! Autoimmun Rev 16:712–721CrossRefPubMed
6.
Sedgwick P (2014) Bias in observational study designs: prospective cohort studies. BMJ 349
7.
Burgess S, Daniel RM, Butterworth AS, Thompson SG, Consortium E-I (2014) Network Mendelian randomization: using genetic variants as instrumental variables to investigate mediation in causal pathways. Int J Epidemiol 44:484–495CrossRefPubMedPubMedCentral
8.
Amin N, Byrne E, Johnson J, Chenevix-Trench G, Walter S, Nolte I, Vink J, Rawal R, Mangino M, Teumer A (2012) Genome-wide association analysis of coffee drinking suggests association with CYP1A1/CYP1A2 and NRCAM. Mol Psychiatry 17:1116–1129CrossRefPubMed
9.
Cornelis MC, Byrne EM, Esko T, Nalls MA, Ganna A, Paynter N, Monda KL, Amin N, Fischer K, Renstrom F (2015) Genome-wide meta-analysis identifies six novel loci associated with habitual coffee consumption. Mol Psychiatry 20:647–656CrossRefPubMed
10.
Stahl EA, Raychaudhuri S, Remmers EF, Xie G, Eyre S, Thomson BP, Li Y, Kurreeman FA, Zhernakova A, Hinks A (2010) Genome-wide association study meta-analysis identifies seven new rheumatoid arthritis risk loci. Nat Genet 42:508–514CrossRefPubMedPubMedCentral
11.
Hom G, Graham RR, Modrek B, Taylor KE, Ortmann W, Garnier S, Lee AT, Chung SA, Ferreira RC, Pant PK (2008) Association of systemic lupus erythematosus with C8orf13–BLK and ITGAM–ITGAX. N Engl J Med 358:900–909CrossRefPubMed
12.
Burgess S, Butterworth A, Thompson SG (2013) Mendelian randomization analysis with multiple genetic variants using summarized data. Genet Epidemiol 37:658–665CrossRefPubMedPubMedCentral
13.
Hartwig FP, Davies NM, Hemani G, Davey Smith G (2016) Two-sample Mendelian randomization: avoiding the downsides of a powerful, widely applicable but potentially fallible technique. Oxford University Press
14.
Pierce BL, Burgess S (2013) Efficient design for Mendelian randomization studies: subsample and 2-sample instrumental variable estimators. Am J Epidemiol 178:1177–1184CrossRefPubMedPubMedCentral
15.
Bowden J, Davey Smith G, Burgess S (2015) Mendelian randomization with invalid instruments: effect estimation and bias detection through egger regression. Int J Epidemiol 44:512–525CrossRefPubMedPubMedCentral
16.
Bowden J, Davey Smith G, Haycock PC, Burgess S (2016) Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genet Epidemiol 40:304–314CrossRefPubMedPubMedCentral
17.
Egger M, Smith GD, Phillips AN (1997) Meta-analysis: principles and procedures. BMJ 315:1533–1537CrossRefPubMedPubMedCentral
18.
Hemani G, Zheng J, Wade K, Elsworth B, Langdon R, Burgess S (2016) MR-base: a platform for systematic causal inference across the phenome using billions of genetic associations. bioRxiv 16:78972
19.
Song GG, Bae S-C, Lee YH (2012) Association between vitamin D intake and the risk of rheumatoid arthritis: a meta-analysis. Clin Rheumatol 31:1733–1739CrossRefPubMed