Skip to main content
Top

14-07-2016 | Genetics | Article

Insight into rheumatological cause and effect through the use of Mendelian randomization

Journal: Nature Reviews Rheumatology

Author: Philip C. Robinson, Hyon K. Choi, Ron Do & Tony R. Merriman

Authors: Philip C. Robinson, Hyon K. Choi, Ron Do, Tony R. Merriman

Publisher: Nature Publishing Group UK

Abstract

Establishing causality of risk factors is important to determine the pathogenetic mechanisms underlying rheumatic diseases, and can facilitate the design of interventions to improve care for affected patients. The presence of unmeasured confounders, as well as reverse causation, is a challenge to the assignment of causality in observational studies. Alleles for genetic variants are randomly inherited at meiosis. Mendelian randomization analysis uses these genetic variants to test whether a particular risk factor is causal for a disease outcome. In this Review of the Mendelian randomization technique, we discuss published results and potential applications in rheumatology, as well as the general clinical utility and limitations of the approach.

Literature
1.
Di Giuseppe, D., Discacciata, A., Orsini, N. & Wolk, A. Cigarette smoking and risk of rheumatoid arthritis: a dose-response meta-analysis. Arthritis Res. Ther. 16, R61 (2014).CrossRefPubMedPubMedCentral
2.
Singh, J. A., Reddy, S. G. & Kundukulam, J. Risk factors for gout and prevention: a systematic review of the literature. Curr. Opin. Rheumatol. 23, 192–202 (2011).PubMedPubMedCentral
3.
Campion, E. W., Glynn, R. J. & DeLabry, L. O. Asymptomatic hyperuricemia. Risks Consequences Normative Aging Study. Am. J. Med. 82, 421–426 (1987).PubMed
4.
Batt, C. et al. Sugar-sweetened beverage consumption: a risk factor for prevalent gout with SLC2A9 genotype-specific effects on serum urate and risk of gout. Ann. Rheum. Dis. 73, 2101–2106 (2014).CrossRefPubMed
5.
Vartanian, L. R., Schwartz, M. B. & Brownell, K. D. Effects of soft drink consumption on nutrition and health: a systematic review and meta-analysis. Am. J. Pub. Health. 97, 667–675 (2007).CrossRef
6.
Choi, J. W., Ford, E. S., Gao, X. & Choi, H. K. Sugar-sweetened soft drinks, diet soft drinks, and serum uric acid level: the Third National Health and Nutrition Examination Survey. Arthritis Rheum. 59, 109–116 (2008).CrossRefPubMed
7.
Smith, G. D. & Ebrahim, S. 'Mendelian randomization': can genetic epidemiology contribute to understanding environmental determinants of disease? Int. J. Epidemiol. 32, 1–22 (2003).CrossRefPubMed
8.
Davey Smith, G. & Ebrahim, S. What can mendelian randomisation tell us about modifiable behavioural and environmental exposures? BMJ 330, 1076–1079 (2005).CrossRefPubMedPubMedCentral
9.
Berry, D. J., Vimaleswaran, K. S., Whittaker, J. C., Hingorani, A. D. & Hyppönen, E. Evaluation of genetic markers as instruments for Mendelian randomization studies on vitamin D. PLoS ONE 7, e37465 (2012).CrossRefPubMedPubMedCentral
10.
Boef, A. G., Dekkers, O. M. & le Cessie, S. Mendelian randomization studies: a review of the approaches used and the quality of reporting. Int. J. Epidemiol. 44, 496–511 (2015).CrossRefPubMed
11.
Kang, D. H. & Chen, W. Uric acid and chronic kidney disease: new understanding of an old problem. Semin. Nephrol. 31, 447–452 (2011).CrossRefPubMed
12.
Krishnan, E. Reduced glomerular function and prevalence of gout: NHANES 2009–10. PLoS ONE 7, e50046 (2012).CrossRefPubMedPubMedCentral
13.
Weiner, D. E. et al. Uric acid and incident kidney disease in the community. J. Am. Soc. Nephrol. 19, 1204–1211 (2008).CrossRefPubMedPubMedCentral
14.
Pierce, B. L., Ahsan, H. & VanderWeele, T. J. Power and instrument strength requirements for Mendelian randomization studies using multiple genetic variants. Int. J. Epidemiol. 40, 740–752 (2011).CrossRefPubMed
15.
VanderWeele, T. J., Tchetgen Tchetgen, E. J., Cornelis, M. & Kraft, P. Methodological challenges in Mendelian randomization. Epidemiology 25, 427–435 (2014).CrossRefPubMedPubMedCentral
16.
Baum, C. F., Schaffer, M. E. & Stillman, S. Instrumental variables and GMM: estimation and testing. Stata J. 3, 1–31 (2003).CrossRef
17.
Hausman, J. A. Specification tests in econometrics. Econometrica 46, 1251–1271 (1978).CrossRef
18.
Burgess, S., Dudbridge, F. & Thompson, S. G. Combining information on multiple instrumental variables in Mendelian randomization: comparison of allele score and summarized data methods. Stat. Med. 35, 1880–1906 (2016).CrossRefPubMed
19.
Burgess, S. & Thompson, S. G. Avoiding bias from weak instruments in Mendelian randomization studies. Int. J. Epidemiol. 40, 755–764 (2011).CrossRefPubMed
20.
Hughes, K., Flynn, T., de Zoysa, J., Dalbeth, N. & Merriman, T. R. Mendelian randomization analysis associates increased serum urate, due to genetic variation in uric acid transporters, with improved renal function. Kidney Int. 85, 344–351 (2014).CrossRefPubMed
21.
Davey Smith, G. & Ebrahim, S. in Biosocial Surveys: Current Insight and Future Promise (eds Vaupal, J. W., Weinstein, M. & Wachter, K. W.) 336–366 (The National Academies Press, 2008).
22.
Burgess, S. Sample size and power calculations in Mendelian randomization with a single instrumental variable and a binary outcome. Int. J. Epidemiol. 43, 922–929 (2014).CrossRefPubMedPubMedCentral
23.
Evans, D. M. & Davey Smith, G. Mendelian randomization: new applications in the coming age of hypothesis-free causality. Ann. Rev. Genom. Hum. Genet. 16, 327–350 (2015).CrossRef
24.
Lawlor, D. A., Harbord, R. M., Sterne, J. A., Timpson, N. & Davey Smith, G. Mendelian randomization: using genes as instruments for making causal inferences in epidemiology. Stat. Med. 27, 1133–1163 (2008).CrossRefPubMed
25.
Palmer, T. M. et al. Using multiple genetic variants as instrumental variables for modifiable risk factors. Stat. Methods Med. Res. 21, 223–242 (2012).CrossRefPubMedPubMedCentral
26.
Kottgen, A. et al. Genome-wide association analyses identify 18 new loci associated with serum urate concentrations. Nat. Genet. 45, 145–154 (2013).CrossRefPubMed
27.
Köttgen, A. et al. New loci associated with kidney function and chronic kidney disease. Nat. Genet. 42, 376–384 (2010).CrossRefPubMedPubMedCentral
28.
Orho-Melander, M. et al. Common missense variant in the glucokinase regulatory protein gene is associated with increased plasma triglyceride and C-reactive protein but lower fasting glucose concentrations. Diabetes 57, 3112–3121 (2008).CrossRefPubMedPubMedCentral
29.
Phipps-Green, A. J. et al. Twenty-eight loci that influence serum urate levels: analysis of association with gout. Ann. Rheum. Dis. 75, 124–130 (2016).PubMed
30.
Viatte, S. et al. The role of genetic polymorphisms regulating vitamin D levels in rheumatoid arthritis outcome: a Mendelian randomisation approach. Ann. Rheum. Dis. 73, 1430–1433 (2014).CrossRefPubMed
31.
Yarwood, A. et al. Testing the role of vitamin D in response to antitumour necrosis factor α therapy in a UK cohort: a Mendelian randomisation approach. Ann. Rheum. Dis. 73, 938–940 (2014).CrossRefPubMed
32.
Parekh, R. B. et al. Association of rheumatoid arthritis and primary osteoarthritis with changes in the glycosylation pattern of total serum IgG. Nature 316, 452–457 (1985).CrossRefPubMed
33.
Yarwood, A. et al. Loci associated with N-glycosylation of human IgG are not associated with rheumatoid arthritis: a Mendelian randomisation study. Ann. Rheum. Dis. 75, 317–320 (2016).CrossRefPubMed
34.
Lauc, G. et al. Loci associated with N-glycosylation of human immunoglobulin G show pleiotropy with autoimmune diseases and haematological cancers. PLoS Genet. 9, e1003225 (2013).CrossRefPubMedPubMedCentral
35.
Interleukin 1 Genetics Consortium. Cardiometabolic effects of genetic upregulation of the interleukin 1 receptor antagonist: a Mendelian randomisation analysis. Lancet Diabetes Endocrinol. 3, 243–253 (2015).
36.
Calvo, M. S. The effects of high phosphorous intake on calcium homeostasis. Adv. Nutr. Res. 9, 183–207 (1994).PubMed
37.
Pekkinen, M. et al. FGF23 gene variation and its association with phosphate homeostasis and bone mineral density in Finnish children and adolescents. Bone 71, 124–130 (2015).CrossRefPubMed
38.
Keenan, T. et al. Causal assessment of serum urate levels in cardiometabolic diseases through a Mendelian randomization study. J. Am. Coll. Cardiol. 67, 407–416 (2016).CrossRefPubMedPubMedCentral
39.
White, J. et al. Plasma urate concentration and risk of coronary heart disease: a Mendelian randomisation analysis. Lancet Diabetes Endocrinol. 4, 327–336 (2016).CrossRefPubMedPubMedCentral
40.
Burgess, S., Daniel, R. M., Butterworth, A. S. & Thompson, S. G. Network Mendelian randomization: using genetic variants as instrumental variables to investigate mediation in causal pathways. Int. J. Epidemiol. 44, 484–495 (2015).CrossRefPubMed
41.
Lyngdoh, T. et al. Serum uric acid and adiposity: deciphering causality using a bidirectional Mendelian randomization approach. PLoS ONE 7, e39321 (2012).CrossRefPubMedPubMedCentral
42.
Oikonen, M. et al. Associations between serum uric acid and markers of subclinical atherosclerosis in young adults. The cardiovascular risk in Young Finns study. Atherosclerosis 223, 497–503 (2012).CrossRefPubMed
43.
Palmer, T. M. et al. Association of plasma uric acid with ischaemic heart disease and blood pressure: mendelian randomisation analysis of two large cohorts. BMJ 347, f4262 (2013).CrossRefPubMedPubMedCentral
44.
Rasheed, H., Hughes, K., Flynn, T. J. & Merriman, T. R. Mendelian randomization provides no evidence for a causal role of serum urate in increasing serum triglyceride levels. Circ. Cardiovasc. Genet. 7, 830–837 (2014).CrossRefPubMedPubMedCentral
45.
Johnson, R. J., Merriman, T. & Lanaspa, M. A. Causal or noncausal relationship of uric acid with diabetes. Diabetes 64, 2720–2722 (2015).CrossRefPubMedPubMedCentral
46.
Merriman, T. R. An update on the genetic architecture of hyperuricemia and gout. Arthritis Res. Ther. 17, 98 (2015).CrossRefPubMedPubMedCentral
47.
Dehghan, A. et al. Meta-analysis of genome-wide association studies in >80 000 subjects identifies multiple loci for C-reactive protein levels. Circulation. 123, 731–738 (2011).CrossRefPubMedPubMedCentral
48.
Ellis, J. et al. Large multiethnic candidate gene study for C-reactive protein levels: identification of a novel association at CD36 in African Americans. Hum. Genet. 133, 985–995 (2014).CrossRefPubMedPubMedCentral
49.
Ganesh, S. K. et al. Loci influencing blood pressure identified using a cardiovascular gene-centric array. Hum. Mol. Genet. 22, 1663–1678 (2013).CrossRefPubMedPubMedCentral
50.
Baker, J. F. et al. Weight loss, the obesity paradox, and the risk of death in rheumatoid arthritis. Arthritis Rheumatol. 67, 1711–1717 (2015).CrossRefPubMedPubMedCentral
51.
McCaffery, J. M. et al. Human cardiovascular disease IBC chip-wide association with weight loss and weight regain in the look AHEAD trial. Hum. Hered. 75, 160–174 (2013).CrossRefPubMed
52.
IL6R Genetics Consortium Emerging Risk Factors Collaboration et al. Interleukin-6 receptor pathways in coronary heart disease: a collaborative meta-analysis of 82 studies. Lancet 379, 1205–1213 (2012).
53.
Interleukin-6 Receptor Mendelian Randomisation Analysis (IL6R MR) Consortium. The interleukin-6 receptor as a target for prevention of coronary heart disease: a mendelian randomisation analysis. Lancet 379, 1214–1224 (2012).
54.
Goicoechea, M. et al. Allopurinol and progression of CKD and cardiovascular events: long-term follow-up of a randomized clinical trial. Am. J. Kidney Dis. 65, 543–549 (2015).CrossRefPubMed
55.
Spitsin, S., Hooper, D. C., Mikheeva, T. & Koprowski, H. Uric acid levels in patients with multiple sclerosis: analysis in mono- and dizygotic twins. Mult. Scler. 7, 165–166 (2001).CrossRefPubMed
56.
Euser, S. M., Hofman, A., Westendorp, R. G. & Breteler, M. M. Serum uric acid and cognitive function and dementia. Brain 132, 377–382 (2009).CrossRefPubMed
57.
Schretlen, D. J. et al. Serum uric acid and cognitive function in community-dwelling older adults. Neuropsychology 21, 136–140 (2007).CrossRefPubMed
58.
Di Giuseppe, D., Alfredsson, L., Bottai, M., Askling, J. & Wolk, A. Long term alcohol intake and risk of rheumatoid arthritis in women: a population based cohort study. BMJ 345, e4230 (2012).CrossRefPubMedPubMedCentral
59.
Palmer, R. H. et al. Shared additive genetic influences on DSM-IV criteria for alcohol dependence in subjects of European ancestry. Addiction 110, 1922–1931 (2015).CrossRefPubMedPubMedCentral
60.
Fini, M. A., Elias, A., Johnson, R. J. & Wright, R. M. Contribution of uric acid to cancer risk, recurrence, and mortality. Clin. Transl. Med. 1, 16 (2012).CrossRefPubMedPubMedCentral
61.
Ames, B. N., Cathcart, R., Schwiers, E. & Hochstein, P. Uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: a hypothesis. Proc. Natl Acad. Sci. USA 78, 6858–6862 (1981).CrossRefPubMedPubMedCentral
62.
Sautin, Y. Y. & Johnson, R. J. Uric acid: the oxidant-antioxidant paradox. Nucleosides Nucleotides Nucleic Acids 27, 608–619 (2008).CrossRefPubMedPubMedCentral
63.
Levine, W., Dyer, A. R., Shekelle, R. B., Schoenberger, J. A. & Stamler, J. Serum uric acid and 11.5-year mortality of middle-aged women: findings of the Chicago Heart Association Detection Project in Industry. J. Clin. Epidemiol. 42, 257–267 (1989).CrossRefPubMed
64.
Takkunen, H., Reunanen, A., Aromaa, A. & Knekt, P. Raised serum urate concentration as risk factor for premature mortality in middle aged men. Br. Med. J. (Clin. Res. Ed.) 288, 1161 (1984).CrossRef
65.
Kolonel, L. N., Yoshizawa, C., Nomura, A. M. & Stemmermann, G. N. Relationship of serum uric acid to cancer occurrence in a prospective male cohort. Cancer Epidemiol. Biomarkers Prev. 3, 225–228 (1994).PubMed
66.
Hiatt, R. A. & Fireman, B. H. Serum uric acid unrelated to cancer incidence in humans. Cancer Res. 48, 2916–2918 (1988).PubMed
67.
Petersson, B. & Trell, E. Raised serum urate concentration as risk factor for premature mortality in middle aged men: relation to death from cancer. Br. Med. J. (Clin. Res. Ed.) 287, 7–9 (1983).CrossRef
68.
Ghaemi-Oskouie, F. & Shi, Y. The role of uric acid as an endogenous danger signal in immunity and inflammation. Curr. Rheumatol. Rep. 13, 160–166 (2011).CrossRefPubMedPubMedCentral
69.
Ghiringhelli, F. et al. Activation of the NLRP3 inflammasome in dendritic cells induces IL-1β–dependent adaptive immunity against tumors. Nat. Med. 15, 1170–1178 (2009).CrossRefPubMed
70.
Boffetta, P., Nordenvall, C., Nyrén, O. & Ye, W. A prospective study of gout and cancer. Eur. J. Cancer Prev. 18, 127–132 (2009).CrossRefPubMed
71.
Doody, M. M. et al. Leukemia, lymphoma, and multiple myeloma following selected medical conditions. Cancer Causes Control 3, 449–456 (1992).CrossRefPubMed
72.
Kuo, C. F. et al. Increased risk of cancer among gout patients: a nationwide population study. Joint Bone Spine 79, 375–378 (2012).CrossRefPubMed
73.
Burgess, S., Butterworth, A., Malarstig, A. & Thompson, S. G. Use of Mendelian randomisation to assess potential benefit of clinical intervention. BMJ 345, e7325 (2012).CrossRefPubMed
74.
Antonopoulos, A. S., Margaritis, M., Lee, R., Channon, K. & Antoniades, C. Statins as anti-inflammatory agents in atherogenesis: molecular mechanisms and lessons from the recent clinical trials. Curr. Pharm. Des. 18, 1519–1530 (2012).CrossRefPubMedPubMedCentral
75.
Ference, B. A. et al. Effect of long-term exposure to lower low-density lipoprotein cholesterol beginning early in life on the risk of coronary heart disease: a Mendelian randomization analysis. J. Am. Coll. Cardiol. 60, 2631–2639 (2012).CrossRefPubMed
76.
Schooling, C. M., Freeman, G. & Cowling, B. J. Mendelian randomization and estimation of treatment efficacy for chronic diseases. Am. J. Epidemiol. 177, 1128–1133 (2013).CrossRefPubMed
77.
Sofat, R. et al. Separating the mechanism-based and off-target actions of cholesteryl ester transfer protein inhibitors with CETP gene polymorphisms. Circulation 121, 52–62 (2010).CrossRefPubMed
78.
Aulchenko, Y. S. et al. Loci influencing lipid levels and coronary heart disease risk in 16 European population cohorts. Nat. Genet. 41, 47–55 (2009).CrossRefPubMed
79.
Sluijs, I. et al. A Mendelian randomization study of circulating uric acid and type 2 diabetes. Diabetes 64, 3028–3036 (2015).CrossRefPubMed
80.
Dupuis, J. et al. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat. Genet. 42, 105–116 (2010).CrossRefPubMedPubMedCentral
81.
Thanassoulis, G. & O'Donnell, C. J. Mendelian randomization: nature's randomized trial in the post-genome era. JAMA 301, 2386–2388 (2009).CrossRefPubMedPubMedCentral
82.
Bao, Y. et al. Lack of gene-diuretic interactions on the risk of incident gout: the Nurses' Health Study and Health Professionals Follow-up Study. Ann. Rheum. Dis. 74, 1394–1398 (2015).CrossRefPubMed
83.
McAdams-DeMarco, M. A. et al. A urate gene-by-diuretic interaction and gout risk in participants with hypertension: results from the ARIC study. Ann. Rheum. Dis. 72, 701–706 (2013).CrossRefPubMed
84.
Katan, M. B. Apolipoprotein E isoforms, serum cholesterol, and cancer. Lancet 327, 507–508 (1986).CrossRef
85.
Burgess, S., Butterworth, A. & Thompson, S. G. Mendelian randomization analysis with multiple genetic variants using summarized data. Genet. Epidemiol. 37, 658–665 (2013).CrossRefPubMedPubMedCentral
86.
Voight, B. F. et al. Plasma HDL cholesterol and risk of myocardial infarction: a mendelian randomisation study. Lancet 380, 572–580 (2012).CrossRefPubMedPubMedCentral
87.
Haase, C. L. et al. LCAT, HDL cholesterol and ischemic cardiovascular disease: a Mendelian randomization study of HDL cholesterol in 54,500 individuals. J. Clin. Endocrinol. Metab. 97, E248–E256 (2012).CrossRefPubMed
88.
Burgess, S., Freitag, D. F., Khan, H., Gorman, D. N. & Thompson, S. G. Using multivariable Mendelian randomization to disentangle the causal effects of lipid fractions. PLoS ONE 9, e108891 (2014).CrossRefPubMedPubMedCentral
89.
Barter, P. J. et al. Effects of torcetrapib in patients at high risk for coronary events. N. Engl. J. Med. 357, 2109–2122 (2007).CrossRefPubMed
90.
Cannon, C. P. et al. Safety of anacetrapib in patients with or at high risk for coronary heart disease. N. Engl. J. Med. 363, 2406–2415 (2010).CrossRefPubMed
91.
Schwartz, G. G. et al. Effects of dalcetrapib in patients with a recent acute coronary syndrome. N. Engl. J. Med. 367, 2089–2099 (2012).PubMed
92.
Boden, W. E. et al. Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy. N. Engl. J. Med. 365, 2255–2267 (2011).CrossRefPubMed
93.
Ford, E. S. et al. Homocyst(e)ine and cardiovascular disease: a systematic review of the evidence with special emphasis on case-control studies and nested case-control studies. Int. J. Epidemiol. 31, 59–70 (2002).CrossRefPubMed
94.
Klerk, M. et al. MTHFR 677C→T polymorphism and risk of coronary heart disease: a meta-analysis. JAMA 288, 2023–2031 (2002).CrossRefPubMed
95.
Frederiksen, J. et al. Methylenetetrahydrofolate reductase polymorphism (C677T), hyperhomocysteinemia, and risk of ischemic cardiovascular disease and venous thromboembolism: prospective and case-control studies from the Copenhagen City Heart Study. Blood 104, 3046–3051 (2004).CrossRefPubMed
96.
Gordon, T., Castelli, W. P., Hjortland, M. C., Kannel, W. B. & Dawber, T. R. High density lipoprotein as a protective factor against coronary heart disease. The Framingham Study. Am. J. Med. 62, 707–714 (1977).CrossRefPubMed
97.
Emerging Risk Factors Collaboration et al. C-reactive protein concentration and risk of coronary heart disease, stroke, and mortality: an individual participant meta-analysis. Lancet 375, 132–140 (2010).
98.
C Reactive Protein Coronary Heart Disease Genetics Collaboration (CCGC) et al. Association between C reactive protein and coronary heart disease: mendelian randomisation analysis based on individual participant data. BMJ 342, d548 (2011).
99.
O'Leary, C. M. & Bower, C. Guidelines for pregnancy: what's an acceptable risk, and how is the evidence (finally) shaping up? Drug Alcohol Rev. 31, 170–183 (2012).CrossRefPubMed
100.
Zuccolo, L. et al. Prenatal alcohol exposure and offspring cognition and school performance. A 'Mendelian randomization' natural experiment. Int. J. Epidemiol. 42, 1358–1370 (2013).CrossRefPubMedPubMedCentral
101.
Moore, R. D., Levine, D. M., Southard, J., Entwisle, G. & Shapiro, S. Alcohol consumption and blood pressure in the 1982 Maryland Hypertension Survey. Am. J. Hypertens. 3, 1–7 (1990).CrossRefPubMed
102.
Fuchs, F. D., Chambless, L. E., Whelton, P. K., Nieto, F. J. & Heiss, G. Alcohol consumption and the incidence of hypertension: The Atherosclerosis Risk in Communities Study. Hypertension 37, 1242–1250 (2001).CrossRefPubMed
103.
Patel, R. et al. The detection, treatment and control of high blood pressure in older British adults: cross-sectional findings from the British Women's Heart and Health Study and the British Regional Heart Study. J. Hum. Hypertens. 20, 733–741 (2006).CrossRefPubMed
104.
Marmot, M. G. et al. Alcohol and blood pressure: the INTERSALT study. BMJ 308, 1263–1267 (1994).CrossRefPubMedPubMedCentral
105.
Chen, L., Smith, G. D., Harbord, R. M. & Lewis, S. J. Alcohol intake and blood pressure: a systematic review implementing a Mendelian randomization approach. PLoS Med. 5, e52 (2008).CrossRefPubMedPubMedCentral
106.
Liel, Y., Ulmer, E., Shary, J., Hollis, B. W. & Bell, N. H. Low circulating vitamin D in obesity. Calcif. Tissue Int. 43, 199–201 (1988).CrossRefPubMed
107.
Sneve, M., Figenschau, Y. & Jorde, R. Supplementation with cholecalciferol does not result in weight reduction in overweight and obese subjects. Eur. J. Endocrinol. 159, 675–684 (2008).CrossRefPubMed
108.
Zittermann, A. et al. Vitamin D supplementation enhances the beneficial effects of weight loss on cardiovascular disease risk markers. Am. J. Clin. Nutr. 89, 1321–1327 (2009).CrossRefPubMed
109.
Salehpour, A. et al. Vitamin D3 and the risk of CVD in overweight and obese women: a randomised controlled trial. Br. J. Nutr. 108, 1866–1873 (2012).CrossRefPubMed
110.
Vimaleswaran, K. S. et al. Causal relationship between obesity and vitamin D status: bi-directional Mendelian randomization analysis of multiple cohorts. PLoS Med. 10, e1001383 (2013).CrossRefPubMedPubMedCentral
111.
Mora, S. et al. Lipoprotein(a) and risk of type 2 diabetes. Clin. Chem. 56, 1252–1260 (2010).CrossRefPubMedPubMedCentral
112.
Ye, Z. et al. The association between circulating lipoprotein(a) and type 2 diabetes: is it causal? Diabetes 63, 332–342 (2014).CrossRefPubMed
113.
Leong, A. et al. The causal effect of vitamin D binding protein (DBP) levels on calcemic and cardiometabolic diseases: a Mendelian randomization study. PLoS Med. 11, e1001751 (2014).CrossRefPubMedPubMedCentral
114.
Palmer, T. M., Thompson, J. R. & Tobin, M. D. Meta-analysis of Mendelian randomization studies incorporating all three genotypes. Stat. Med. 27, 6570–6582 (2008).CrossRefPubMed
115.
Mann, V. et al. A COL1A1 Sp1 binding site polymorphism predisposes to osteoporotic fracture by affecting bone density and quality. J. Clin. Invest. 107, 899–907 (2001).CrossRefPubMedPubMedCentral
116.
Panoutsopoulou, K. et al. The effect of FTO variation on increased osteoarthritis risk is mediated through body mass index: a mendelian randomisation study. Ann. Rheum. Dis. 73, 2082–2086 (2014).CrossRefPubMed
117.
Pfister, R. et al. No evidence for a causal link between uric acid and type 2 diabetes: a Mendelian randomisation approach. Diabetologia 54, 2561–2569 (2011).CrossRefPubMed