Skip to main content
Top

29-09-2016 | Gout | Review | Article

Gout and Osteoarthritis: Associations, Pathophysiology, and Therapeutic Implications

Journal: Current Rheumatology Reports

Authors: Chio Yokose, Meng Chen, Adey Berhanu, Michael H. Pillinger, Svetlana Krasnokutsky

Publisher: Springer US

Abstract

Osteoarthritis (OA), the most common type of arthritis worldwide, is a degenerative disease of diarthrodial joints resulting in pain, reduced quality of life, and socioeconomic burden. Gout, the most common form of inflammatory arthritis, is a consequence of persistently elevated levels of urate and the formation of proinflammatory monosodium urate crystals in joints. Clinicians have long noted a predilection for both diseases to occur in the same joints. In this review, we provide an overview into research elucidating possible biochemical, mechanical, and immunological relationships between gout and OA. We additionally consider the potential implications of these relationships for OA treatment.
Literature
1.
Bruyere O et al. A consensus statement on the European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis (ESCEO) algorithm for the management of knee osteoarthritis-From evidence-based medicine to the real-life setting. Semin Arthritis Rheum. 2016;45(4 Suppl):S3–11.CrossRefPubMed
2.
Vos T et al. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380(9859):2163–96.CrossRefPubMed
3.•
Kuo CF et al. Global epidemiology of gout: prevalence, incidence and risk factors. Nat Rev Rheumatol. 2015;11(11):649–62. Summarizes global epidemiology of gout in terms of prevalence and incidence in diverse regions of the world, as well as the evolving understanding of the associated risk factors for gout.CrossRefPubMed
4.
Zhu Y, Pandya BJ, Choi HK. Prevalence of gout and hyperuricemia in the US general population: the National Health and Nutrition Examination Survey 2007–2008. Arthritis Rheum. 2011;63(10):3136–41.CrossRefPubMed
5.
Roddy E, Doherty M. Gout and osteoarthritis: a pathogenetic link? Joint Bone Spine. 2012;79(5):425–7.CrossRefPubMed
6.
Fam AG, Stein J, Rubenstein J. Gouty arthritis in nodal osteoarthritis. J Rheumatol. 1996;23(4):684–9.PubMed
7.
Lawrence RC et al. Estimates of the prevalence of arthritis and selected musculoskeletal disorders in the United States. Arthritis Rheum. 1998;41(5):778–99.CrossRefPubMed
8.
Lawrence RC et al. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part II Arthritis Rheum. 2008;58(1):26–35.CrossRefPubMed
9.
Musumeci G et al. Osteoarthritis in the XXIst century: risk factors and behaviours that influence disease onset and progression. Int J Mol Sci. 2015;16(3):6093–112.CrossRefPubMedPubMedCentral
10.
King KB, Rosenthal AK. The adverse effects of diabetes on osteoarthritis: update on clinical evidence and molecular mechanisms. Osteoarthr Cartil. 2015;23(6):841–50.CrossRefPubMed
11.
Sattui SE, Singh JA, Gaffo AL. Comorbidities in patients with crystal diseases and hyperuricemia. Rheum Dis Clin North Am. 2014;40(2):251–78.CrossRefPubMedPubMedCentral
12.
Roddy E, Doherty M. Epidemiology of gout. Arthritis Res Ther. 2010;12(6):223.CrossRefPubMedPubMedCentral
13.
Howard RG et al. Presence of gout is associated with increased prevalence and severity of knee osteoarthritis among older men: results of a pilot study. J Clin Rheumatol. 2015;21(2):63–71.CrossRefPubMedPubMedCentral
14.
Kuo CF et al. Comorbidities in patients with gout prior to and following diagnosis: case-control study. Ann Rheum Dis. 2016;75(1):210–7.CrossRefPubMed
15.
Ding X et al. The associations of serum uric acid level and hyperuricemia with knee osteoarthritis. Rheumatol Int. 2016;36:567–73.CrossRefPubMed
16.
Roddy E, Zhang W, Doherty M. Gout and nodal osteoarthritis: a case-control study. Rheumatology (Oxford). 2008;47(5):732–3.CrossRef
17.
Kawenoki-Minc E et al. Osteoarthrosis and spondylosis in gouty patients. Analysis of 262 cases of gout. Reumatologia. 1974;12(3):267–7.PubMed
18.
Roddy E, Zhang W, Doherty M. Are joints affected by gout also affected by osteoarthritis? Ann Rheum Dis. 2007;66(10):1374–7.CrossRefPubMedPubMedCentral
19.
Carames B et al. Autophagy is a protective mechanism in normal cartilage, and its aging-related loss is linked with cell death and osteoarthritis. Arthritis Rheum. 2010;62(3):791–801.CrossRefPubMedPubMedCentral
20.
Roach HI et al. Pathobiology of osteoarthritis: pathomechanisms and potential therapeutic targets. Curr Drug Targets. 2007;8(2):271–82.CrossRefPubMed
21.
Shi Y, Evans JE, Rock KL. Molecular identification of a danger signal that alerts the immune system to dying cells. Nature. 2003;425(6957):516–21.CrossRefPubMed
22.
Muehleman C et al. Association between crystals and cartilage degeneration in the ankle. J Rheumatol. 2008;35(6):1108–17.PubMed
23.
Simkin PA. The pathogenesis of podagra. Ann Intern Med. 1977;86(2):230–3.CrossRefPubMed
24.
Inerot S et al. Articular-cartilage proteoglycans in aging and osteoarthritis. Biochem J. 1978;169(1):143–56.CrossRefPubMedPubMedCentral
25.
Mourao PA. Distribution of chondroitin 4-sulfate and chondroitin 6-sulfate in human articular and growth cartilage. Arthritis Rheum. 1988;31(8):1028–33.CrossRefPubMed
26.
Sharif M et al. The relevance of chondroitin and keratan sulphate markers in normal and arthritic synovial fluid. Br J Rheumatol. 1996;35(10):951–7.CrossRefPubMed
27.
Uesaka S et al. Significance of chondroitin sulfate isomers in the synovial fluid of osteoarthritis patients. J Orthop Sci. 2002;7(2):232–7.CrossRefPubMed
28.
Bayliss MT et al. Sulfation of chondroitin sulfate in human articular cartilage. The effect of age, topographical position, and zone of cartilage on tissue composition. J Biol Chem. 1999;274(22):15892–900.CrossRefPubMed
29.
Burt HM, Dutt YC. Growth of monosodium urate monohydrate crystals: effect of cartilage and synovial fluid components on in vitro growth rates. Ann Rheum Dis. 1986;45(10):858–64.CrossRefPubMedPubMedCentral
30.
Laurent TC. Solubility of sodium urate in the presence of chondroitin-4-sulphate. Nature. 1964;202:1334.CrossRefPubMed
31.
Orlowsky EW et al. Monosodium urate crystal induced macrophage inflammation is attenuated by chondroitin sulphate: pre-clinical model for gout prophylaxis? BMC Musculoskelet Disord. 2014;15:318.CrossRefPubMedPubMedCentral
32.
Dalbeth N et al. Relationship between structural joint damage and urate deposition in gout: a plain radiography and dual-energy CT study. Ann Rheum Dis. 2015;74(6):1030–6.CrossRefPubMed
33.
Sokoloff L. The pathology of gout. Metabolism. 1957;6(3):230–43.PubMed
34.•
Gutierrez M et al. International Consensus for ultrasound lesions in gout: results of Delphi process and web-reliability exercise. Rheumatology (Oxford). 2015;54(10):1797–805. Develops first consensus-based definition for gout based on musculoskeletal ultrasound and demonstrates good reliability in a web-based exercise.CrossRef
35.
Liu R et al. Proline-rich tyrosine kinase 2 and Src kinase signaling transduce monosodium urate crystal-induced nitric oxide production and matrix metalloproteinase 3 expression in chondrocytes. Arthritis Rheum. 2004;50(1):247–58.CrossRefPubMed
36.
Goldring MB. The role of the chondrocyte in osteoarthritis. Arthritis Rheum. 2000;43(9):1916–26.CrossRefPubMed
37.
Taskiran D et al. Nitric oxide mediates suppression of cartilage proteoglycan synthesis by interleukin-1. Biochem Biophys Res Commun. 1994;200(1):142–8.CrossRefPubMed
38.
Blanco FJ et al. Chondrocyte apoptosis induced by nitric oxide. Am J Pathol. 1995;146(1):75–85.PubMedPubMedCentral
39.
Murrell GA, Jang D, Williams RJ. Nitric oxide activates metalloprotease enzymes in articular cartilage. Biochem Biophys Res Commun. 1995;206(1):15–21.CrossRefPubMed
40.••
Chhana A et al. The effects of monosodium urate monohydrate crystals on chondrocyte viability and function: implications for development of cartilage damage in gout. J Rheumatol. 2013;40(12):2067–74. Investigates effect of MSU crystals on chondrocyte viability and function and provides a mechanism for which MSU crystals may result in cartilage damage.CrossRefPubMed
41.
Hwang HS et al. Monosodium urate crystal-induced chondrocyte death via autophagic process. Int J Mol Sci. 2015;16(12):29265–77.CrossRefPubMedPubMedCentral
42.
Martinon F et al. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature. 2006;440(7081):237–41.CrossRefPubMed
43.
Gowen M et al. An interleukin 1 like factor stimulates bone resorption in vitro. Nature. 1983;306(5941):378–80.CrossRefPubMed
44.
Pretzel D et al. In vitro model for the analysis of synovial fibroblast-mediated degradation of intact cartilage. Arthritis Res Ther. 2009;11(1):R25.CrossRefPubMedPubMedCentral
45.
Attur MG et al. Reversal of autocrine and paracrine effects of interleukin 1 (IL-1) in human arthritis by type II IL-1 decoy receptor. Potential for pharmacological intervention. J Biol Chem. 2000;275(51):40307–15.CrossRefPubMed
46.
Siebuhr AS et al. Inflammation (or synovitis)-driven osteoarthritis: an opportunity for personalizing prognosis and treatment? Scand J Rheumatol. 2016;45(2):87–98.CrossRefPubMed
47.••
Denoble AE et al. Uric acid is a danger signal of increasing risk for osteoarthritis through inflammasome activation. Proc Natl Acad Sci U S A. 2011;108(5):2088–93. Compares synovial fluid UA and inflammatory cytokine levels with knee OA severity, lending strong support for the role of the innate immune system in OA development and progression.CrossRefPubMedPubMedCentral
48.
Nowatzky J et al. The role of uric acid and other crystals in osteoarthritis. Curr Rheumatol Rep. 2010;12(2):142–8.CrossRefPubMed
49.
Doblado M, Moley KH. Facilitative glucose transporter 9, a unique hexose and urate transporter. Am J Physiol Endocrinol Metab. 2009;297(4):E831–5.CrossRefPubMedPubMedCentral
50.
Mobasheri A et al. Human articular chondrocytes express three facilitative glucose transporter isoforms: GLUT1, GLUT3 and GLUT9. Cell Biol Int. 2002;26(3):297–300.CrossRefPubMed
51.
Crisan TO et al. Soluble uric acid primes TLR-induced proinflammatory cytokine production by human primary cells via inhibition of IL-1Ra. Ann Rheum Dis. 2016;75(4):755–62.CrossRefPubMed
52.
Davis MA, Ettinger WH, Neuhaus JM. Obesity and osteoarthritis of the knee: evidence from the National Health and Nutrition Examination Survey (NHANES I). Semin Arthritis Rheum. 1990;20(3 Suppl 1):34–41.CrossRefPubMed
53.
Mishra R et al. A comparative analysis of serological parameters and oxidative stress in osteoarthritis and rheumatoid arthritis. Rheumatol Int. 2012;32(8):2377–82.CrossRefPubMed
54.
Acheson RM, Collart AB. New Haven survey of joint diseases. XVII. Relationship between some systemic characteristics and osteoarthrosis in a general population. Ann Rheum Dis. 1975;34(5):379–87.CrossRefPubMedPubMedCentral
55.
Sun Y et al. Serum uric acid and patterns of radiographic osteoarthritis—the Ulm Osteoarthritis Study. Scand J Rheumatol. 2000;29(6):380–6.CrossRefPubMed
56.
Gunther KP et al. Clinical epidemiology of hip and knee joint arthroses: an overview of the results of the “Ulm Osteoarthrosis Study”. Z Rheumatol. 2002;61(3):244–9.CrossRefPubMed
57.
Wangkaew S et al. A comparative study of serum and synovial fluid levels of uric acid between patients with gout and other arthritides. J Med Assoc Thai. 2014;97(7):679–85.PubMed
58.
Beutler AM et al. Soluble urate in sera and synovial fluids from patients with different joint disorders. Clin Exp Rheumatol. 1996;14(3):249–54.PubMed
59.
Leung YY et al. Colchicine effectiveness in symptom and inflammation modification in knee osteoarthritis (COLKOA): study protocol for a randomized controlled trial. Trials. 2015;16:200.CrossRefPubMedPubMedCentral
60.•
Slobodnick A, Shah B, Pillinger MH, Krasnokutsky S. Colchicine: old and new. Am J Med. 2015;128(5):461–70. Summarizes pleotropic effects of colchicine and its potential utility in a number of different disease processes.CrossRefPubMed
61.
Das SK et al. A randomized controlled trial to evaluate the slow-acting symptom modifying effects of a regimen containing colchicine in a subset of patients with osteoarthritis of the knee. Osteoarthr Cartil. 2002;10(4):247–52.CrossRefPubMed
62.
Aran S, Malekzadeh S, Seifirad S. A double-blind randomized controlled trial appraising the symptom-modifying effects of colchicine on osteoarthritis of the knee. Clin Exp Rheumatol. 2011;29(3):513–8.PubMed
63.
Zhang W et al. EULAR recommendations for calcium pyrophosphate deposition. Part II: management. Ann Rheum Dis. 2011;70(4):571–5.CrossRefPubMed
64.
Gasse P et al. Uric acid is a danger signal activating NALP3 inflammasome in lung injury inflammation and fibrosis. Am J Respir Crit Care Med. 2009;179(10):903–13.CrossRefPubMed
65.
Yoshimura N et al. Accumulation of metabolic risk factors such as overweight, hypertension, dyslipidaemia, and impaired glucose tolerance raises the risk of occurrence and progression of knee osteoarthritis: a 3-year follow-up of the ROAD study. Osteoarthr Cartil. 2012;20(11):1217–26.CrossRefPubMed
66.•
Aibibula Z et al. Xanthine oxidoreductase activation is implicated in the onset of metabolic arthritis. Biochem Biophys Res Commun. 2016;472(1):26–32. Using a mouse model, this study provides rationale for potential use of direct urate lowering therapy to prevent cartilage degradation and inflammation commonly seen in metabolic syndrome.