Skip to main content
Top

14-10-2015 | Gout | Article

Factors influencing the crystallization of monosodium urate: a systematic literature review

Journal: BMC Musculoskeletal Disorders

Authors: Ashika Chhana, Gerald Lee, Nicola Dalbeth

Publisher: BioMed Central

Abstract

Background

Gout is a chronic disease of monosodium urate (MSU) crystal deposition. Although hyperuricaemia is the central risk factor for development of gout, not all people with hyperuricaemia have subclinical MSU crystal deposition or indeed, symptomatic disease. The aim of this systematic literature review was to identify factors that contribute to MSU crystallization.

Methods

A search was conducted of the electronic databases PubMed, Science Direct and Scopus. Articles were included if they contained original data related to MSU crystallization. The methods and results were summarized and categorized into articles describing at least one of the three key steps in MSU crystallization (reduced urate solubility, nucleation and growth).

Results

A total of 2175 articles were initially identified in our systematic search with 35 of these articles included in the final analysis. Elevated urate concentration was identified as a central factor driving all three stages of MSU crystallization. Factors that were found to consistently reduce urate solubility were reduced temperatures, pH 7–9 and various ions including sodium ions. Connective tissue factors including bovine cartilage homogenates and healthy human synovial fluid and serum all enhanced urate solubility. MSU nucleation was found to be increased by a number of factors, including sodium ions, uric acid binding antibodies, and synovial fluid or serum from patients with gout. Other than elevated urate concentrations, no other specific factors were identified as promoters of MSU crystal growth.

Conclusions

Increased urate concentration is the key factor required at each stage of MSU crystallization. Different proteins and factors within connective tissues may promote MSU crystallization and may be important for determining the sites at which MSU crystallization occurs in the presence of elevated urate concentrations.
Literature
1.
Faires J, McCarty D. Acute arthritis in man and dog after intrasynovial injection of sodium urate crystals. Lancet. 1962;280:682–5. doi:10.​1016/​S0140-6736(62)90501-9.CrossRef
2.
Dalbeth N, Stamp L. Hyperuricaemia and gout: time for a new staging system? Ann Rheum Dis. 2014;73:1598–600. doi:10.​1136/​annrheumdis-2014-205304.CrossRefPubMed
3.
Bardin T, Richette P. Definition of hyperuricemia and gouty conditions. Curr Opin Rheumatol. 2014;26:186–91. doi:10.​1097/​bor.​0000000000000028​.CrossRefPubMed
4.
Campion EW, Glynn RJ, DeLabry LO. Asymptomatic hyperuricemia. Risks and consequences in the Normative Aging Study. Am J Med. 1987;82:421–6. doi:10.​1016/​0002-9343(87)90441-4.CrossRefPubMed
5.
Dalbeth N, House ME, Aati O, Tan P, Franklin C, Horne A, et al. Urate crystal deposition in asymptomatic hyperuricaemia and symptomatic gout: a dual energy CT study. Ann Rheum Dis. 2015;74:908–11. doi:10.​1136/​annrheumdis-2014-206397.CrossRefPubMed
6.
Howard RG, Pillinger MH, Gyftopoulos S, Thiele RG, Swearingen CJ, Samuels J. Reproducibility of musculoskeletal ultrasound for determining monosodium urate deposition: concordance between readers. Arthritis Care Res (Hoboken). 2011;63:1456–62. doi:10.​1002/​acr.​20527.CrossRef
7.
Pineda C, Amezcua-Guerra LM, Solano C, Rodriguez-Henriquez P, Hernandez-Diaz C, Vargas A, et al. Joint and tendon subclinical involvement suggestive of gouty arthritis in asymptomatic hyperuricemia: an ultrasound controlled study. Arthritis Res Ther. 2011;13:R4. doi:10.​1186/​ar3223.CrossRefPubMedPubMedCentral
8.
De Miguel E, Puig JG, Castillo C, Peiteado D, Torres RJ, Martin-Mola E. Diagnosis of gout in patients with asymptomatic hyperuricaemia: a pilot ultrasound study. Ann Rheum Dis. 2012;71:157–8. doi:10.​1136/​ard.​2011.​154997.CrossRefPubMed
9.
Dalbeth N, Aati O, Kalluru R, Gamble GD, Horne A, Doyle AJ, et al. Relationship between structural joint damage and urate deposition in gout: a plain radiography and dual-energy CT study. Ann Rheum Dis. 2014. doi:10.​1136/​annrheumdis-2013-204273.
10.
Naredo E, Uson J, Jiménez-Palop M, Martínez A, Vicente E, Brito E, et al. Ultrasound-detected musculoskeletal urate crystal deposition: which joints and what findings should be assessed for diagnosing gout? Ann Rheum Dis. 2014;73:1522–8. doi:10.​1136/​annrheumdis-2013-203487.CrossRefPubMed
11.
Mandel NS, Mandel GS. Monosodium urate monohydrate, the gout culprit. J Am Chem Soc. 1976;98:2319–23. doi:10.​1021/​ja00424a054.CrossRefPubMed
12.
Perrin CM, Dobish MA, Van Keuren E, Swift JA. Monosodium urate monohydrate crystallization. CrystEngComm. 2011;13:1111–7. doi:10.​1039/​C0CE00737D.CrossRef
13.
Mersmann A. Physical and chemical properties of crystalline systems. In: Mersmann A, editor. Crystallization technology handbook. 2nd ed. New York: Marcel Dekker, Inc.; 2001. p. 1–44.CrossRef
14.
Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ. 2009;339. doi:10.​1136/​bmj.​b2535
15.
Silberberg MS. Solubility and molecular structure. Principles of general chemistry. 3rd ed. New York: McGraw-Hill Education; 2012.
16.
Allen DJ, Milosovich G, Mattocks AM. Inhibition of monosodium urate needle crystal growth. Arthritis Rheum. 1965;8:1123–33. doi:10.​1002/​art.​1780080611.CrossRefPubMed
17.
Allen DJ, Milosovich G, Mattocks AM. Crystal growth of sodium acid urate. J Pharm Sci. 1965;54:383–6. doi:10.​1002/​jps.​2600540308.CrossRefPubMed
18.
Wilcox WR, Khalaf A, Weinberger A, Kippen I, Klinenberg JR. Solubility of uric acid and monosodium urate. Med Biol Eng. 1972;10:522–31. doi:10.​1007/​BF02474201.CrossRefPubMed
19.
Loeb JN. The influence of temperature on the solubility of monosodium urate. Arthritis Rheum. 1972;15:189–92. doi:10.​1002/​art.​1780150209.CrossRefPubMed
20.
Kippen I, Klinenberg JR, Weinberger A, Wilcox WR. Factors affecting urate solubility in vitro. Ann Rheum Dis. 1974;33:313–7. doi:10.​1136/​ard.​33.​4.​313.CrossRefPubMedPubMedCentral
21.
Calvert PD, Fiddis RW, Vlachos N. Crystal growth of monosodium urate monohydrate. Colloids Surf. 1985;14:97–107. doi:10.​1016/​0166-6622(85)80044-5.CrossRef
22.
Khalaf AA, Wilcox WR. Solubility and nucleation of monosodium urate in relation to gouty arthritis. J Cryst Growth. 1973;20:227–32. doi:10.​1016/​0022-0248(73)90009-2.CrossRef
23.
Lam Erwin C-Y, Nancollas GH. The crystallization and dissolution of sodium urate. J Cryst Growth. 1981;53:215–23. doi:10.​1016/​0022-0248(81)90068-3.CrossRef
24.
Seegmiller JE. The acute attack of gouty arthritis. Arthritis Rheum. 1965;8:714–25. doi:10.​1002/​art.​1780080431.CrossRefPubMed
25.
McNabb RA, McNabb FMA. Physiological chemistry of uric acid: solubility, colloid and ion-binding properties. Comp Biochem Physiol. 1980;67:27–34. doi:10.​1016/​0300-9629(80)90405-3.CrossRef
26.
Füredi-Milhofer H, Babić-Ivaniĉić V, Milat O, Brown WE, Gregory TM. Precipitation of sodium acid urate from electrolyte solutions. J Cryst Growth. 1987;83:572–80. doi:10.​1016/​0022-0248(87)90252-1.CrossRef
27.
Wilcox WR, Khalaf AA. Nucleation of monosodium urate crystals. Ann Rheum Dis. 1975;34:332–9. doi:10.​1136/​ard.​34.​4.​332.CrossRefPubMedPubMedCentral
28.
Katz WA, Schubert M. The interaction of monosodium urate with connective tissue components. J Clin Invest. 1970;49:1783–9. doi:10.​1172/​JCI106396.CrossRefPubMedPubMedCentral
29.
Perricone E, Brandt KD. Enhancement of urate solubility by connective tissue. I. Effect of proteoglycan aggregates and buffer cation. Arthritis Rheum. 1978;21:453–60. doi:10.​1002/​art.​1780210409.CrossRefPubMed
30.
Laurent TC. Solubility of sodium urate in the presence of chondroitin-4-sulphate. Nature. 1964;202:1334. doi:10.​1038/​2021334a0.CrossRefPubMed
31.
Burt HM, Dutt YC. Growth of monosodium urate monohydrate crystals: effect of cartilage and synovial fluid components on in vitro growth rates. Ann Rheum Dis. 1986;45:858–64. doi:10.​1136/​ard.​45.​10.​858.CrossRefPubMedPubMedCentral
32.
Dorner RW, Weiss TD, Baldassare AR, Moore TL, Zuckner J. Plasma and synovial fluid as solvents for monosodium urate. Ann Rheum Dis. 1981;40:70–4. doi:10.​1136/​ard.​40.​1.​70.CrossRefPubMedPubMedCentral
33.
Mullin JW. Nucleation of monosodium urate crystals. Crystallization. 4th ed. Oxford: Butterworth Heinemann; 2001.
34.
Martillo MA, Nazzal L, Crittenden DB. The crystallization of monosodium urate. Curr Rheumatol Rep. 2014;16:400. doi:10.​1007/​s11926-013-0400-9.CrossRefPubMedPubMedCentral
35.
Oliviero F, Scanu A, Punzi L. Metabolism of crystals within the joint. Reumatismo. 2011;63:221–9. doi:10.​4081/​reumatismo.​2011.​221.
36.
H-k T, Wilcox WR, Cooper SM. Crystallization of monosodium urate and calcium urate at 37° C. J Colloid Interface Sci. 1980;77:195–201.CrossRef
37.
Tak HK, Cooper SM, Wilcox WR. Studies on the nucleation of monsodium urate at 37° C. Arthritis Rheum. 1980;23:574–80. doi:10.​1002/​art.​1780230509.CrossRefPubMed
38.
McGill NW, Dieppe PA. The role of serum and synovial fluid components in the promotion of urate crystal formation. J Rheumatol. 1991;18:1042–5.PubMed
39.
McGill NW, Dieppe PA. The effect of biological crystals and human serum on the rate of formation of crystals of monosodium urate monohydrate in vitro. Br J Rheumatol. 1991;30:107–11. doi:10.​1093/​rheumatology/​30.​2.​107.CrossRefPubMed
40.
McGill NW, Dieppe PA. Evidence for a promoter of urate crystal formation in gouty synovial fluid. Ann Rheum Dis. 1991;50:558–61. doi:10.​1136/​ard.​50.​8.​558.CrossRefPubMedPubMedCentral
41.
Perl-Treves D, Addadi L. A structural approach to pathological crystallizations. Gout: the possible role of albumin in sodium urate crystallization. Proc R Soc Lond B Biol Sci. 1988;235:145–59. doi:10.​1007/​s11926-013-0400-9.CrossRefPubMed
42.
Kaneko K, Maru M. Determination of urate crystal formation using flow cytometry and microarea X-ray diffractometry. Anal Biochem. 2000;281:9–14. doi:10.​1006/​abio.​2000.​4543.CrossRefPubMed
43.
Roddy E, Zhang W, Doherty M. Are joints affected by gout also affected by osteoarthritis? Ann Rheum Dis. 2007;66:1374–7. doi:10.​1136/​ard.​2006.​063768.CrossRefPubMedPubMedCentral
44.
Grassi W, Meenagh G, Pascual E, Filippucci E. “Crystal clear”-sonographic assessment of gout and calcium pyrophosphate deposition disease. Semin Arthritis Rheum. 2006;36:197–202. doi:10.​1016/​j.​semarthrit.​2006.​08.​001.CrossRefPubMed
45.
Kanevets U, Sharma K, Dresser K, Shi Y. A role of IgM antibodies in monosodium urate crystal formation and associated adjuvanticity. J Immunol. 2009;182:1912–8. doi:10.​4049/​jimmunol.​0803777.CrossRefPubMedPubMedCentral
46.
Kam M, Perl-Treves D, Caspi D, Addadi L. Antibodies against crystals. FASEB J. 1992;6:2608–13.PubMed
47.
Kam M, Perl-Treves D, Sfez R, Addadi L. Specificity in the recognition of crystals by antibodies. J Mol Recognit. 1994;7:257–64. doi:10.​1002/​jmr.​300070404.CrossRefPubMed
48.
Burt HM, Dutt YC. Crystallization of monosodium urate monohydrate. J Cryst Growth. 1989;94:15–22. doi:10.​1016/​0022-0248(89)90597-6.CrossRef
49.
Tak HK, Wilcox WR, Cooper SM. The effect of lead upon urate nucleation. Arthritis Rheum. 1981;24:1291–5. doi:10.​1002/​art.​1780241009.CrossRefPubMed
50.
Sattar S, Carroll MJ, Sargeant AA, Swift JA. Structure of a lead urate complex and its effect on the nucleation of monosodium urate monohydrate. CrystEngComm. 2008;10:155–7. doi:10.​1039/​B715586G.CrossRef
51.
Fiddis RW, Vlachos N, Calvert PD. Studies of urate crystallisation in relation to gout. Ann Rheum Dis. 1983;42:12–5. doi:10.​1136/​ard.​42.​Suppl_​1.​12.CrossRefPubMedPubMedCentral
52.
McGill NW, Hayes A, Dieppe PA. Morphological evidence for biological control of urate crystal formation in vivo and in vitro. Scand J Rheumatol. 1992;21:215–9. doi:10.​3109/​0300974920909922​7.CrossRefPubMed
53.
Pascual E, Martinez A, Ordonez S. Gout: the mechanism of urate crystal nucleation and growth. A hypothesis based in facts. Joint Bone Spine. 2013;80:1–4. doi:10.​1016/​j.​jbspin.​2012.​08.​012.CrossRefPubMed
54.
Hayes A, Turner IG, Powell KA, Dieppe PA. Crystal aggregates in articular cartilage as observed in the SEM. J Mater Sci Mater Med. 1992;3:75–8. doi:10.​1007/​BF00702948.CrossRef
55.
Konttinen YT, Mandelin J, Li TF, Salo J, Lassus J, Liljeström M, et al. Acidic cysteine endoproteinase cathepsin K in the degeneration of the superficial articular hyaline cartilage in osteoarthritis. Arthritis Rheum. 2002;46:953–60. doi:10.​1002/​art.​10185.CrossRefPubMed
56.
Lang A, Hörler D, Baici A. The relative importance of cysteine peptidases in osteoarthritis. J Rheumatol. 2000;27:1970–9.PubMed
57.
Morko JP, Söderström M, Säämänen AK, Salminen HJ, Vuorio EI. Up regulation of cathepsin K expression in articular chondrocytes in a transgenic mouse model for osteoarthritis. Ann Rheum Dis. 2004;63:649–55. doi:10.​1136/​ard.​2002.​004671.CrossRefPubMedPubMedCentral