Skip to main content
Top

22-04-2016 | Gout | Article

Urate Handling in the Human Body

Journal: Current Rheumatology Reports

Authors: David Hyndman, Sha Liu, Jeffrey N. Miner

Publisher: Springer US

Abstract

Elevated serum urate concentration is the primary cause of gout. Understanding the processes that affect serum urate concentration is important for understanding the etiology of gout and thereby understanding treatment. Urate handing in the human body is a complex system including three major processes: production, renal elimination, and intestinal elimination. A change in any one of these can affect both the steady-state serum urate concentration as well as other urate processes. The remarkable complexity underlying urate regulation and its maintenance at high levels in humans suggests that this molecule could potentially play an interesting role other than as a mere waste product to be eliminated as rapidly as possible.
Literature
1.
Wang Z, Königsberger E. Solubility equilibria in the uric acid-sodium urate-water system. Thermochim Acta. 1998;310:237–42.CrossRef
2.
Choi HK, Mount DB, Reginato AM. Pathogenesis of gout. Ann Intern Med. 2005;143(7):499–516.CrossRefPubMed
3.
Zhang W, Doherty M, Bardin T, Pascual E, Barskova V, Conaghan P, et al. EULAR evidence based recommendations for gout, part II: management: report of a task force of the EULAR Standing Committee for International Clinical Studies Including Therapeutics (ESCISIT). Ann Rheum Dis. 2006;65(10):1312–24. doi:10.​1136/​ard.​2006.​055269.CrossRefPubMedPubMedCentral
4.
Khanna D, Fitzgerald JD, Khanna PP, Bae S, Singh MK, Neogi T, et al. 2012 American College of Rheumatology guidelines for management of gout, part 1: systematic nonpharmacologic and pharmacologic therapeutic approaches to hyperuricemia. Arthritis Care Res. 2012;64(10):1431–46. doi:10.​1002/​acr.​21772.CrossRef
5.
Oh JH, Dossetor JB, Beck IT. Kinetics of uric acid transport and its production in rat small intestine. Can J Physiol Pharmacol. 1967;45(1):121–7.CrossRefPubMed
6.
Bronk JR, Shaw MI. The transport of uric acid across mouse small intestine in vitro. J Physiol. 1986;378:229–39.CrossRefPubMedPubMedCentral
7.
Dukes CE, Steplock DA, Kahn AM, Weinman EJ. The transport of urate in the small intestine of the rat. Proc Soc Exp Biol Med. 1982;171(1):19–23.CrossRefPubMed
8.
Wilson DW, Wilson HC. Studies in vitro of the digestion and absorption of purine ribonucleotides by the intestine. J Biol Chem. 1962;237:1643–7.PubMed
9.
Löffler W, Gröbner W, Medina R, Zöllner N. Influence of dietary purines on pool size, turnover, and excretion of uric acid during balance conditions: isotope studies using 15N-uric acid. Res Exp Med (Berl). 1982;181(2):113–23.CrossRef
10.
Yamamoto T, Yokoyama H, Moriwaki Y, Takahashi S, Suda M, Hada T, et al. The effect of completely purine-free diet of low sodium content on purine intermediates and end-product. Eur J Clin Nutr. 1990;44(9):659–64.PubMed
11.
Porcelli B, Vannoni D, Leoncini R, Pizzichini M, Pagani R, Marinello E. Free oxypurines in plasma and urine of gout patients before and after a purine-free diet. Adv Exp Med Biol. 1994;370:47–52.CrossRefPubMed
12.
Choi HK, Atkinson K, Karlson EW, Willett W, Curhan G. Purine-rich foods, dairy and protein intake, and the risk of gout in men. N Engl J Med. 2004;350(11):1093–103. doi:10.​1056/​NEJMoa035700.CrossRefPubMed
13.
Ikarashi R, Shibasaki K, Yamaguchi A. Immunohistochemical studies of organic anion transporters and urate transporter 1 expression in human salivary gland. Acta Odontol Scand. 2012. doi:10.​3109/​00016357.​2012.​680904.PubMedPubMedCentral
14.
Sorensen LB. Role of the intestinal tract in the elimination of uric acid. Arthritis Rheum. 1965;8(5):694–706.CrossRefPubMed
15.
Levinson DJ, Sorensen LB. Renal handling of uric acid in normal and gouty subjects: evidence for a 4-component system. Ann Rheum Dis. 1980;39(2):173–9.CrossRefPubMedPubMedCentral
16.
Roch-Ramel F, Guisan B, Schild L. Indirect coupling of urate and p-aminohippurate transport to sodium in human brush-border membrane vesicles. Am J Physiol. 1996;270(1):F61–F8.PubMed
17.
Enomoto A, Kimura H, Chairoungdua A, Shigeta Y, Jutabha P, Cha SH, et al. Molecular identification of a renal urate anion exchanger that regulates blood urate levels. Nature. 2002;417(6887):447–52. doi:10.​1038/​nature742.PubMed
18.
Rieselbach RE, Sorensen LB, Shelp WD, Steele TH. Diminished renal urate secretion per nephron as a basis for primary gout. Ann Intern Med. 1970;73(3):359–66.CrossRefPubMed
19.
Ichida K, Hosoyamada M, Hisatome I, Enomoto A, Hikita M, Endou H, et al. Clinical and molecular analysis of patients with renal hypouricemia in Japan-influence of URAT1 gene on urinary urate excretion. J Am Soc Nephrol. 2004;15(1):164–73. doi:10.​1097/​01.​asn.​0000105320.​04395.​d0.CrossRefPubMed
20.
Kottgen A, Albrecht E, Teumer A, Vitart V, Krumsiek J, Hundertmark C, et al. Genome-wide association analyses identify 18 new loci associated with serum urate concentrations. Nat Genet. 2013;45(2):145–54. doi:10.​1038/​ng.​2500.CrossRefPubMedPubMedCentral
21.
Diamond HS, Paolino JS. Evidence for a postsecretory reabsorptive site for uric acid in man. J Clin Invest. 1973;52(6):1491–9. doi:10.​1172/​JCI107323.CrossRefPubMedPubMedCentral
22.
Solangi GA, Zuberi BF, Shaikh S, Shaikh WM. Pyrazinamide induced hyperuricemia in patients taking anti-tuberculous therapy. J Coll Physicians Surg Pak. 2004;14(3):136–8.PubMed
23.
Berliner RW, Hilton JG, Yu TF, Kennedy TJ. The renal mechanism for urate excretion in man. J Clin Invest. 1950;29(4):396–401. doi:10.​1172/​JCI102271.CrossRefPubMedPubMedCentral
24.
Gunjaca G, Boban M, Pehlic M, Zemunik T, Budimir D, Kolcic I, et al. Predictive value of 8 genetic loci for serum uric acid concentration. Croat Med J. 2010;51(1):23–31.CrossRefPubMedPubMedCentral
25.
van der Harst P, Bakker SJ, de Boer RA, Wolffenbuttel BH, Johnson T, Caulfield MJ, et al. Replication of the five novel loci for uric acid concentrations and potential mediating mechanisms. Hum Mol Genet. 2010;19(2):387–95. doi:10.​1093/​hmg/​ddp489.CrossRefPubMed
26.
Yang Q, Kottgen A, Dehghan A, Smith AV, Glazer NL, Chen MH, et al. Multiple genetic loci influence serum urate levels and their relationship with gout and cardiovascular disease risk factors. Circ Cardiovasc Genet. 2010. doi:10.​1161/​CIRCGENETICS.​109.​934455.
27.
Kolz M, Johnson T, Sanna S, Teumer A, Vitart V, Perola M, et al. Meta-analysis of 28,141 individuals identifies common variants within five new loci that influence uric acid concentrations. PLoS Genet. 2009;5(6):e1000504. doi:10.​1371/​journal.​pgen.​1000504.CrossRefPubMedPubMedCentral
28.
Phipps-Green AJ, Merriman ME, Topless R, Altaf S, Montgomery GW, Franklin C, et al. Twenty-eight loci that influence serum urate levels: analysis of association with gout. Ann Rheum Dis. 2014. doi:10.​1136/​annrheumdis-2014-205877.PubMedCentral
29.•
Matsuo H, Yamamoto K, Nakaoka H, Nakayama A, Sakiyama M, Chiba T et al. Genome-wide association study of clinically defined gout identifies multiple risk loci and its association with clinical subtypes. Ann Rheum Dis. 2015. doi:10.​1136/​annrheumdis-2014-206191. This paper confirms the association of ABCG2 with hyperuricemia and gout and also finds that FEUA is unexpectedly increased with the allele which also increases SUA
30.
Witkowska K, Smith KM, Yao SY, Ng AM, O'Neill D, Karpinski E, et al. Human SLC2A9a and SLC2A9b isoforms mediate electrogenic transport of urate with different characteristics in the presence of hexoses. Am J Physiol Renal Physiol. 2012;303(4):F527–39. doi:10.​1152/​ajprenal.​00134.​2012.CrossRefPubMedPubMedCentral
31.
Kimura T, Takahashi M, Yan K, Sakurai H. Expression of SLC2A9 isoforms in the kidney and their localization in polarized epithelial cells. PLoS One. 2014;9(1):e84996. doi:10.​1371/​journal.​pone.​0084996.CrossRefPubMedPubMedCentral
32.
Zhou F, Zhu L, Cui PH, Church WB, Murray M. Functional characterization of nonsynonymous single nucleotide polymorphisms in the human organic anion transporter 4 (hOAT4). Br J Pharmacol. 2010;159(2):419–27. doi:10.​1111/​j.​1476-5381.​2009.​00545.​x.CrossRefPubMedPubMedCentral
33.
Sakiyama M, Matsuo H, Shimizu S, Nakashima H, Nakayama A, Chiba T, et al. A common variant of organic anion transporter 4 (OAT4/SLC22A11) gene is associated with renal underexcretion type gout. Drug Metab Pharmacokinet. 2014;29(2):208–10.CrossRefPubMed
34.
Hagos Y, Stein D, Ugele B, Burckhardt G, Bahn A. Human renal organic anion transporter 4 operates as an asymmetric urate transporter. J Am Soc Nephrol. 2007;18(2):430–9. doi:10.​1681/​ASN.​2006040415.CrossRefPubMed
35.
Bahn A, Hagos Y, Reuter S, Balen D, Brzica H, Krick W, et al. Identification of a new urate and high affinity nicotinate transporter, hOAT10 (SLC22A13). J Biol Chem. 2008;283(24):16332–41. doi:10.​1074/​jbc.​M800737200.CrossRefPubMed
36.•
Köttgen A, Albrecht E, Teumer A, Vitart V, Krumsiek J, Hundertmark C et al. Genome-wide association analyses identify 18 new loci associated with serum urate concentrations [published online ahead of print December 23, 2012]. Nat Genet 2012 doi:10.​1038/​ng.​2500. This paper found that the ABCG2 variant that is associated with increased SUA is also associated with decreased FEUA.
37.
Praetorius E, Kirk JE. Hypouricemia: with evidence for tubular elimination of uric acid. J Lab Clin Med. 1950;35(6):865–8.PubMed
38.
Gutman AB, Yu TF, Berger L. Tubular secretion of urate in man. J Clin Invest. 1959;38:1778–81. doi:10.​1172/​JCI103956.CrossRefPubMedPubMedCentral
39.
Dinour D, Gray NK, Campbell S, Shu X, Sawyer L, Richardson W, et al. Homozygous SLC2A9 mutations cause severe renal hypouricemia. J Am Soc Nephrol. 2010;21(1):64–72. doi:10.​1681/​ASN.​2009040406.CrossRefPubMedPubMedCentral
40.
Puig JG, Torres RJ, de Miguel E, Sanchez A, Bailen R, Banegas JR. Uric acid excretion in healthy subjects: a nomogram to assess the mechanisms underlying purine metabolic disorders. Metabolism. 2012;61(4):512–8. doi:10.​1016/​j.​metabol.​2011.​08.​005.CrossRefPubMed
41.
Perez-Ruiz F, Calabozo M, Erauskin GG, Ruibal A, Herrero-Beites AM. Renal underexcretion of uric acid is present in patients with apparent high urinary uric acid output. Arthritis Rheum. 2002;47(6):610–3. doi:10.​1002/​art.​10792.CrossRefPubMed
42.
El-Sheikh AA, van den Heuvel JJ, Koenderink JB, Russel FG. Effect of hypouricaemic and hyperuricaemic drugs on the renal urate efflux transporter, multidrug resistance protein 4. Br J Pharmacol. 2008;155(7):1066–75. doi:10.​1038/​bjp.​2008.​343.CrossRefPubMedPubMedCentral
43.
Jutabha P, Anzai N, Kitamura K, Taniguchi A, Kaneko S, Yan K, et al. Human sodium phosphate transporter 4 (hNPT4/SLC17A3) as a common renal secretory pathway for drugs and urate. J Biol Chem. 2010;285(45):35123–32. doi:10.​1074/​jbc.​M110.​121301.CrossRefPubMedPubMedCentral
44.
Iharada M, Miyaji T, Fujimoto T, Hiasa M, Anzai N, Omote H, et al. Type 1 sodium-dependent phosphate transporter (SLC17A1 Protein) is a Cl-dependent urate exporter. J Biol Chem. 2010;285(34):26107–13. doi:10.​1074/​jbc.​M110.​122721.CrossRefPubMedPubMedCentral
45.
Dehghan A, Köttgen A, Yang Q, Hwang SJ, Kao WL, Rivadeneira F, et al. Association of three genetic loci with uric acid concentration and risk of gout: a genome-wide association study. Lancet. 2008;372(9654):1953–61. doi:10.​1016/​S0140-6736(08)61343-4.CrossRefPubMedPubMedCentral
46.
Woodward OM, Kottgen A, Coresh J, Boerwinkle E, Guggino WB, Kottgen M. Identification of a urate transporter, ABCG2, with a common functional polymorphism causing gout. Proc Natl Acad Sci U S A. 2009;106(25):10338–42. doi:10.​1073/​pnas.​0901249106.CrossRefPubMedPubMedCentral
47.
Maliepaard M, Scheffer GL, Faneyte IF, van Gastelen MA, Pijnenborg AC, Schinkel AH, et al. Subcellular localization and distribution of the breast cancer resistance protein transporter in normal human tissues. Cancer Res. 2001;61(8):3458–64.PubMed
48.
Enomoto A, Endou H. Roles of organic anion transporters (OATs) and a urate transporter (URAT1) in the pathophysiology of human disease. Clin Exp Nephrol. 2005;9(3):195–205. doi:10.​1007/​s10157-005-0368-5.CrossRefPubMed
49.
Caulfield MJ, Munroe PB, O'Neill D, Witkowska K, Charchar FJ, Doblado M, et al. SLC2A9 is a high-capacity urate transporter in humans. PLoS Med. 2008;5(10), e197. doi:10.​1371/​journal.​pmed.​0050197.CrossRefPubMedPubMedCentral
50.
Steele TH, Rieselbach RE. The renal mechanism for urate homeostasis in normal man. Am J Med. 1967;43(6):868–75.CrossRefPubMed
51.
Gutman AB, Yu TF, Berger L. Renal function in gout. 3. Estimation of tubular secretion and reabsorption of uric acid by use of pyrazinamide (pyrazinoic acid). Am J Med. 1969;47(4):575–92.CrossRefPubMed
52.
Yu TS, Berger L, Gutman AB. Renal function in gout. II. Effect of uric acid loading on renal excretion of uric acid. Am J Med. 1962;33:829–44.CrossRefPubMed
53.
Ohtsu N, Anzai N, Fukutomi T, Kimura T, Sakurai H, Endou H. Human renal urate transporter URAT1 mediates the transport of salicylate [in Japanese]. Nihon Jinzo Gakkai shi. 2010;52(4):499–504.PubMed
54.
Reese Jr OG, Steele TH. Renal transport of urate during diuretic-induced hypouricemia. Am J Med. 1976;60(7):973–9.CrossRefPubMed
55.
Masugi F, Ogihara T, Hashizume K, Hasegawa T, Sakaguchi K, Kumahara Y. Changes in plasma lipids and uric acid with sodium loading and sodium depletion in patients with essential hypertension. J Hum Hypertens. 1988;1(4):293–8.PubMed
56.
Del Rio A, Rodriguez-Villamil JL. Metabolic effects of strict salt restriction in essential hypertensive patients. J Intern Med. 1993;233(5):409–14.CrossRefPubMed
57.
Moriwaki Y, Yamamoto T, Tsutsumi Z, Takahashi S, Hada T. Effects of angiotensin II infusion on renal excretion of purine bases and oxypurinol. Metabolism. 2002;51(7):893–5.CrossRefPubMed
58.
Riquier-Brison AD, Leong PK, Pihakaski-Maunsbach K, McDonough AA. Angiotensin II stimulates trafficking of NHE3, NaPi2, and associated proteins into the proximal tubule microvilli. Am J Physiol Renal Physiol. 2010;298(1):F177–86. doi:10.​1152/​ajprenal.​00464.​2009.CrossRefPubMedPubMedCentral
59.
Löffler W, Landthaler R, de Vries JX, Walter-Sack I, Ittensohn A, Voss A, et al. Interaction of allopurinol and hydrochlorothiazide during prolonged oral administration of both drugs in normal subjects, I: uric acid kinetics. Clin Investig. 1994;72(12):1071–5.CrossRefPubMed
60.
Wright DF, Stamp LK, Merriman TR, Barclay ML, Duffull SB, Holford NH. The population pharmacokinetics of allopurinol and oxypurinol in patients with gout. Eur J Clin Pharmacol. 2013;69(7):1411–21. doi:10.​1007/​s00228-013-1478-8.CrossRefPubMed
61.
Iwanaga T, Kobayashi D, Hirayama M, Maeda T, Tamai I. Involvement of uric acid transporter in increased renal clearance of the xanthine oxidase inhibitor oxypurinol induced by a uricosuric agent, benzbromarone. Drug Metab Dispos. 2005;33(12):1791–5. doi:10.​1124/​dmd.​105.​006056.PubMed
62.
Hagos Y, Bahn A, Vormfelde SV, Brockmoller J, Burckhardt G. Torasemide transport by organic anion transporters contributes to hyperuricemia. J Am Soc Nephrol. 2007;18(12):3101–9. doi:10.​1681/​ASN.​2007010106.CrossRefPubMed
63.
McAdams-DeMarco MA, Maynard JW, Baer AN, Kao LW, Kottgen A, Coresh J. A urate gene-by-diuretic interaction and gout risk in participants with hypertension: results from the ARIC study. Ann Rheum Dis. 2013;72(5):701–6. doi:10.​1136/​annrheumdis-2011-201186.CrossRefPubMedPubMedCentral
64.
Bao Y, Curhan G, Merriman T, Plenge R, Kraft P, Choi HK. Lack of gene-diuretic interactions on the risk of incident gout: the Nurses’ Health Study and Health Professionals Follow-up Study. Ann Rheum Dis. 2015;74(7):1394–8. doi:10.​1136/​annrheumdis-2014-206534.CrossRefPubMed
65.
Chino Y, Samukawa Y, Sakai S, Nakai Y, Yamaguchi J, Nakanishi T, et al. SGLT2 inhibitor lowers serum uric acid through alteration of uric acid transport activity in renal tubule by increased glycosuria. Biopharm Drug Dispos. 2014;35(7):391–404. doi:10.​1002/​bdd.​1909.CrossRefPubMedPubMedCentral
66.
Sorensen LB. Degradation of uric acid in man. Metabolism. 1959;8(5):687–703.PubMed
67.
Ichida K, Matsuo H, Takada T, Nakayama A, Murakami K, Shimizu T, et al. Decreased extra-renal urate excretion is a common cause of hyperuricemia. Nat Commun. 2012;3:764. doi:10.​1038/​ncomms1756.CrossRefPubMedPubMedCentral
68.
Uhlen M, Fagerberg L, Hallstrom BM, Lindskog C, Oksvold P, Mardinoglu A, et al. Proteomics. Tissue-based map of the human proteome. Science. 2015;347(6220):1260419. doi:10.​1126/​science.​1260419.CrossRefPubMed
69.•
Dalbeth N, House ME, Gamble GD, Pool B, Horne A, Purvis L, et al. Influence of the ABCG2 gout risk 141 K allele on urate metabolism during a fructose challenge. Arthritis Res Ther. 2014;16(1):R34. doi:10.​1186/​ar4463. This paper demonstrates both the increased SUA and the increased FEUA of subjects with the ABCG2 risk allele.CrossRefPubMedPubMedCentral
70.
Matsuo H, Nakayama A, Sakiyama M, Chiba T, Shimizu S, Kawamura Y, et al. ABCG2 dysfunction causes hyperuricemia due to both renal urate underexcretion and renal urate overload. Sci Rep. 2014;4:3755. doi:10.​1038/​srep03755.PubMedPubMedCentral
71.
Togawa N, Miyaji T, Izawa S, Omote H, Moriyama Y. A Na+-phosphate cotransporter homologue (SLC17A4 protein) is an intestinal organic anion exporter. Am J Physiol Cell Physiol. 2012;302(11):C1652–C60. doi:10.​1152/​ajpcell.​00015.​2012.CrossRefPubMed
72.
Lee YH, Song GG. Pathway analysis of genome-wide association studies on uric acid concentrations. Hum Immunol. 2012;73(8):805–10. doi:10.​1016/​j.​humimm.​2012.​05.​004.CrossRefPubMed