Skip to main content
Top

15-09-2015 | Gout | Review | Article

Mechanisms of crystal formation in gout—a structural approach

Journal: Nature Reviews Rheumatology

Authors: Eliseo Pascual, Lia Addadi, Mariano Andrés, Francisca Sivera

Authors: Eliseo Pascual, Lia Addadi, Mariano Andrés, Francisca Sivera

Publisher: Nature Publishing Group UK

Abstract

The mechanisms and sites of monosodium urate monohydrate (MSU) crystal deposition in gout have received little attention from the scientific community to date. Formalin fixation of tissues leads to the dissolution of MSU crystals, resulting in their absence from routinely processed pathological samples and hence neglect. However, modern imaging techniques—especially ultrasonography but also conventional CT and dual-energy CT—reveal that MSU crystals form at the cartilage surface as well as inside tendons and ligaments, often at insertion sites. Tophi comprise round white formations of different sizes surrounded by inflammatory tissue. Studies of fibres recovered from gouty synovial fluid indicate that these fibres are likely to be a primary site of crystal formation by templated nucleation, with crystals deposited parallel to the fibres forming transverse bands. In tophi, two areas can be distinguished: one where crystals are formed on cellular tissues and another consisting predominantly of crystals, where secondary nucleation seems to take place; this organization could explain how tophi can grow rapidly. From these observations based on a crystallographic approach, it seems that initial templated nucleation on structural fibres—probably collagen—followed at some sites by secondary nucleation could explain MSU crystal deposition in gout.

Nat Rev Rheumatol 2015;11:725–730. doi:10.1038/nrrheum.2015.125

Literature
1.
De Yoreo, J. J. & Vekilov, P. G. Principles of crystal nucleation and growth. Rev. Mineral Geochem. 54, 57–93 (2003).CrossRef
2.
Dieppe, P. & Calvert, P. (eds). Crystals and Joint Diseases (Chapman & Hall, 1983).
3.
Addadi, L. & Weiner, S. Control and design principles in biological mineralization. Angew. Chem. Int. Ed. Engl. 31, 153–169 (1992).CrossRef
4.
Mann, S. et al. Crystallization at inorganic-organic interfaces: biominerals and biomimetic synthesis. Science 261, 1286–1292 (1993).CrossRef
5.
Weiner, S. & Addadi, L. Crystallization pathways in biomineralization. Annu. Rev. Mater. Res. 41, 21–40 (2011).CrossRef
6.
Addadi, L., Moradian, J., Shay, E., Maroudas, N. G. & Weiner, S. A chemical model for the cooperation of sulfates and carboxylates in calcite crystal nucleation: relevance to biomineralization. Proc. Natl Acad. Sci. USA 84, 2732–2736 (1987).CrossRef
7.
Mandel, N. S. & Mandel, G. S. Monosodium urate monohydrate, the gout culprit. J. Am. Chem. Soc. 98, 2319–2323 (1976).CrossRef
8.
Rinaudo, C. & Boistelle, R. Theoretical and experimental growth morphologies of sodium urate crystals. J. Cryst. Growth 57, 432–442 (1982).CrossRef
9.
Perrin, C. M., Dobish, M. A., Van Keuren, E. & Swift, J. A. Monosodium urate monohydrate crystallization. Cryst. Eng. Comm. 13, 1111–1117 (2011).CrossRef
10.
Simkin, P. A., Bassett, J. E. & Lee, Q. P. Not water, but formalin, dissolves urate crystals in tophaceous tissue samples. J. Rheumatol. 21, 2320–1 (1994).PubMed
11.
Dalbeth, N. et al. Cellular characterization of the gouty tophus: a quantitative analysis. Arthritis Rheum. 62, 1549–1556 (2010).CrossRef
12.
Sokoloff, L. The pathology of gout. Metabolism 6, 230–243 (1957).PubMed
13.
Grassi, W., Meenagh, G., Pascual, E. & Filippucci, E. “Crystal clear”—sonographic assessment of gout and calcium pyrophosphate deposition disease. Semin. Arthritis Rheum. 36, 197–202 (2006).CrossRef
14.
Baker, J. F. & Synnott, K. A. Clinical images: gout revealed on arthroscopy after minor injury. Arthritis Rheum. 62, 895 (2010).CrossRef
15.
Pritzker, K. P., Zahn, C. E., Nyburg, S. C., Luk, S. C. & Houpt, J. B. The ultrastructure of urate crystals in gout. J. Rheumatol. 5, 7–18 (1978).PubMed
16.
Pritzker, K. P. Articular pathology of gout, calcium pyrophosphate dihidrate and basic calcium phosphate crystal deposition arthopathies. in Gout and Other Crystal Arthropathies (ed. Terkeltaub, R.) 1–19 (Elsevier Saunders, 2012).
17.
Pineda, C. et al. Joint and tendon subclinical involvement suggestive of gouty arthritis in asymptomatic hyperuricemia: an ultrasound controlled study. Arthritis Res. Ther. 13, R4 (2011).CrossRef
18.
De Miguel, E. et al. Diagnosis of gout in patients with asymptomatic hyperuricaemia: a pilot ultrasound study. Ann. Rheum. Dis. 71, 157–158 (2012).CrossRef
19.
Howard, R. G. et al. Reproducibility of musculoskeletal ultrasound for determining monosodium urate deposition: concordance between readers. Arthritis Care Res. (Hoboken) 63, 1456–1462 (2011).CrossRef
20.
McCarty, D. J. & Hollander, J. L. Identification of urate crystals in gouty synovial fluid. Ann. Intern. Med. 54, 452–60 (1961).CrossRef
21.
Pascual, E. Persistence of monosodium urate crystals, and low grade inflammation, in the synovial fluid of untreated gout. Arthritis Rheum. 34, 141–145 (1991).CrossRef
22.
Pascual, E. et al. Synovial fluid analysis for diagnosis of intercritical gout. Ann. Intern. Med. 131, 756–759 (1999).CrossRef
23.
Weniger, F. G. et al. Gouty flexor tenosynovitis of the digits: report of three cases. J. Hand Surg. Am. 28, 669–672 (2003).CrossRef
24.
Dalbeth, N. et al. Tendon involvement in the feet of patients with gout: a dual-energy CT study. Ann. Rheum. Dis. 72, 1545–1548 (2013).CrossRef
25.
Benjamin, M. & McGonagle, D. Basic concepts of enthesis biology and immunology. J. Rheumatol. Suppl. 83, 12–13 (2009).CrossRef
26.
Benjamin, M. & McGonagle, D. The anatomical basis for disease localisation in seronegative spondyloarthropathy at entheses and related sites. J. Anat. 199, 503–526 (2001).CrossRef
27.
Gerster, J. C. et al. Enthesopathy and tendinopathy in gout: computed tomographic assessment. Ann. Rheum. Dis. 55, 921–923 (1996).CrossRef
28.
Choi, H. K. et al. Dual energy computed tomography in tophaceous gout. Ann. Rheum. Dis. 68, 1609–1612 (2009).CrossRef
29.
Bongartz, T. et al. Dual-energy CT for the diagnosis of gout: an accuracy and diagnostic yield study. Ann. Rheum. Dis. 74, 1072–1077 (2015).CrossRef
30.
Gerster, J. C., Landry, M., Dufresne, L. & Meuwly, J. Y. Imaging of tophaceous gout: computed tomography provides specific images compared with magnetic resonance imaging and ultrasonography. Ann. Rheum. Dis. 61, 52–54 (2002).CrossRef
31.
Pascual, E. & Ordóñez, S. Orderly arrayed deposit of urate crystals in gout suggest epitaxial formation. Ann. Rheum. Dis. 57, 255 (1998).CrossRef
32.
Pascual, E., Martínez, A. & Ordóñez, S. Gout: the mechanism of urate crystal nucleation and growth. A hypothesis based in facts. Joint Bone Spine 80, 1–4 (2013).CrossRef
33.
Roddy, E., Zhang, W. & Doherty, M. Are joints affected by gout also affected by osteoarthritis? Ann. Rheum. Dis. 66, 1374–1377 (2007).CrossRef
34.
Pritzker, K. P. et al. Osteoarthritis cartilage histopathology: grading and staging. Osteoarthritis Cartilage 14, 13–29 (2006).CrossRef
35.
Jeffery, A. K., Blunn, G. W., Archer, C. W. & Bentley, G. Three-dimensional collagen architecture in bovine articular cartilage. J. Bone Joint Surg. Br. 73, 795–801 (1991).CrossRef
36.
Fiechtner, J. J. & Simkin, P. A. Urate spherulites in gouty synovia. JAMA 245, 1533–1536 (1981).CrossRef
37.
Brune, A. B. & Petuskey, W. T. Growth morphologies, fragmentation patterns, and hardness in sodium hydrogen urate monohydrate. MRS Proceedings http://​dx.​doi.​org/​10.​1557/​opl.​2015.​11.
38.
Vela, P. & Pascual, E. Images in clinical medicine. An unusual tophus. N. Engl. J. Med. 29, 372 (2015).
39.
McQueen, F. M. et al. Bone erosions in patients with chronic gouty arthropathy are associated with tophi but not bone oedema or synovitis: new insights from a 3 T MRI study. Rheumatology (Oxford) 53, 95–103 (2014).CrossRef