Skip to main content
Top

06-07-2018 | Gout | Article

Next-generation sequencing profiling of mitochondrial genomes in gout

Journal: Arthritis Research & Therapy

Authors: Chia-Chun Tseng, Chung-Jen Chen, Jeng-Hsien Yen, Hsi-Yuan Huang, Jan-Gowth Chang, Shun-Jen Chang, Wei-Ting Liao

Publisher: BioMed Central

Abstract

Background

Accumulating evidence implicates mitochondrial DNA (mtDNA) alleles, which are independent of the nuclear genome, in disease, especially in human metabolic diseases. However, this area of investigation has lagged behind in researching the nuclear alleles in complex traits, for example, in gout.

Methods

Next-generation sequencing was utilized to investigate the relationship between mtDNA alleles and phenotypic variations in 52 male patients with gout and 104 age-matched male non-gout controls from the Taiwan Biobank whole-genome sequencing samples. Differences from a reference sequence (GRCh38) were identified. The sequence kernel association test (SKAT) was applied to identify gout-associated alleles in mitochondrial genes. The tools Polymorphism Phenotyping, Sorting Intolerant From Tolerant (SIFT), Predict the pathology of Mutations (PMUT), Human Mitochondrial Genome Database (mtDB), Multiple Alignment using Fast Fourier Transform (MAFFT), and Mammalian Mitochondrial tRNA Genes (Mamit-tRNA) were used to evaluate pathogenicity of alleles. Validation of selected alleles by quantitative polymerase chain reaction of single nucleotide polymorphisms (qPCR SNPs) was also performed.

Results

We identified 456 alleles in patients with gout and 640 alleles in non-gout controls with 274 alleles shared by both. Mitochondrial genes were associated with gout, with MT-CO3, MT-TA, MT-TC, and MT-TT containing potentially pathogenic gout-associated alleles and displaying evidence of gene-gene interactions. All heteroplasmy levels of potentially pathogenic alleles exceeded metabolic thresholds for pathogenicity. Validation assays confirmed the next-generation sequencing results of selected alleles. Among them, potentially pathogenic MT-CO3 alleles correlated with high-density lipoprotein (HDL) levels (P = 0.034).

Conclusion

This study provided two scientific insights. First, this was the most extensive mitochondrial genomic profiling associated with gout. Second, our results supported the roles of mitochondria in gout and HDL, and this comprehensive analysis framework can be applied to other diseases in which mitochondrial dysfunction has been implicated.
Literature
1.
Tschopp J. Mitochondria: sovereign of inflammation? Eur J Immunol. 2011;41(5):1196–202.CrossRefPubMed
2.
Yu EP, Bennett MR. Mitochondrial DNA damage and atherosclerosis. Trends Endocrinol Metab. 2014;25(9):481–7.CrossRefPubMed
3.
Wen H, Ting JP, O'Neill LA. A role for the NLRP3 inflammasome in metabolic diseases–did Warburg miss inflammation? Nat Immunol. 2012;13(4):352–7.CrossRefPubMedPubMedCentral
4.
Kristal BS, Vigneau-Callahan KE, Moskowitz AJ, Matson WR. Purine catabolism: links to mitochondrial respiration and antioxidant defenses? Arch Biochem Biophys. 1999;370(1):22–33.CrossRefPubMed
5.
Matsuo H, Yamamoto K, Nakaoka H, Nakayama A, Sakiyama M, Chiba T, et al. Genome-wide association study of clinically defined gout identifies multiple risk loci and its association with clinical subtypes. Ann Rheum Dis. 2016;75(4):652–9.CrossRefPubMed
6.
Jeppesen TD, Schwartz M, Frederiksen AL, Wibrand F, Olsen DB, Vissing J. Muscle phenotype and mutation load in 51 persons with the 3243A>G mitochondrial DNA mutation. Arch Neurol. 2006;63(12):1701–6.CrossRefPubMed
7.
Flaquer A, Rospleszcz S, Reischl E, Zeilinger S, Prokisch H, Meitinger T, et al. Mitochondrial GWA analysis of lipid profile identifies genetic variants to be associated with HDL cholesterol and triglyceride levels. PLoS One. 2015;10(5):e0126294.CrossRefPubMedPubMedCentral
8.
Williams SL, Mash DC, Züchner S, Moraes CT. Somatic mtDNA mutation spectra in the aging human putamen. PLoS Genet. 2013;9(12):e1003990.CrossRefPubMedPubMedCentral
9.
Chen CH, Yang JH, Chiang CW, Hsiung CN, Wu PE, Chang LC, et al. Population structure of Han Chinese in the modern Taiwanese population based on 10,000 participants in the Taiwan biobank project. Hum Mol Genet. 2016;25(14):5321–31.PubMedPubMedCentral
10.
Zhu Y, Pandya BJ, Choi HK. Prevalence of gout and hyperuricemia in the US general population: the National Health and nutrition examination survey 2007-2008. Arthritis Rheum. 2011;63(11):3136–41.CrossRefPubMed
11.
McAdams MA, Maynard JW, Baer AN, Köttgen A, Clipp S, Coresh J, et al. Reliability and sensitivity of the self-report of physician-diagnosed gout in the campaign against cancer and heart disease and the atherosclerosis risk in the community cohorts. J Rheumatol. 2011;38(1):135–41.CrossRefPubMed
12.
consortium EK, Project EPG. Ultra-rare genetic variation in common epilepsies: a case-control sequencing study. Lancet Neurol. 2017;16(2):135–43.CrossRef
13.
Wu MC, Lee S, Cai T, Li Y, Boehnke M, Lin X. Rare-variant association testing for sequencing data with the sequence kernel association test. Am J Hum Genet. 2011;89(1):82–93.CrossRefPubMedPubMedCentral
14.
Kloss-Brandstätter A, Schäfer G, Erhart G, Hüttenhofer A, Coassin S, Seifarth C, et al. Somatic mutations throughout the entire mitochondrial genome are associated with elevated PSA levels in prostate cancer patients. Am J Hum Genet. 2010;87(6):802–12.CrossRefPubMedPubMedCentral
15.
McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GR, Thormann A, et al. The Ensembl variant effect predictor. Genome Biol. 2016;17(1):122.CrossRefPubMedPubMedCentral
16.
Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, et al. A method and server for predicting damaging missense mutations. Nat Methods. 2010;7(4):248–9.CrossRefPubMedPubMedCentral
17.
Ng PC, Henikoff S. SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res. 2003;31(13):3812–4.CrossRefPubMedPubMedCentral
18.
Ferrer-Costa C, Gelpí JL, Zamakola L, Parraga I, de la Cruz X, Orozco M. PMUT: a web-based tool for the annotation of pathological mutations on proteins. Bioinformatics. 2005;21(14):3176–8.CrossRefPubMed
19.
Jiang P, Liang M, Zhang C, Zhao X, He Q, Cui L, et al. Biochemical evidence for a mitochondrial genetic modifier in the phenotypic manifestation of Leber's hereditary optic neuropathy-associated mitochondrial DNA mutation. Hum Mol Genet. 2016;25(16):3613–25.CrossRefPubMed
20.
Ingman M, Gyllensten U. mtDB: human mitochondrial genome database, a resource for population genetics and medical sciences. Nucleic Acids Res. 2006;34(Database issue):D749–51.CrossRefPubMed
21.
Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30(14):3059–66.CrossRefPubMedPubMedCentral
22.
Pütz J, Dupuis B, Sissler M, Florentz C. Mamit-tRNA, a database of mammalian mitochondrial tRNA primary and secondary structures. RNA. 2007;13(8):1184–90.CrossRefPubMedPubMedCentral
23.
Sprinzl M, Horn C, Brown M, Ioudovitch A, Steinberg S. Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res. 1998;26(1):148–53.CrossRefPubMedPubMedCentral
24.
de Araujo LF, Fonseca AS, Muys BR, Plaça JR, Bueno RB, Lorenzi JC, et al. Mitochondrial genome instability in colorectal adenoma and adenocarcinoma. Tumour Biol. 2015;36(11):8869–79.CrossRefPubMed
25.
Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, et al. Finding the missing heritability of complex diseases. Nature. 2009;461(7265):747–53.CrossRefPubMedPubMedCentral
26.
Johns DR, Neufeld MJ. Cytochrome c oxidase mutations in Leber hereditary optic neuropathy. Biochem Biophys Res Commun. 1993;196(2):810–5.CrossRefPubMed
27.
Liu S, Bai Y, Huang J, Zhao H, Zhang X, Hu S, et al. Do mitochondria contribute to left ventricular non-compaction cardiomyopathy? New findings from myocardium of patients with left ventricular non-compaction cardiomyopathy. Mol Genet Metab. 2013;109(1):100–6.CrossRefPubMed
28.
Manfredi G, Schon EA, Moraes CT, Bonilla E, Berry GT, Sladky JT, et al. A new mutation associated with MELAS is located in a mitochondrial DNA polypeptide-coding gene. Neuromuscul Disord. 1995;5(5):391–8.CrossRefPubMed
29.
Choi BO, Hwang JH, Kim J, Cho EM, Cho SY, Hwang SJ, et al. A MELAS syndrome family harboring two mutations in mitochondrial genome. Exp Mol Med. 2008;40(3):354–60.CrossRefPubMedPubMedCentral
30.
Abu-Amero KK, Bosley TM, Bohlega S, Hansen E. Mitochondrial T9957C mutation in association with NAION and seizures but not MELAS. Ophthalmic Genet. 2005;26(1):31–6.CrossRefPubMed
31.
McFarland R, Kirby DM, Fowler KJ, Ohtake A, Ryan MT, Amor DJ, et al. De novo mutations in the mitochondrial ND3 gene as a cause of infantile mitochondrial encephalopathy and complex I deficiency. Ann Neurol. 2004;55(1):58–64.CrossRefPubMed
32.
D'Aurelio M, Pallotti F, Barrientos A, Gajewski CD, Kwong JQ, Bruno C, et al. In vivo regulation of oxidative phosphorylation in cells harboring a stop-codon mutation in mitochondrial DNA-encoded cytochrome c oxidase subunit I. J Biol Chem. 2001;276(50):46925–32.CrossRefPubMed
33.
Cardaioli E, Da Pozzo P, Malfatti E, Gallus GN, Rubegni A, Malandrini A, et al. Chronic progressive external ophthalmoplegia: a new heteroplasmic tRNA(Leu(CUN)) mutation of mitochondrial DNA. J Neurol Sci. 2008;272(1–2):106–9.CrossRefPubMed
34.
Ruiz-Pesini E, Wallace DC. Evidence for adaptive selection acting on the tRNA and rRNA genes of human mitochondrial DNA. Hum Mutat. 2006;27(11):1072–81.CrossRefPubMed
35.
Kelley SO, Steinberg SV, Schimmel P. Functional defects of pathogenic human mitochondrial tRNAs related to structural fragility. Nat Struct Biol. 2000;7(10):862–5.CrossRefPubMed
36.
Helm M, Brulé H, Friede D, Giegé R, Pütz D, Florentz C. Search for characteristic structural features of mammalian mitochondrial tRNAs. RNA. 2000;6(10):1356–79.CrossRefPubMedPubMedCentral
37.
Han D, Dai P, Zhu Q, Liu X, Huang D, Yuan Y, et al. The mitochondrial tRNA(ala) T5628C variant may have a modifying role in the phenotypic manifestation of the 12S rRNA C1494T mutation in a large Chinese family with hearing loss. Biochem Biophys Res Commun. 2007;357(2):554–60.CrossRefPubMed
38.
Liu Y, Li Y, Wang X, Ma Q, Zhu C, Li Z, et al. Mitochondrial tRNA mutations in Chinese hypertensive individuals. Mitochondrion. 2016;28:1–7.CrossRefPubMed
39.
Spagnolo M, Tomelleri G, Vattemi G, Filosto M, Rizzuto N, Tonin P. A new mutation in the mitochondrial tRNA(ala) gene in a patient with ophthalmoplegia and dysphagia. Neuromuscul Disord. 2001;11(5):481–4.CrossRefPubMed
40.
Wani AA, Ahanger SH, Bapat SA, Rangrez AY, Hingankar N, Suresh CG, et al. Analysis of mitochondrial DNA sequences in childhood encephalomyopathies reveals new disease-associated variants. PLoS One. 2007;2(9):e942.CrossRefPubMedPubMedCentral
41.
Feigenbaum A, Bai RK, Doherty ES, Kwon H, Tan D, Sloane A, et al. Novel mitochondrial DNA mutations associated with myopathy, cardiomyopathy, renal failure, and deafness. Am J Med Genet A. 2006;140((20):2216–22.CrossRef
42.
Santorelli FM, Siciliano G, Casali C, Basirico MG, Carrozzo R, Calvosa F, et al. Mitochondrial tRNA(Cys) gene mutation (A5814G): a second family with mitochondrial encephalopathy. Neuromuscul Disord. 1997;7(3):156–9.CrossRefPubMed
43.
Yu JW, Lee MS. Mitochondria and the NLRP3 inflammasome: physiological and pathological relevance. Arch Pharm Res. 2016;39(11):1503–18.CrossRefPubMed
44.
Strange DA, Fessel WJ. Benign symmetric lipomatosis. JAMA. 1968;204(4):339–40.CrossRef
45.
Greene ML, Glueck CJ, Fujimoto WY, Seegmiller JE. Benign symmetric lipomatosis (Launois-Bensaude adenolipomatosis) with gout and hyperlipoproteinemia. Am J Med. 1970;48(2):239–46.CrossRefPubMed
46.
Enzi G, Busetto L, Ceschin E, Coin A, Digito M, Pigozzo S. Multiple symmetric lipomatosis: clinical aspects and outcome in a long-term longitudinal study. Int J Obes Relat Metab Disord. 2002;26(2):253–61.CrossRefPubMed
47.
Klopstock T, Naumann M, Schalke B, Bischof F, Seibel P, Kottlors M, et al. Multiple symmetric lipomatosis: abnormalities in complex IV and multiple deletions in mitochondrial DNA. Neurology. 1994;44(5):862–6.CrossRefPubMed
48.
Nicholls P, Kim JK. Sulphide as an inhibitor and electron donor for the cytochrome c oxidase system. Can J Biochem. 1982;60(6):613–23.CrossRefPubMed
49.
Basic A, Alizadehgharib S, Dahlén G, Dahlgren U. Hydrogen sulfide exposure induces NLRP3 inflammasome-dependent IL-1β and IL-18 secretion in human mononuclear leukocytes in vitro. Clin Exp Dent Res. 2017;3(3):115–20.CrossRefPubMedPubMedCentral
50.
Lenaz G, Baracca A, Carelli V, D'Aurelio M, Sgarbi G, Solaini G. Bioenergetics of mitochondrial diseases associated with mtDNA mutations. Biochim Biophys Acta. 2004;1658(1–2):89–94.CrossRefPubMed
51.
Harijith A, Ebenezer DL, Natarajan V. Reactive oxygen species at the crossroads of inflammasome and inflammation. Front Physiol. 2014;5:352.CrossRefPubMedPubMedCentral
52.
Zhou R, Yazdi AS, Menu P, Tschopp J. A role for mitochondria in NLRP3 inflammasome activation. Nature. 2011;469(7329):221–5.CrossRefPubMed
53.
Jain SK, Micinski D, Lieblong BJ, Stapleton T. Relationship between hydrogen sulfide levels and HDL-cholesterol, adiponectin, and potassium levels in the blood of healthy subjects. Atherosclerosis. 2012;225(1):242–5.CrossRefPubMedPubMedCentral
54.
Jiang P, Wang M, Xue L, Xiao Y, Yu J, Wang H, et al. A hypertension-associated tRNAAla mutation alters tRNA metabolism and mitochondrial function. Mol Cell Biol. 2016;36(14):1920–30.CrossRefPubMedPubMedCentral
55.
Jia Z, Wang X, Qin Y, Xue L, Jiang P, Meng Y, et al. Coronary heart disease is associated with a mutation in mitochondrial tRNA. Hum Mol Genet. 2013;22(20):4064–73.CrossRefPubMedPubMedCentral
56.
Trevisan G, Hoffmeister C, Rossato MF, Oliveira SM, Silva MA, Silva CR, et al. TRPA1 receptor stimulation by hydrogen peroxide is critical to trigger hyperalgesia and inflammation in a model of acute gout. Free Radic Biol Med. 2014;72:200–9.CrossRefPubMed
57.
Chang YP, Ka SM, Hsu WH, Chen A, Chao LK, Lin CC, et al. Resveratrol inhibits NLRP3 inflammasome activation by preserving mitochondrial integrity and augmenting autophagy. J Cell Physiol. 2015;230(7):1567–79.CrossRefPubMed
58.
Wang P, Ren D, Chen Y, Jiang M, Wang R, Wang YG. Effect of sodium alginate addition to resveratrol on acute gouty arthritis. Cell Physiol Biochem. 2015;36(1):201–7.CrossRefPubMed
59.
Dalbeth N, Haskard DO. Mechanisms of inflammation in gout. Rheumatology (Oxford). 2005;44(9):1090–6.CrossRef
60.
Jhang JJ, Lu CC, Ho CY, Cheng YT, Yen GC. Protective effects of Catechin against monosodium urate-induced inflammation through the modulation of NLRP3 Inflammasome activation. J Agric Food Chem. 2015;63(33):7343–52.CrossRefPubMed
61.
Stevnsner T, Thorslund T, de Souza-Pinto NC, Bohr VA. Mitochondrial repair of 8-oxoguanine and changes with aging. Exp Gerontol. 2002;37(10–11):1189–96.CrossRefPubMed
62.
Arden C, Baltrusch S, Agius L. Glucokinase regulatory protein is associated with mitochondria in hepatocytes. FEBS Lett. 2006;580(8):2065–70.CrossRefPubMed
63.
Lin YH, Chang HM, Chang FP, Shen CR, Liu CL, Mao WY, et al. Protoporphyrin IX accumulation disrupts mitochondrial dynamics and function in ABCG2-deficient hepatocytes. FEBS Lett. 2013;587(19):3202–9.CrossRefPubMed