Skip to main content
Top

02-07-2016 | Juvenile idiopathic arthritis | Review | Article

Network analysis and juvenile idiopathic arthritis (JIA): a new horizon for the understanding of disease pathogenesis and therapeutic target identification

Journal: Pediatric Rheumatology

Authors: Rachelle Donn, Chiara De Leonibus, Stefan Meyer, Adam Stevens

Publisher: BioMed Central

Abstract

Juvenile idiopathic arthritis (JIA) is a clinically diverse and genetically complex autoimmune disease. Currently, there is very limited understanding of the potential underlying mechanisms that result in the range of phenotypes which constitute JIA.
The elucidation of the functional relevance of genetic associations with phenotypic traits is a fundamental problem that hampers the translation of genetic observations to plausible medical interventions. Genome wide association studies, and subsequent fine-mapping studies in JIA patients, have identified many genetic variants associated with disease. Such approaches rely on ‘tag’ single nucleotide polymorphisms (SNPs). The associated SNPs are rarely functional variants, so the extrapolation of genetic association data to the identification of biologically meaningful findings can be a protracted undertaking. Integrative genomics aims to bridge the gap between genotype and phenotype.
Systems biology, principally through network analysis, is emerging as a valuable way to identify biological pathways of relevance to complex genetic diseases. This review aims to highlight recent findings in systems biology related to JIA in an attempt to assist in the understanding of JIA pathogenesis and therapeutic target identification.
Glossary
Systems Biology
Integration of complex data in biological systems from diverse experimental sources using interdisciplinary tools.
Network Biology
Biology related to interactions between multiple genes and/or proteins.
Network Analysis
Studies the relationship between the structural properties of a network and biological function.
Interactome
Biological network representing a whole set of direct or indirect interactions related to a specific biological function.
Cluster Modularity
Distinct grouping of protein-protein or protein-gene interactions within a network.
Node
A protein or gene positioned within a network.
Hub
A highly connected node within a network.
Node Centrality
Measures the centrality of nodes, with the identification of which nodes are more “central” than others. Degree centrality of a node refers to the number of edges attached to the node.
Network Robustness
It is a mathematical description of how the integrity of a network responds to the random removal of single nodes.
Network Motifs
Recurrent and statistically significant sub-graphs or patterns within a network.
Network Alignment and Comparison
Used to describe similarities between independent networks.
Literature
1.
Pujol A, Mosca R, Farres J, Aloy P. Unveiling the role of network and systems biology in drug discovery. Trends Pharmacol Sci. 2010;31(3):115–23.CrossRefPubMed
2.
Lander ES. Initial impact of the sequencing of the human genome. Nature. 2011;470(7333):187–97.CrossRefPubMed
3.
Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, et al. Towards a proteome-scale map of the human protein-protein interaction network. Nature. 2005;437(7062):1173–8.CrossRefPubMed
4.
Parkinson H, Kapushesky M, Shojatalab M, Abeygunawardena N, Coulson R, Farne A, et al. ArrayExpress--a public database of microarray experiments and gene expression profiles. Nucleic Acids Res. 2007;35(Database issue):D747–50.CrossRefPubMed
5.
Arrell DK, Terzic A. Interpreting Networks in Systems Biology. Clin Pharmacol Ther. 2013;11:10.
6.
Needham CJ, Bradford JR, Bulpitt AJ, Westhead DR. A primer on learning in Bayesian networks for computational biology. PLoS Comput Biol. 2007;3(8):e129.CrossRefPubMedPubMedCentral
7.
Stark C, Breitkreutz BJ, Chatr-Aryamontri A, Boucher L, Oughtred R, Livstone MS, et al. The BioGRID Interaction Database: 2011 update. Nucleic Acids Res. 2011;39(Database issue):D698–704.CrossRefPubMed
8.
Choi H, Pavelka N. When one and one gives more than two: challenges and opportunities of integrative omics. Front Genet. 2011;2:105.CrossRefPubMed
9.
Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: a Practical and Powerful Approach to Multiple Testing. J Royal Stat Soc. Series B J Royal Stat Soc. Series B (Methodol). 1995;57(1):289–300.
10.
D'Eustachio P. Reactome knowledgebase of human biological pathways and processes. Methods Mol Biol. 2011;694:49–61.CrossRefPubMed
11.
Szalay-Beko M, Palotai R, Szappanos B, Kovacs IA, Papp B, Csermely P. ModuLand plug-in for Cytoscape: determination of hierarchical layers of overlapping network modules and community centrality. Bioinformatics. 2012;28(16):2202–4.CrossRefPubMed
12.
Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U. Network motifs: simple building blocks of complex networks. Science. 2002;298(5594):824–7.CrossRefPubMed
13.
Albert R, Jeong H, Barabasi AL. Error and attack tolerance of complex networks. Nature. 2000;406(6794):378–82.CrossRefPubMed
14.
Medan D, Luanpitpong S, Azad N, Wang L, Jiang BH, Davis ME, et al. Multifunctional role of Bcl-2 in malignant transformation and tumorigenesis of Cr(VI)-transformed lung cells. PLoS One. 2012;7(5):e37045.CrossRefPubMedPubMedCentral
15.
Villa-Vialaneix N, Liaubet L, Laurent T, Cherel P, Gamot A, Sancristobal M. The Structure of a Gene Co-Expression Network Reveals Biological Functions Underlying eQTLs. PLoS One. 2013;8(4):e60045.CrossRefPubMedPubMedCentral
16.
Punaro M. Use of microarrays in the clinical practice of pediatric rheumatology: the future is now? Curr Opin Rheumatol. 2014;26(5):585–91.CrossRefPubMed
17.
Gilbert M, Punaro M. Blood gene expression profiling in pediatric systemic lupus erythematosus and systemic juvenile idiopathic arthritis: from bench to bedside. Pediatr Rheumatol Online J. 2014;12:16. doi:10.​1186/​1546-0096-12-16. eCollection@2014.:16–12.CrossRefPubMedPubMedCentral
18.
Adjari RA, Sendina-Nadal I, Papo D, Zanin M, Buldu JM, del Pozo F, et al. Topological measure locating the effective crossover between segregation and integration in a modular network. Phys Rev Lett. 2012;108(22):228701.CrossRef
19.
Barzel B, Biham O. Quantifying the connectivity of a network: the network correlation function method. Phys Rev E Stat Nonlin Soft Matter Phys. 2009;80(4 Pt 2):046104.CrossRefPubMed
20.
Choi J, Kim K, Song M, Lee D. Generation and application of drug indication inference models using typed network motif comparison analysis. BMC Med Inform Decis Mak. 2013;13 Suppl 1:S2. doi:10.​1186/​1472-6947-13-S1-S2. Epub@2013 Apr 5.:S2-13.CrossRefPubMedPubMedCentral
21.
Rossin EJ, Lage K, Raychaudhuri S, Xavier RJ, Tatar D, Benita Y, et al. Proteins encoded in genomic regions associated with immune-mediated disease physically interact and suggest underlying biology. PLoS Genet. 2011;7(1):e1001273.CrossRefPubMedPubMedCentral
22.
Haw R, Hermjakob H, D'Eustachio P, Stein L. Reactome pathway analysis to enrich biological discovery in proteomics data sets. Proteomics. 2011;11(18):3598-613. doi:10.​1002/​pmic.​201100066.
23.
Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T. Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics. 2011;27(3):431–2.CrossRefPubMed
24.
Calvano SE, Xiao W, Richards DR, Felciano RM, Baker HV, Cho RJ, et al. A network-based analysis of systemic inflammation in humans. Nature. 2005;437(7061):1032–7.CrossRefPubMed
25.
Sun J, Zhao Z. A comparative study of cancer proteins in the human protein-protein interaction network. BMC Genomics. 2010;11 Suppl 3:S5.CrossRef
26.
Stevens A, Clayton P, Tato L, Yoo HW, Rodriguez-Arnao MD, Skorodok J, et al. Pharmacogenomics of insulin-like growth factor-I generation during GH treatment in children with GH deficiency or Turner syndrome. Pharmacogenomics J. 2013;10.
27.
Stevens A, Cosgrove KE, Padidela R, Skae MS, Clayton PE, Banerjee I, et al. Can network biology unravel the aetiology of congenital hyperinsulinism? Orphanet J Rare Dis. 2013;8(1):21–8.CrossRefPubMedPubMedCentral
28.
Barabasi AL, Gulbahce N, Loscalzo J. Network medicine: a network-based approach to human disease. Nat Rev Genet. 2011;12(1):56–68.CrossRefPubMedPubMedCentral
29.
Vidal M, Cusick ME, Barabasi AL. Interactome networks and human disease. Cell. 2011;144(6):986–98.CrossRefPubMedPubMedCentral
30.
Goh KI, Choi IG. Exploring the human diseasome: the human disease network. Brief Funct Genomics. 2012;11(6):533–42.CrossRefPubMed
31.
Janjic V, Przulj N. Biological function through network topology: a survey of the human diseasome. Brief Funct Genomics. 2012;11(6):522–32.CrossRefPubMed
32.
Gene Ontology Consortium. Gene Ontology annotations and resources. Nucleic Acids Res. 2013;41(Database issue):D530–5.CrossRef
33.
Jarvis JN, Petty HR, Tang Y, Frank MB, Tessier PA, Dozmorov I, et al. Evidence for chronic, peripheral activation of neutrophils in polyarticular juvenile rheumatoid arthritis. Arthritis Res Ther. 2006;8(5):R154.CrossRefPubMedPubMedCentral
34.
Jiang K, Sun X, Chen Y, Shen Y, Jarvis JN. RNA sequencing from human neutrophils reveals distinct transcriptional differences associated with chronic inflammatory states. BMC Med Genomics. 2015;8:55. doi:10.​1186/​s12920-015-0128-7.​:​55-0128.CrossRefPubMedPubMedCentral
35.
Frank MB, Wang S, Aggarwal A, Knowlton N, Jiang K, Chen Y, et al. Disease-associated pathophysiologic structures in pediatric rheumatic diseases show characteristics of scale-free networks seen in physiologic systems: implications for pathogenesis and treatment. BMC Med Genomics. 2009;2:9. doi:10.​1186/​1755-8794-2-9.​:​9-2.CrossRefPubMedPubMedCentral
36.
Stevens A, Hanson D, Whatmore A, Destenaves B, Chatelain P, Clayton P. Human growth is associated with distinct patterns of gene expression in evolutionarily conserved networks. BMC Genomics. 2013;14(1):547.CrossRefPubMedPubMedCentral
37.
Knowlton N, Jiang K, Frank MB, Aggarwal A, Wallace C, McKee R, et al. The meaning of clinical remission in polyarticular juvenile idiopathic arthritis: gene expression profiling in peripheral blood mononuclear cells identifies distinct disease states. Arthritis Rheum. 2009;60(3):892–900.CrossRefPubMedPubMedCentral
38.
Du N, Jiang K, Sawle AD, Frank MB, Wallace CA, Zhang A, et al. Dynamic tracking of functional gene modules in treated juvenile idiopathic arthritis. Genome Med. 2015;7(1):109–0227.CrossRefPubMedPubMedCentral
39.
Barnes MG, Grom AA, Thompson SD, Griffin TA, Pavlidis P, Itert L, et al. Subtype-specific peripheral blood gene expression profiles in recent-onset juvenile idiopathic arthritis. Arthritis Rheum. 2009;60(7):2102–12.CrossRefPubMedPubMedCentral
40.
Tuller T, Atar S, Ruppin E, Gurevich M, Achiron A. Common and specific signatures of gene expression and protein-protein interactions in autoimmune diseases. Genes Immun. 2013;14(2):67–82.CrossRefPubMed
41.
Barnes MG, Grom AA, Thompson SD, Griffin TA, Luyrink LK, Colbert RA, et al. Biologic similarities based on age at onset in oligoarticular and polyarticular subtypes of juvenile idiopathic arthritis. Arthritis Rheum. 2010;62(11):3249–58.CrossRefPubMedPubMedCentral
42.
Hollenbach JA, Thompson SD, Bugawan TL, Ryan M, Sudman M, Marion M, et al. Juvenile idiopathic arthritis and HLA class I and class II interactions and age-at-onset effects. Arthritis Rheum. 2010;62(6):1781–91.CrossRefPubMedPubMedCentral
43.
Prince FH, Otten MH, van Suijlekom-Smit LW. Diagnosis and management of juvenile idiopathic arthritis. BMJ. 2010;341:c6434. doi:10.​1136/​bmj.​c6434.​:​c6434.CrossRefPubMed