Skip to main content
Log in

Relationship of femoral neck areal bone mineral density to volumetric bone mineral density, bone size, and femoral strength in men and women

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Using combined dual-energy X-ray absorptiometry (DXA) and quantitative computed tomography, we demonstrate that men matched with women for femoral neck (FN) areal bone mineral density (aBMD) have lower volumetric BMD (vBMD), higher bone cross-sectional area, and relatively similar values for finite element (FE)-derived bone strength.

Introduction

aBMD by DXA is widely used to identify patients at risk for osteoporotic fractures. aBMD is influenced by bone size (i.e., matched for vBMD, larger bones have higher aBMD), and increasing evidence indicates that absolute aBMD predicts a similar risk of fracture in men and women. Thus, we sought to define the relationships between FN aBMD (assessed by DXA) and vBMD, bone size, and FE-derived femoral strength obtained from quantitative computed tomography scans in men versus women.

Methods

We studied men and women aged 40 to 90 years and not on osteoporosis medications.

Results

In 114 men and 114 women matched for FN aBMD, FN total cross-sectional area was 38% higher (P < 0.0001) and vBMD was 16% lower (P < 0.0001) in the men. FE models constructed in a subset of 28 women and 28 men matched for FN aBMD showed relatively similar values for bone strength and the load-to-strength ratio in the two groups.

Conclusions

In this cohort of young and old men and women from Rochester, MN, USA who are matched by FN aBMD, because of the offsetting effects of bone size and vBMD, femoral strength and the load-to-strength ratio tended to be relatively similar across the sexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Miller PD, Zapalowski C, Kulak CAM, Bilezikian JP (1999) Bone densitometry: the best way to detect osteoporosis and to monitor therapy. J Clin Endocrinol Metab 84:1867–1871

    Article  PubMed  CAS  Google Scholar 

  2. Orwoll E (2000) Perspective. Assessing bone density in men. J Bone Miner Res 15:1867–1870

    Article  PubMed  CAS  Google Scholar 

  3. Riggs BL, Melton LJ III, Robb RA, Camp JJ, Atkinson EJ, Peterson JM, Rouleau PA, McCollough CH, Bouxsein ML, Khosla S (2004) Population-based study of age and sex differences in bone volumetric density, size, geometry, and structure at different skeletal sites. J Bone Miner Res 19:1945–1954

    Article  PubMed  Google Scholar 

  4. Kanis JA, WHO Study Group (1994) Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: synopsis of a WHO report. Osteoporos Int 4:368–381

    Article  PubMed  CAS  Google Scholar 

  5. Khosla S, Amin S, Orwoll E (2008) Osteoporosis in men. Endocr Rev 29:441–464

    Article  PubMed  CAS  Google Scholar 

  6. Kanis JA, Johnell O, Oden A, De Laet C, Mellstrom D (2001) Diagnosis of osteoporosis and fracture threshold in men. Calcif Tissue Int 69:218–221

    Article  PubMed  CAS  Google Scholar 

  7. De Laet CEDH, Van Hout BA, Burger H, Weel AEAM, Hofman A, Pols HAP (1998) Hip fracture prediction in elderly men and women: validation in the Rotterdam study. J Bone Miner Res 13:1587–1593

    Article  PubMed  Google Scholar 

  8. Melton LJ, Orwoll ES, Wasnich RD (2001) Does bone density predict fractures comparably in men and women? Osteoporos Int 12:707–709

    Article  PubMed  Google Scholar 

  9. Johnell O, Kanis JA, Oden A et al (2005) Predictive value of BMD for hip and other fractures. J Bone Miner Res 20:1185–1194

    Article  PubMed  Google Scholar 

  10. Kanis JA, Johnell O, Oden A, Johansson H, McCloskey E (2008) FRAX and the assessment of fracture probability in men and women from the UK. Osteoporos Int 19:385–397

    Article  PubMed  CAS  Google Scholar 

  11. Crawford RP, Cann CE, Keaveny TM (2003) Finite element models predict in vitro vertebral body compressive strength better than quantitative computed tomography. Bone 33:744–750

    Article  PubMed  Google Scholar 

  12. Keaveny TM, Hoffmann PF, Singh M, Palermo P, Bilezikian JP, Greenspan SL, Black DM (2008) Femoral bone strength and its relation to cortical and trabecular changes after treatment with PTH, alendronate, and their combination as assessed by finite element analysis of quantitative CT scans. J Bone Miner Res 23:1974–1982

    Article  PubMed  CAS  Google Scholar 

  13. Orwoll E, Marshall LM, Nielson CM et al (2009) Finite element analysis of the proximal femur and hip fracture risk in older men. J Bone Miner Res 24:475–483

    Article  PubMed  Google Scholar 

  14. Keyak JH (2001) Improved prediction of proximal femoral fracture load using nonlinear finite element models. Med Eng Phys 23:165–173

    Article  PubMed  CAS  Google Scholar 

  15. Cody DD, Gross GJ, Hou FJ, Spencer HJ, Goldstein SA, Fyhrie DP (1999) Femoral strength is better predicted by finite element models than QCT and DXA. J Biomech 32:1013–1020

    Article  PubMed  CAS  Google Scholar 

  16. Melton LJ III (1996) History of the Rochester Epidemiology Project. Mayo Clin Proc 71:266–274

    Article  PubMed  Google Scholar 

  17. Cann CE (1988) Quantitative CT for determination of bone mineral density: a review. Radiology 166:509–522

    PubMed  CAS  Google Scholar 

  18. Kalender WA, Felsenberg D, Genant HK, Fischer M, Dequeker J, Reeve J (1995) The European spine phantom: a tool for standardization and quality control in spinal bone mineral measurements by DXA and QCT. Eur J Radiol 20:83–92

    Article  PubMed  CAS  Google Scholar 

  19. Camp JJ, Karwoski RA, Stacy MC, Atkinson EJ, Khosla S, Melton LJ, Riggs BL, Robb RA (2004) A system for the analysis of whole-bone strength from helical CT images. Proc SPIE 5369:74–88

    Article  Google Scholar 

  20. Morgan EF, Keaveny TM (2001) Dependence of yield strain of human trabecular bone on anatomic site. J Biomech 34:569–577

    Article  PubMed  CAS  Google Scholar 

  21. Morgan EF, Bayraktar HH, Keaveny TM (2003) Trabecular bone modulus–density relationships depend on anatomic site. J Biomech 36:897–904

    Article  PubMed  Google Scholar 

  22. Bayraktar HH, Morgan EF, Niebur GL, Morris GE, Wong EK, Keaveny TM (2004) Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue. J Biomech 37:27–35

    Article  PubMed  Google Scholar 

  23. Keaveny TM, Morgan EF, Niebur GL, Yeh OC (2001) Biomechanics of trabecular bone. Annu Rev Biomed Eng 3:307–333

    Article  PubMed  CAS  Google Scholar 

  24. Reilly DT, Burstein AH (1975) The elastic and ultimate properties of compact bone tissue. J Biomech 8:393–405

    Article  PubMed  CAS  Google Scholar 

  25. Roberts BJ, Kopperdahl DL, Thrall E, Muller J, Keaveny TM, Bouxsein ML (2009) Prediction of femoral strength in a sideways fall configuration using QCT-based finite element analysis. Bone 44:S72

    Article  Google Scholar 

  26. Keaveny TM, Bouxsein ML (2008) Theoretical implications of the biomechanical fracture threshold. J Bone Miner Res 23:1541–1547

    Article  PubMed  Google Scholar 

  27. van den Kroonenberg AJ, Hayes WC, McMahon TA (1995) Dynamic models for sideways falls from standing height. J Biomech Eng 117:309–318

    Article  PubMed  Google Scholar 

  28. Robinovitch SN, McMahon AP, Hayes WC (1995) Force attenuation in trochanteric soft tissues during impact from a fall. J Orthop Res 13:956–962

    Article  PubMed  CAS  Google Scholar 

  29. Cummings SR, Cawthon PM, Ensrud KE, Cauley JA, Fink HA, Orwoll ES, Osteoporotic Fractures in Men (MrOS) Research Groups, Study of Osteoporotic Fractures Research Groups (2006) BMD and risk of hip and nonvertebral fractures in older men: a prospective study and comparison with older women. J Bone Miner Res 21:1550–1556

    Article  PubMed  Google Scholar 

  30. Keyak JH, Sigurdsson S, Karlsdottir G et al (2011) Male-female differences in the association between incident hip fracture and proximal femoral strength: a finite element analysis study. Bone 48:1239–1245

    Article  PubMed  CAS  Google Scholar 

  31. Riggs BL, Melton LJI, Robb RA, Camp JJ, Atkinson EJ, McDaniel L, Amin S, Rouleau PA, Khosla S (2008) A population-based assessment of rates of bone loss at multiple skeletal sites: evidence for substantial trabecular bone loss in young adult women and men. J Bone Miner Res 23:205–214

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Sara Achenbach for her help with the statistical analyses, Jim Peterson for his help with data management, and Margaret Holets for the DXA aBMD measurements and analysis of the QCT scans.

Conflicts of interest

B.S., S.A., E.J.A., J.C., R.A.R., B.L.R., L.J.M., and S.K. have nothing to disclose. D.L.K. is an employee of O. N. Diagnostics and T.M.K. has a financial interest in O. N. Diagnostics and both they and the company may benefit from the results of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Khosla.

Additional information

This study was supported by NIH grants R01 AR027065, R43 AR052234, and 1UL1RR024150.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srinivasan, B., Kopperdahl, D.L., Amin, S. et al. Relationship of femoral neck areal bone mineral density to volumetric bone mineral density, bone size, and femoral strength in men and women. Osteoporos Int 23, 155–162 (2012). https://doi.org/10.1007/s00198-011-1822-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-011-1822-8

Keywords

Navigation