Skip to main content
Log in

Update on Biology: Uric Acid and the Activation of Immune and Inflammatory Cells

  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Gout is a common metabolic disorder characterized by elevated uric acid leading to the formation and accumulation of uric acid crystals in synovial fluids. An attack of gout is characterized by intense, self-limited bouts of acute arthritis with excruciating pain. The mechanisms regulating initiation and resolution of gouty inflammation are still unclear. A significant though incomplete body of information implicating the innate immune system as a central component of immune and inflammatory cell activation in gout has been accumulated over the past few years. In this review, advances in the understanding of the basic biology of crystal-mediated inflammation are summarized. The emerging role of the inflammasome and the cytokine interleukin-1 in the initiation of acute gout is highlighted. How these findings may open a door to a new approach for therapy with the development of interleukin-1 antagonists is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Doherty M: New insights into the epidemiology of gout. Rheumatology 2009, 48:ii2–ii8.

    Article  PubMed  Google Scholar 

  2. Richette P, Bardin T: Gout. Lancet 2010, 375:318–328.

    Article  CAS  PubMed  Google Scholar 

  3. Mandell BF: Clinical manifestations of hyperuricemia and gout. Cleve Clin J Med 2008, 75(Suppl 5):S5–S8.

    Article  PubMed  Google Scholar 

  4. Faires J, McCarty D: Acute arthritis in man and dog after intrasynovial injection of sodium. Lancet 1962, 280:682–685.

    Article  Google Scholar 

  5. Neogi T: Asymptomatic hyperuricemia: perhaps not so benign? J Rheumatol 2008, 35:734–737.

    PubMed  Google Scholar 

  6. Mcgill NW, Dieppe PA: Evidence for a promoter of urate crystal formation in gouty synovial fluid. Ann Rheum Dis 1991, 50:558–561.

    Article  CAS  PubMed  Google Scholar 

  7. Mcgill NW, Hayes A, Dieppe PA: Morphological evidence for biological control of urate crystal formation in vivo and in vitro. Scand J Rheumatol 1992, 21:215–219.

    Article  CAS  PubMed  Google Scholar 

  8. Kanevets U, Sharma K, Dresser K, Shi Y: A role of IgM antibodies in monosodium urate crystal formation and associated adjuvanticity. J Immunol 2009, 182:1912–1918.

    Article  CAS  PubMed  Google Scholar 

  9. Shi Y, Mucsi AD, Ng G: Monosodium urate crystals in inflammation and immunity. Immunol Rev 2010, 233:203–217.

    Article  CAS  PubMed  Google Scholar 

  10. •• Martin WJ, Harper JL: Innate inflammation and resolution in acute gout. Immunol Cell Biol 2010, 88:15–19. This is an excellent review focusing on the emerging role of mononuclear phagocytes in both the initiation and resolution of acute gout, and the interplay between monocytes and other elements of the innate immune response, including neutrophils, and complement protein activation.

    Article  PubMed  Google Scholar 

  11. Martin WJ, Walton M, Harper J: Resident macrophages initiating and driving inflammation in a monosodium urate monohydrate crystal-induced murine peritoneal model of acute gout. Arthritis Rheum 2009, 60:281–289.

    Article  PubMed  Google Scholar 

  12. Chen CJ, Shi Y, Hearn A, et al.: MyD88-dependent IL-1 receptor signaling is essential for gouty inflammation stimulated by monosodium urate crystals. J Clin Invest 2006, 116:2262–2271.

    Article  CAS  PubMed  Google Scholar 

  13. Popa-Nita O, Naccache PH: Crystal-induced neutrophil activation. Immunol Cell Biol 2010, 88:32–40.

    Article  CAS  PubMed  Google Scholar 

  14. Shi Y, Evans JE, Rock KL: Molecular identification of a danger signal that alerts the immune system to dying cells. Nature 2003, 425:516–521.

    Article  CAS  PubMed  Google Scholar 

  15. Shi Y, Galusha SA, Rock KL: Cutting edge: elimination of an endogenous adjuvant reduces the activation of CD8 T lymphocytes to transplanted cells and in an autoimmune diabetes model. J Immunol 2006, 176:3905–3908.

    CAS  PubMed  Google Scholar 

  16. Kool M, Soullié T, Van Nimwegen M, et al.: Alum adjuvant boosts adaptive immunity by inducing uric acid and activating inflammatory dendritic cells. J Exp Med 2008, 205:869–882.

    Article  CAS  PubMed  Google Scholar 

  17. Eisenbarth SC, Colegio OR, O’Connor W, et al.: Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. Nature 2008, 453:1122–1126.

    Article  CAS  PubMed  Google Scholar 

  18. Martinon F, Mayor A, Tschopp J: The inflammasomes: guardians of the body. Annu Rev Immunol 2009, 27:229–265.

    Article  CAS  PubMed  Google Scholar 

  19. Liu-Bryan R, Scott P, Sydlaske A, et al.: Innate immunity conferred by Toll-like receptors 2 and 4 and myeloid differentiation factor 88 expression is pivotal to monosodium urate monohydrate crystal-induced inflammation. Arthritis Rheum 2005, 52:2936–2946.

    Article  CAS  PubMed  Google Scholar 

  20. Scott P, Ma H, Viriyakosol S, et al.: Engagement of CD14 mediates the inflammatory potential of monosodium urate crystals. J Immunol 2006, 177:6370–6378.

    CAS  PubMed  Google Scholar 

  21. • Ng G, Sharma K, Ward SM, et al.: Receptor-independent, direct membrane binding leads to cell-surface lipid sorting and Syk kinase activation in dendritic cells. Immunity 2008, 29:807–818. This study provides insight into receptor-independent signaling by MSUs.

    Article  CAS  PubMed  Google Scholar 

  22. Dostert C, Petrilli V, Van Bruggen R, et al.: Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 2008, 320:674–677.

    Article  CAS  PubMed  Google Scholar 

  23. Martinon F, Pétrilli V, Mayor A, et al.: Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 2006, 440:237–241.

    Article  CAS  PubMed  Google Scholar 

  24. Stutz A, Golenbock DT, Latz E: Inflammasomes: too big to miss. J Clin Invest 2009, 119:3502–3511.

    Article  CAS  PubMed  Google Scholar 

  25. Martinon F, Burns K, Tschopp J: The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 2002, 10:417–426.

    Article  CAS  PubMed  Google Scholar 

  26. •• Sims JE, Smith DE: The IL-1 family: regulators of immunity. Nat Rev Immunol 2010, 10:89–102. This is an excellent review providing an updated overview of the biological activities of the IL-1 family.

    Article  CAS  PubMed  Google Scholar 

  27. Brodsky IE, Monack D: NLR-mediated control of inflammasome assembly in the host response against bacterial pathogens. Semin Immunol 2009, 21:199–207.

    Article  CAS  PubMed  Google Scholar 

  28. •• Schroder K, Zhou R, Tschopp J: The NLRP3 inflammasome: a sensor for metabolic danger? Science 2010, 327:296–300. This is an excellent essay discussing the possible role of the NLRP3 inflammasome in metabolic disorders, including T2DM.

    Article  CAS  PubMed  Google Scholar 

  29. Agostini L, Martinon F, Burns K, et al.: NALP3 forms an IL-1beta-processing inflammasome with increased activity in Muckle-Wells autoinflammatory disorder. Immunity 2004, 20:319–325.

    Article  CAS  PubMed  Google Scholar 

  30. Mayor A, Martinon F, De Smedt T, et al.: A crucial function of SGT1 and HSP90 in inflammasome activity links mammalian and plant innate immune responses. Nat Immunol 2007, 8:497–503.

    Article  CAS  PubMed  Google Scholar 

  31. Martinon F: Mechanisms of uric acid crystal-mediated autoinflammation. Immunol Rev 2010, 233:218–232.

    Article  CAS  PubMed  Google Scholar 

  32. Sautin YY, Nakagawa T, Zharikov S, Johnson RJ: Adverse effects of the classic antioxidant uric acid in adipocytes: NADPH oxidase-mediated oxidative/nitrosative stress. Am J Physiol Cell Physiol 2007, 293:C584–C596.

    Article  CAS  PubMed  Google Scholar 

  33. • Zhou R, Tardivel A, Thorens B, et al.: Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat Immunol 2010, 11:136–140. This study provided a significant advance in the understanding of NLRP3 activation. It identified TXNIP as a direct activator of NLRP3.

    Article  CAS  PubMed  Google Scholar 

  34. Coeshott C, Ohnemus C, Pilyavskaya A, et al.: Converting enzyme-independent release of tumor necrosis factor alpha and IL-1beta from a stimulated human monocytic cell line in the presence of activated neutrophils or purified proteinase 3. Proc Natl Acad Sci U S A 1999, 96:6261–6266.

    Article  CAS  PubMed  Google Scholar 

  35. • Joosten LA, Netea MG, Fantuzzi G, et al.: Inflammatory arthritis in caspase 1 gene-deficient mice: contribution of proteinase 3 to caspase 1-independent production of bioactive interleukin-1beta. Arthritis Rheum 2009, 60:3651–3662. This study suggests a role for PR3-mediated IL-1 activation in vivo.

    Article  PubMed  Google Scholar 

  36. Rider TG, Jordan KM: The modern management of gout. Rheumatology 2010, 49:5–14.

    Article  PubMed  Google Scholar 

  37. Terkeltaub R: Update on gout: new therapeutic strategies and options. Nat Rev Rheumatol 2010, 6:30–38.

    Article  CAS  PubMed  Google Scholar 

  38. Bardin T: Acute inflammatory arthritis: interleukin-1 blockade: a magic wand for gout? Nat Rev Rheumatol 2009, 5:594–596.

    Article  CAS  PubMed  Google Scholar 

  39. Masters SL, Simon A, Aksentijevich I, Kastner DL: Horror autoinflammaticus: the molecular pathophysiology of autoinflammatory disease. Annu Rev Immunol 2009, 27:621–668.

    Article  CAS  PubMed  Google Scholar 

  40. Goldbach-Mansky R, Dailey NJ, Canna SW, et al.: Neonatal-onset multisystem inflammatory disease responsive to interleukin-1beta inhibition. N Engl J Med 2006, 355:581–592.

    Article  CAS  PubMed  Google Scholar 

  41. Hawkins PN, Lachmann HJ, McDermott MF: Interleukin-1-receptor antagonist in the Muckle-Wells syndrome. N Engl J Med 2003, 348:2583–2584.

    Article  PubMed  Google Scholar 

  42. Church LD, McDermott MF: Rilonacept in cryopyrin-associated periodic syndromes: the beginning of longer-acting interleukin-1 antagonism. Nat Clin Pract Rheumatol 2009, 5:14–15.

    Article  CAS  PubMed  Google Scholar 

  43. Terkeltaub R, Sundy JS, Schumacher HR, et al.: The interleukin 1 inhibitor rilonacept in treatment of chronic gouty arthritis: results of a placebo-controlled, monosequence crossover, non-randomised, single-blind pilot study. Ann Rheum Dis 2009, 68:1613–1617.

    Article  CAS  PubMed  Google Scholar 

  44. Lachmann HJ, Lowe P, Felix SD, et al.: In vivo regulation of interleukin 1beta in patients with cryopyrin-associated periodic syndromes. J Exp Med 2009, 206:1029–1036.

    Article  CAS  PubMed  Google Scholar 

  45. Stack JH, Beaumont K, Larsen PD, et al.: IL-converting enzyme/caspase-1 inhibitor VX-765 blocks the hypersensitive response to an inflammatory stimulus in monocytes from familial cold autoinflammatory syndrome patients. J Immunol 2005, 175:2630–2634.

    CAS  PubMed  Google Scholar 

Download references

Disclosure

No potential conflict of interest relevant to this article was reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Martinon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martinon, F. Update on Biology: Uric Acid and the Activation of Immune and Inflammatory Cells. Curr Rheumatol Rep 12, 135–141 (2010). https://doi.org/10.1007/s11926-010-0092-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11926-010-0092-3

Keywords

Navigation