Skip to main content
Log in

The Crystallization of Monosodium Urate

  • CRYSTAL ARTHRITIS (MH PILLINGER, SECTION EDITOR)
  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Gout is a common crystal-induced arthritis, in which monosodium urate (MSU) crystals precipitate within joints and soft tissues and elicit an inflammatory response. The causes of elevated serum urate and the inflammatory pathways activated by MSU crystals have been well studied, but less is known about the processes leading to crystal formation and growth. Uric acid, the final product of purine metabolism, is a weak acid that circulates as the deprotonated urate anion under physiologic conditions, and combines with sodium ions to form MSU. MSU crystals are known to have a triclinic structure, in which stacked sheets of purine rings form the needle-shaped crystals that are observed microscopically. Exposed, charged crystal surfaces are thought to allow for interaction with phospholipid membranes and serum factors, playing a role in the crystal-mediated inflammatory response. While hyperuricemia is a clear risk factor for gout, local factors have been hypothesized to play a role in crystal formation, such as temperature, pH, mechanical stress, cartilage components, and other synovial and serum factors. Interestingly, several studies suggest that MSU crystals may drive the generation of crystal-specific antibodies that facilitate future MSU crystallization. Here, we review MSU crystal biology, including a discussion of crystal structure, effector function, and factors thought to play a role in crystal formation. We also briefly compare MSU biology to that of uric acid stones causing nephrolithasis, and consider the potential treatment implications of MSU crystal biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Lawrence RC et al. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States Part II. Arthritis Rheum. 2008;58(1):26–35.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Roddy E, Doherty M. Epidemiology of gout. Arthritis Res Ther. 2010;12(6):21.

    Article  Google Scholar 

  3. Choi HK et al. Pathogenesis of gout. Ann Intern Med. 2005;143(7):499–516.

    Article  CAS  PubMed  Google Scholar 

  4. Burns CM, Wortmann RL. Disorders of purine and pyramidine metabolism. In: Fauci AS, Longo DL, Kasper DL, Hauser SL, Jameson JL, Loscalzo J, editors. Harrison’s Priciples of Internal Medicine. New York: McGraw-Hill; 2012.

    Google Scholar 

  5. Wu XW et al. Two independent mutational events in the loss of urate oxidase during hominoid evolution. J Mol Evol. 1992;34(1):78–84.

    Article  CAS  PubMed  Google Scholar 

  6. Wu XW et al. Urate oxidase: primary structure and evolutionary implications. Proc Natl Acad Sci U S A. 1989;86(23):9412–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Oda M et al. Loss of urate oxidase activity in hominoids and its evolutionary implications. Mol Biol Evol. 2002;19(5):640–53.

    Article  CAS  PubMed  Google Scholar 

  8. Huang HY et al. The effects of vitamin C supplementation on serum concentrations of uric acid: results of a randomized controlled trial. Arthritis Rheum. 2005;52(6):1843–7.

    Article  CAS  PubMed  Google Scholar 

  9. Sebesta I. Genetic disorders resulting in hyper- or hypouricemia. Adv Chronic Kidney Dis. 2012;19(6):398–403.

    Article  PubMed  Google Scholar 

  10. Busso N, So A. Microcrystals as DAMPs and their role in joint inflammation. Rheumatology (Oxford). 2012;51(7):1154–60.

    Article  CAS  Google Scholar 

  11. Martinon F et al. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature. 2006;440(7081):237–41.

    Article  CAS  PubMed  Google Scholar 

  12. Pettipher ER, Higgs GA, Henderson B. Interleukin 1 induces leukocyte infiltration and cartilage proteoglycan degradation in the synovial joint. Proc Natl Acad Sci U S A. 1986;83(22):8749–53.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Weinberger A, Schumacher HR, Agudelo CA. Urate crystals in asymptomatic metatarsophalangeal joints. Ann Intern Med. 1979;91(1):56–7.

    Article  CAS  PubMed  Google Scholar 

  14. Lin KC, Lin HY, Chou P. The interaction between uric acid level and other risk factors on the development of gout among asymptomatic hyperuricemic men in a prospective study. J Rheumatol. 2000;27(6):1501–5.

    CAS  PubMed  Google Scholar 

  15. Hall AP et al. Epidemiology of gout and hyperuricemia. A long-term population study. Am J Med. 1967;42(1):27–37.

    Article  CAS  PubMed  Google Scholar 

  16. Schlesinger N, Norquist JM, Watson DJ. Serum urate during acute gout. J Rheumatol. 2009;36(6):1287–9.

    Article  CAS  PubMed  Google Scholar 

  17. Mandel NS, Mandel GS. Monosodium urate monohydrate, the gout culprit. J Am Chem Soc. 1976;98(8):2319–23.

    Article  CAS  PubMed  Google Scholar 

  18. Frincu MC, Fogarty CE, Swift JA. Epitaxial relationships between uric acid crystals and mineral surfaces: a factor in urinary stone formation. Langmuir. 2004;20(16):6524–9.

    Article  CAS  PubMed  Google Scholar 

  19. •• Perrin CM et al. Monosodium urate monohydrate crystallization. CrystEngComm. 2011;13(4):1111–7. Modern-day work in which in situ atomic force microscopy and dynamic light scattering were used to elucidate the growth of monosodium urate crystals on a molecular level.

    Article  CAS  Google Scholar 

  20. Ortiz-Bravo E, Sieck MS, Schumacher Jr HR. Changes in the proteins coating monosodium urate crystals during active and subsiding inflammation. Immunogold studies of synovial fluid from patients with gout and of fluid obtained using the rat subcutaneous air pouch model. Arthritis Rheum. 1993;36(9):1274–85.

    Article  CAS  PubMed  Google Scholar 

  21. Cherian PV, Schumacher Jr HR. Immunochemical and ultrastructural characterization of serum proteins associated with monosodium urate crystals (MSU) in synovial fluid cells from patients with gout. Ultrastruct Pathol. 1986;10(3):209–19.

    Article  CAS  PubMed  Google Scholar 

  22. Kozin F, McCarty DJ. Molecular orientation of immunoglobulin G adsorbed to microcrystalline monosodium urate monohydrate. J Lab Clin Med. 1980;95(1):49–58.

    CAS  PubMed  Google Scholar 

  23. Terkeltaub R et al. Plasma protein binding by monosodium urate crystals. Analysis by two-dimensional gel electrophoresis. Arthritis Rheum. 1983;26(6):775–83.

    Article  CAS  PubMed  Google Scholar 

  24. Mullin JW. Nucleation In Crystallization. Oxford: Butterworth-Heinemann; 1993. p. 172–201.

    Google Scholar 

  25. Fiddis RW, Vlachos N, Calvert PD. Studies of urate crystallisation in relation to gout. Ann Rheum Dis. 1983;42 Suppl 1:12–5.

    Article  CAS  PubMed  Google Scholar 

  26. Shoji A, Yamanaka H, Kamatani N. A retrospective study of the relationship between serum urate level and recurrent attacks of gouty arthritis: evidence for reduction of recurrent gouty arthritis with antihyperuricemic therapy. Arthritis Rheum. 2004;51(3):321–5.

    Article  CAS  PubMed  Google Scholar 

  27. Allen DJ, Milosovich G, Mattocks AM. Inhibition of monosodium urate needle crystal growth. Arthritis Rheum. 1965;8(6):1123–33.

    Article  CAS  PubMed  Google Scholar 

  28. Loeb JN. The influence of temperature on the solubility of monosodium urate. Arthritis Rheum. 1972;15(2):189–92.

    Article  CAS  PubMed  Google Scholar 

  29. Wilcox WR et al. Solubility of uric acid and monosodium urate. Med Biol Eng. 1972;10(4):522–31.

    Article  CAS  PubMed  Google Scholar 

  30. Wilcox WR, Khalaf AA. Nucleation of monosodium urate crystals. Ann Rheum Dis. 1975;34(4):332–9.

    Article  CAS  PubMed  Google Scholar 

  31. Seegmiller JE. The acute attack of gouty arthritis. Arthritis Rheum. 1965;8(5):714–25.

    Article  CAS  PubMed  Google Scholar 

  32. Abrams B. Sleep apnea as a cause of gout flares. Medscape J Med. 2009;11(1):3.

    PubMed Central  PubMed  Google Scholar 

  33. McGill NW, Dieppe PA. Evidence for a promoter of urate crystal formation in gouty synovial fluid. Ann Rheum Dis. 1991;50(8):558–61.

    Article  CAS  PubMed  Google Scholar 

  34. Tak HK, Cooper SM, Wilcox WR. Studies on the nucleation of monosodium urate at 37 degrees c. Arthritis Rheum. 1980;23(5):574–80.

    Article  CAS  PubMed  Google Scholar 

  35. Burt HM, Dutt YC. Growth of monosodium urate monohydrate crystals: effect of cartilage and synovial fluid components on in vitro growth rates. Ann Rheum Dis. 1986;45(10):858–64.

    Article  CAS  PubMed  Google Scholar 

  36. Laurent TC. Solubility of Sodium Urate in the Presence of Chondroitin-4-Sulphate. Nature. 1964;202:1334.

    Article  CAS  PubMed  Google Scholar 

  37. • Pascual E, Martinez A, Ordonez S. Gout: the mechanism of urate crystal nucleation and growth. A hypothesis based in facts. Joint Bone Spine. 2013;80(1):1–4. A recent review that summarizes information gleaned from current imaging of gouty joints, and a hypothesis regarding what this may teach us about monosodium urate crystallization.

    Article  CAS  PubMed  Google Scholar 

  38. Katz WA. Role of proteoglycans in the development of gouty arthritis. In: Weiner IM, Kelley WN, editors. Handbook of Experimental Pharmacology. New York: Springer; 1978. p. 347–64.

    Google Scholar 

  39. Kippen I et al. Factors affecting urate solubility in vitro. Ann Rheum Dis. 1974;33(4):313–7.

    Article  CAS  PubMed  Google Scholar 

  40. Perl-Treves D, Addadi L. A structural approach to pathological crystallizations. Gout: the possible role of albumin in sodium urate crystallization. Proc R Soc Lond B Biol Sci. 1988;235(1279):145–59.

    Article  CAS  PubMed  Google Scholar 

  41. Kaneko K, Maru M. Determination of urate crystal formation using flow cytometry and microarea X-ray diffractometry. Anal Biochem. 2000;281(1):9–14.

    Article  CAS  PubMed  Google Scholar 

  42. Kam M et al. Antibodies against crystals. Faseb J. 1992;6(8):2608–13.

    CAS  PubMed  Google Scholar 

  43. Kam M et al. Specificity in the recognition of crystals by antibodies. J Mol Recognit. 1994;7(4):257–64.

    Article  CAS  PubMed  Google Scholar 

  44. Kanevets U et al. A role of IgM antibodies in monosodium urate crystal formation and associated adjuvanticity. J Immunol. 2009;182(4):1912–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Terkeltaub R et al. Low density lipoprotein inhibits the physical interaction of phlogistic crystals and inflammatory cells. Arthritis Rheum. 1986;29(3):363–70.

    Article  CAS  PubMed  Google Scholar 

  46. Scanu A et al. High-density lipoproteins downregulate CCL2 production in human fibroblast-like synoviocytes stimulated by urate crystals. Arthritis Res Ther. 2010;12(1):11.

    Article  Google Scholar 

  47. McGill NW, Hayes A, Dieppe PA. Morphological evidence for biological control of urate crystal formation in vivo and in vitro. Scand J Rheumatol. 1992;21(5):215–9.

    Article  CAS  PubMed  Google Scholar 

  48. Thiele RG. Role of ultrasound and other advanced imaging in the diagnosis and management of gout. Curr Rheumatol Rep. 2011;13(2):146–53.

    Article  PubMed  Google Scholar 

  49. Howard RG et al. Reproducibility of musculoskeletal ultrasound for determining monosodium urate deposition: Concordance between readers. Arthritis Care & Research. 2011;63(10):1456–62.

    Article  CAS  Google Scholar 

  50. Hesse A et al. Uric acid dihydrate as urinary calculus component. Invest Urol. 1975;12(5):405–9.

    CAS  PubMed  Google Scholar 

  51. Sakhaee K et al. Assessment of the pathogenetic role of physical exercise in renal stone formation. J Clin Endocrinol Metab. 1987;65(5):974–9.

    Article  CAS  PubMed  Google Scholar 

  52. Asplin JR. Uric acid stones. Semin Nephrol. 1996;16(5):412–24.

    CAS  PubMed  Google Scholar 

  53. Sakhaee K et al. Pathophysiologic basis for normouricosuric uric acid nephrolithiasis. Kidney Int. 2002;62(3):971–9.

    Article  CAS  PubMed  Google Scholar 

  54. Pak CY et al. Biochemical profile of idiopathic uric acid nephrolithiasis. Kidney Int. 2001;60(2):757–61.

    Article  CAS  PubMed  Google Scholar 

  55. Grover PK, Marshall VR, Ryall RL. Dissolved urate salts out calcium oxalate in undiluted human urine in vitro: implications for calcium oxalate stone genesis. Chem Biol. 2003;10(3):271–8.

    Article  CAS  PubMed  Google Scholar 

  56. Ettinger B et al. Randomized trial of allopurinol in the prevention of calcium oxalate calculi. N Engl J Med. 1986;315(22):1386–9.

    Article  CAS  PubMed  Google Scholar 

  57. Curhan GC, Taylor EN. 24-h uric acid excretion and the risk of kidney stones. Kidney Int. 2008;73(4):489–96.

    Article  CAS  PubMed  Google Scholar 

  58. Pak CY et al. Mechanism for calcium urolithiasis among patients with hyperuricosuria: supersaturation of urine with respect to monosodium urate. J Clin Invest. 1977;59(3):426–31.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Pascual E, Sivera F. Time required for disappearance of urate crystals from synovial fluid after successful hypouricaemic treatment relates to the duration of gout. Ann Rheum Dis. 2007;66(8):1056–8.

    Article  CAS  PubMed  Google Scholar 

  60. Thiele RG, Schlesinger N. Ultrasonography shows disappearance of monosodium urate crystal deposition on hyaline cartilage after sustained normouricemia is achieved. Rheumatol Int. 2010;30(4):495–503.

    Article  PubMed  Google Scholar 

  61. Becker MA, Chohan S. We can make gout management more successful now. Curr Opin Rheumatol. 2008;20(2):167–72.

    Article  PubMed  Google Scholar 

  62. Rimer JD et al. Crystal growth inhibitors for the prevention of L-cystine kidney stones through molecular design. Science. 2010;330(6002):337–41.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank David Goldfarb and Michael Pillinger for helpful input with the text, and Michael Ward for reviewing the accuracy of the figures.

Compliance with Ethics Guidelines

Conflict of Interest

This work was supported in part by grants from the Arthritis Foundation and New York Academy of Medicine (to Daria B. Crittenden), and by grant UL1 TR000038 from the National Center for Advancing Translational Sciences, National Institutes of Health.

Miguel A. Martillo, Lama Nazzal, and Daria B. Crittenden declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daria B. Crittenden.

Additional information

This article is part of the Topical Collection on Crystal Arthritis

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martillo, M.A., Nazzal, L. & Crittenden, D.B. The Crystallization of Monosodium Urate. Curr Rheumatol Rep 16, 400 (2014). https://doi.org/10.1007/s11926-013-0400-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11926-013-0400-9

Keywords

Navigation