Skip to main content
Top

16-06-2016 | Microbiome | Review | Article

How the microbiota shapes rheumatic diseases

Authors: Tom Van de Wiele, Jens T. Van Praet, Massimo Marzorati, Michael B. Drennan, Dirk Elewaut

Abstract

The human gut harbours a tremendously diverse and abundant microbial community that correlates with, and even modulates, many health-related processes. The mucosal interfaces are particularly active sites of microorganism–host interplay. Growing insight into the characteristic composition and functionality of the mucosal microbiota has revealed that the microbiota is involved in mucosal barrier integrity and immune function. This involvement affects proinflammatory and anti-inflammatory processes not only at the epithelial level, but also at remote sites such as the joints. Here, we review the role of the gut microbiota in shaping local and systemic immune responses and how disturbances in the host–microorganism interplay can potentially affect the development and progression of rheumatic diseases. Increasing our understanding of how to promote host–microorganism homeostasis could therefore reveal novel strategies for the prevention or alleviation of rheumatic disease.

Subject terms: Immunopathogenesis • Microbiota • Rheumatic diseases

Nat Rev Rheumatol 2016;12:398–411. doi:10.1038/nrrheum.2016.85

The human body is colonized by an abundant and genetically diverse microbial community, the microbiota. Although the number of our microbial colonizers is one order of magnitude higher than the number of our cells, the number of genes encoded by the human microbiome (the genome of all microbiota) exceeds that encoded by the human genome by 100-fold. The human microbiota is considered a major player in health-related processes, either by direct influence or through interaction with other health determinants, including genetics, diet, lifestyle, medical practices, hygiene and the exposome (the totality of environmental factors humans are exposed to during their lifetime). The rapid rise of several 'omics' techniques and their application in the context of large research initiatives, such as the Human Microbiome Project1 in the USA and MetaHIT2 in Europe, have revolutionized the field by shedding light on correlations between health status and microbiome composition, specific expression of genes, translation into proteins or production of specific metabolites. The influence of the human microbiota on health is being increasingly recognized not to be solely confined to the gut region. For example, whole-genome shotgun data from the Human Microbiome Project has revealed the microbiome to be composed of up to 30% of Clostridium clusters IV and XIVa3, many of which have immune-modulating effects4.

Literature
  1. Turnbaugh, P. J. et al. The human microbiome project. Nature 449, 804–810 (2007). CAS | ISI | PubMed | Article
  2. Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65 (2010).CAS | ISI | PubMed | Article
  3. Karlsson, F. H., Nookaew, I., Petranovic, D. & Nielsen, J. Prospects for systems biology and modeling of the gut microbiome. Trends Biotechnol. 29, 251–258 (2011). CAS | PubMed | Article
  4. Atarashi, K. et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science 331, 337–341 (2011). CAS | ISI | PubMed | Article
  5. Moghaddami, M., Cummins, A. & Mayrhofer, G. Lymphocyte-filled villi: comparison with other lymphoid aggregations in the mucosa of the human small intestine. Gastroenterology 115, 1414–1425 (1998). CAS | ISI | PubMed | Article
  6. Pabst, O. et al. Cryptopatches and isolated lymphoid follicles: dynamic lymphoid tissues dispensable for the generation of intraepithelial lymphocytes. Eur. J. Immunol. 35, 98–107 (2005). CAS | ISI | PubMed | Article
  7. Lugering, A. et al. CCR6 identifies lymphoid tissue inducer cells within cryptopatches. Clin. Exp. Immunol. 160, 440–449 (2010). CAS | ISI | PubMed | Article
  8. Claesson, M. J. et al. Comparative analysis of pyrosequencing and a phylogenetic microarray for exploring microbial community structures in the human distal intestine. PLoS ONE 4, e6669 (2009). CAS | PubMed | Article
  9. Sankar, S. A., Lagier, J. C., Pontarotti, P., Raoult, D. & Fournier, P. E. The human gut microbiome, a taxonomic conundrum. Syst. Appl. Microbiol. 38, 276–286 (2015). CAS | PubMed | Article
  10. Eckburg, P. B. et al. Diversity of the human intestinal microbial flora. Science 308, 1635–1638 (2005). ISI | PubMed | Article
  11. Lozupone, C. A., Stombaugh, J. I., Gordon, J. I., Jansson, J. K. & Knight, R. Diversity, stability and resilience of the human gut microbiota. Nature 489, 220–230 (2012). CAS | ISI | PubMed | Article
  12. Ley, R. E. The gene–microbe link. Nature 518, S7 (2015). CAS | PubMed | Article
  13. Velasquez-Manoff, M. Gut microbiome: the peacekeepers. Nature 518, S3–S11 (2015). CAS | PubMed | Article
  14. Mirande, C. et al. Dietary fibre degradation and fermentation by two xylanolytic bacteria Bacteroides xylanisolvens XB1AT and Roseburia intestinalis XB6B4 from the human intestine. J. Appl. Microbiol. 109, 451–460 (2010). CAS | PubMed
  15. Ze, X., Duncan, S. H., Louis, P. & Flint, H. J. Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon. ISME J. 6, 1535–1543 (2012). CAS | ISI | PubMed | Article
  16. Louis, P. & Flint, H. J. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol. Lett. 294, 1–8 (2009). CAS | ISI | PubMed | Article
  17. Turnbaugh, P. J. et al. A core gut microbiome in obese and lean twins. Nature 457, 480–484 (2009). CAS | ISI | PubMed | Article
  18. Verberkmoes, N. C. et al. Shotgun metaproteomics of the human distal gut microbiota. ISME J. 3, 179–189 (2009). CAS | ISI | PubMed | Article
  19. Kolmeder, C. A. et al. Comparative metaproteomics and diversity analysis of human intestinal microbiota testifies for its temporal stability and expression of core functions. PLoS ONE 7, e29913 (2012). CAS | PubMed | Article
  20. Koek, M. M., Jellema, R. H., van der Greef, J., Tas, A. C. & Hankemeier, T. Quantitative metabolomics based on gas chromatography mass spectrometry: status and perspectives. Metabolomics 7, 307–328 (2011).CAS | ISI | PubMed | Article
  21. Tuohy, K. M. et al. Studying the human gut microbiota in the trans-omics era — focus on metagenomics and metabonomics. Curr. Pharm. Des. 15, 1415–1427 (2009). CAS | ISI | PubMed | Article
  22. Lin, H. M., Helsby, N. A., Rowan, D. D. & Ferguson, L. R. Using metabolomic analysis to understand inflammatory bowel diseases. Inflamm. Bowel Dis. 17, 1021–1029 (2011). PubMed | Article
  23. Helander, H. F. & Fandriks, L. Surface area of the digestive tract — revisited. Scand. J. Gastroenterol. 49, 681–689 (2014). PubMed | Article
  24. Delzenne, N. M., Neyrinck, A. M., Backhed, F. & Cani, P. D. Targeting gut microbiota in obesity: effects of prebiotics and probiotics. Nat. Rev. Endocrinol. 7, 639–646 (2011). CAS | ISI | PubMed | Article
  25. Cho, J. H. The genetics and immunopathogenesis of inflammatory bowel disease. Nat. Rev. Immunol. 8, 458–466 (2008). CAS | ISI | PubMed | Article
  26. Ogura, Y. et al. Expression of NOD2 in Paneth cells: a possible link to Crohn's ileitis. Gut 52, 1591–1597 (2003). CAS | ISI | PubMed | Article
  27. De Filippo, C. et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl Acad. Sci. USA 107, 14691–14696 (2010). PubMed | Article
  28. Round, J. L. & Mazmanian, S. K. The gut microbiota shapes intestinal immune responses during health and disease. Nat. Rev. Immunol. 9, 313–323 (2009). CAS | ISI | PubMed | Article
  29. Delzenne, N. M. & Cani, P. D. Interaction between obesity and the gut microbiota: relevance in nutrition. Annu. Rev. Nutr. 31, 15–31 (2011). CAS | PubMed | Article
  30. Algert, C. S., McElduff, A., Morris, J. M. & Roberts, C. L. Perinatal risk factors for early onset of type 1 diabetes in a 2000–2005 birth cohort. Diabet. Med. 26, 1193–1197 (2009). CAS | PubMed | Article
  31. Thavagnanam, S., Fleming, J., Bromley, A., Shields, M. D. & Cardwell, C. R. A meta-analysis of the association between Caesarean section and childhood asthma. Clin. Exp. Allergy 38, 629–633 (2008). CAS | ISI | PubMed | Article
  32. Decker, E. et al. Cesarean delivery is associated with celiac disease but not inflammatory bowel disease in children. Pediatrics 125, e1433–e1440 (2010). ISI | PubMed | Article
  33. Kull, I., Almqvist, C., Lilja, G., Pershagen, G. & Wickman, M. Breast-feeding reduces the risk of asthma during the first 4 years of life. J. Allergy Clin. Immunol. 114, 755–760 (2004). ISI | PubMed | Article
  34. Akobeng, A. K., Ramanan, A. V., Buchan, I. & Heller, R. F. Effect of breast feeding on risk of coeliac disease: a systematic review and meta-analysis of observational studies. Arch. Dis. Child. 91, 39–43 (2006). CAS | ISI | PubMed | Article
  35. Shaw, S. Y., Blanchard, J. F. & Bernstein, C. N. Association between the use of antibiotics in the first year of life and pediatric inflammatory bowel disease. Am. J. Gastroenterol. 105, 2687–2692 (2010). ISI | PubMed | Article
  36. Faria, A. M. & Weiner, H. L. Oral tolerance. Immunol. Rev. 206, 232–259 (2005). CAS | ISI | PubMed | Article
  37. Mowat, A. M. & Agace, W. W. Regional specialization within the intestinal immune system. Nat. Rev. Immunol. 14, 667–685 (2014). CAS | ISI | PubMed | Article
  38. Akira, S., Uematsu, S. & Takeuchi, O. Pathogen recognition and innate immunity. Cell 124, 783–801 (2006). CAS | ISI | PubMed | Article
  39. Fagarasan, S., Kawamoto, S., Kanagawa, O. & Suzuki, K. Adaptive immune regulation in the gut: T cell-dependent and T cell-independent IgA synthesis. Annu. Rev. Immunol. 28, 243–273 (2010). CAS | ISI | PubMed | Article
  40. Tsuji, M. et al. Requirement for lymphoid tissue-inducer cells in isolated follicle formation and T cell-independent immunoglobulin A generation in the gut. Immunity 29, 261–271 (2008). CAS | ISI | PubMed | Article
  41. Fagarasan, S. & Honjo, T. Intestinal IgA synthesis: regulation of front-line body defences. Nat. Rev. Immunol. 3, 63–72 (2003). CAS | ISI | PubMed | Article
  42. Sonnenberg, G. F. & Artis, D. Innate lymphoid cells in the initiation, regulation and resolution of inflammation. Nat. Med. 21, 698–708 (2015). CAS | PubMed | Article
  43. Johansson, M. E. et al. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc. Natl Acad. Sci. USA 105, 15064–15069 (2008). PubMed | Article
  44. Zoetendal, E. G. et al. Mucosa-associated bacteria in the human gastrointestinal tract are uniformly distributed along the colon and differ from the community recovered from feces. Appl. Environ. Microbiol. 68, 3401–3407 (2002). CAS | ISI | PubMed | Article
  45. Lepage, P. et al. Biodiversity of the mucosa-associated microbiota is stable along the distal digestive tract in healthy individuals and patients with IBD. Inflamm. Bowel Dis. 11, 473–480 (2005). ISI | PubMed | Article
  46. Lievin-Le Moal, V. & Servin, A. L. The front line of enteric host defense against unwelcome intrusion of harmful microorganisms: mucins, antimicrobial peptides, and microbiota. Clin. Microbiol. Rev. 19, 315–337 (2006). CAS | PubMed | Article
  47. Roos, S. & Jonsson, H. A high-molecular-mass cell-surface protein from Lactobacillus reuteri 1063 adheres to mucus components. Microbiology 148, 433–442 (2002). CAS | ISI | PubMed | Article
  48. Derrien, M., Vaughan, E. E., Plugge, C. M. & de Vos, W. M. Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int. J. Syst. Evol. Microbiol.54, 1469–1476 (2004). CAS | ISI | PubMed | Article
  49. Frank, D. N. et al. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc. Natl Acad. Sci. USA 104, 13780–13785 (2007). CAS | PubMed | Article
  50. Sokol, H. et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc. Natl Acad. Sci. USA105, 16731–16736 (2008). CAS | PubMed | Article
  51. Eeckhaut, V. et al. Butyricicoccus pullicaecorum in inflammatory bowel disease. Gut 62, 1745–1752 (2013). CAS | PubMed | Article
  52. Khan, M. T. et al. The gut anaerobe Faecalibacterium prausnitzii uses an extracellular electron shuttle to grow at oxic-anoxic interphases. ISME J. 6, 1578–1585 (2012). CAS | PubMed | Article
  53. Mazmanian, S. K., Liu, C. H., Tzianabos, A. O. & Kasper, D. L. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122, 107–118 (2005). CAS | ISI | PubMed | Article
  54. Mazmanian, S. K., Round, J. L. & Kasper, D. L. A microbial symbiosis factor prevents intestinal inflammatory disease. Nature 453, 620–625 (2008). CAS | ISI | PubMed | Article
  55. Ivanov, I. I. et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell139, 485–498 (2009). CAS | ISI | PubMed | Article
  56. Van Praet, J. T. et al. Commensal microbiota influence systemic autoimmune responses. EMBO J. 34, 466–474 (2015). CAS | PubMed | Article
  57. Cash, H. L., Whitham, C. V., Behrendt, C. L. & Hooper, L. V. Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science 313, 1126–1130 (2006). CAS | ISI | PubMed | Article
  58. Brandl, K., Plitas, G., Schnabl, B., DeMatteo, R. P. & Pamer, E. G. MyD88-mediated signals induce the bactericidal lectin RegIIIγ and protect mice against intestinal Listeria monocytogenes infection. J. Exp. Med. 204, 1891–1900 (2007). CAS | ISI | PubMed | Article
  59. Dessein, R. et al. Toll-like receptor 2 is critical for induction of Reg3β expression and intestinal clearance of Yersinia pseudotuberculosis. Gut 58, 771–776 (2009). CAS | PubMed | Article
  60. Deshmukh, H. S. et al. The microbiota regulates neutrophil homeostasis and host resistance to Escherichia coli K1 sepsis in neonatal mice. Nat. Med. 20, 524–530 (2014). CAS | PubMed | Article
  61. Olszak, T. et al. Microbial exposure during early life has persistent effects on natural killer T cell function. Science 336, 489–493 (2012). CAS | ISI | PubMed | Article
  62. Brodin, P. et al. Variation in the human immune system is largely driven by non-heritable influences. Cell 160, 37–47 (2015). CAS | ISI | PubMed | Article
  63. Belkaid, Y. & Segre, J. A. Dialogue between skin microbiota and immunity. Science 346, 954–959 (2014). CAS | PubMed | Article
  64. Grice, E. A. & Segre, J. A. The skin microbiome. Nat. Rev. Microbiol. 9, 244–253 (2011). CAS | ISI | PubMed | Article
  65. Takemoto, A., Cho, O., Morohoshi, Y., Sugita, T. & Muto, M. Molecular characterization of the skin fungal microbiome in patients with psoriasis. J. Dermatol. 42, 166–170 (2015). CAS | PubMed | Article
  66. Jagielski, T. et al. Distribution of Malassezia species on the skin of patients with atopic dermatitis, psoriasis, and healthy volunteers assessed by conventional and molecular identification methods. BMC Dermatol. 14, 3 (2014). CAS | PubMed | Article
  67. Alekseyenko, A. V. et al. Community differentiation of the cutaneous microbiota in psoriasis. Microbiome 1, 31 (2013). PubMed | Article
  68. Statnikov, A. et al. Microbiomic signatures of psoriasis: feasibility and methodology comparison. Sci. Rep. 3, 2620 (2013). PubMed | Article
  69. Fahlen, A., Engstrand, L., Baker, B. S., Powles, A. & Fry, L. Comparison of bacterial microbiota in skin biopsies from normal and psoriatic skin. Arch. Dermatol. Res. 304, 15–22 (2012). CAS | ISI | PubMed | Article
  70. Montoya, J. et al. Patients with ankylosing spondylitis have been breast fed less often than healthy controls: a case–control retrospective study. Ann. Rheum. Dis. 75, 879–882 (2016). CAS | PubMed | Article
  71. Hida, S., Miura, N. N., Adachi, Y. & Ohno, N. Cell wall β-glucan derived from Candida albicans acts as a trigger for autoimmune arthritis in SKG mice. Biol. Pharm. Bull. 30, 1589–1592 (2007). CAS | PubMed | Article
  72. Baillet, A. C. et al. High Chlamydia burden promotes tumor necrosis factor-dependent reactive arthritis in SKG mice. Arthritis Rheumatol. 67, 1535–1547 (2015). CAS | PubMed | Article
  73. Benham, H. et al. Interleukin-23 mediates the intestinal response to microbial β-1,3-glucan and the development of spondyloarthritis pathology in SKG mice. Arthritis Rheumatol. 66, 1755–1767 (2014). CAS | ISI | PubMed | Article
  74. Wu, H. J. et al. Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity 32, 815–827 (2010). CAS | ISI | PubMed | Article
  75. Abdollahi-Roodsaz, S. et al. Stimulation of TLR2 and TLR4 differentially skews the balance of T cells in a mouse model of arthritis. J. Clin. Invest. 118, 205–216 (2008). CAS | ISI | PubMed | Article
  76. Ginsburg, I. Can chronic and self-perpetuating arthritis in the human be caused by arthrotropic undegraded microbial cell wall constituants? A working hypothesis. Rheumatol. Rehabil. 16, 141–149 (1977). CAS | PubMed | Article
  77. Taurog, J. D. et al. The germfree state prevents development of gut and joint inflammatory disease in HLA-B27 transgenic rats. J. Exp. Med. 180, 2359–2364 (1994). CAS | ISI | PubMed | Article
  78. Khare, S. D., Luthra, H. S. & David, C. S. Spontaneous inflammatory arthritis in HLA-B27 transgenic mice lacking β2-microglobulin: a model of human spondyloarthropathies. J. Exp. Med. 182, 1153–1158 (1995). CAS | PubMed | Article
  79. Marchesan, J. T. et al. Porphyromonas gingivalis oral infection exacerbates the development and severity of collagen-induced arthritis. Arthritis Res. Ther. 15, R186 (2013). PubMed | Article
  80. Dorozynska, I., Majewska-Szczepanik, M., Marcinska, K. & Szczepanik, M. Partial depletion of natural gut flora by antibiotic aggravates collagen induced arthritis (CIA) in mice. Pharmacol. Rep. 66, 250–255 (2014). CAS | PubMed | Article
  81. Gomez, A. et al. Loss of sex and age driven differences in the gut microbiome characterize arthritis-susceptible *0401 mice but not arthritis-resistant *0402 mice. PLoS ONE 7, e36095 (2012). CAS | PubMed | Article
  82. Lin, P. et al. HLA-B27 and human β2-microglobulin affect the gut microbiota of transgenic rats. PLoS ONE 9, e105684 (2014). CAS | PubMed | Article
  83. Hoentjen, F. et al. Reduction of colitis by prebiotics in HLA-B27 transgenic rats is associated with microflora changes and immunomodulation. Inflamm. Bowel Dis. 11, 977–985 (2005). PubMed | Article
  84. Rosser, E. C. et al. Regulatory B cells are induced by gut microbiota-driven interleukin-1β and interleukin-6 production. Nat. Med. 20, 1334–1339 (2014). CAS | ISI | PubMed | Article
  85. Vieira, A. T. et al. A role for gut microbiota and the metabolite-sensing receptor GPR43 in a murine model of gout. Arthritis Rheumatol. 67, 1646–1656 (2015). CAS | PubMed
  86. Mizutani, A. et al. Pristane-induced autoimmunity in germ-free mice. Clin. Immunol. 114, 110–118 (2005). CAS | ISI | PubMed | Article
  87. Maldonado, M. A. et al. The role of environmental antigens in the spontaneous development of autoimmunity in MRL-lpr mice. J. Immunol. 162, 6322–6330 (1999). CAS | ISI | PubMed
  88. East, J., Prosser, P. R., Holborow, E. J. & Jaquet, H. Autoimmune reactions and virus-like particles in germ-free NZB mice. Lancet 1, 755–757 (1967). CAS | ISI | PubMed | Article
  89. Fernandes, G., Friend, P., Yunis, E. J. & Good, R. A. Influence of dietary restriction on immunologic function and renal disease in (NZB × NZW) F1 mice. Proc. Natl Acad. Sci. USA75, 1500–1504 (1978). CAS | PubMed | Article
  90. Hsieh, C. C. & Lin, B. F. Dietary factors regulate cytokines in murine models of systemic lupus erythematosus. Autoimmun. Rev. 11, 22–27 (2011). CAS | PubMed | Article
  91. Liao, X. et al. Paradoxical effects of all-trans-retinoic acid on lupus-like disease in the MRL/lpr mouse model. PLoS ONE 10, e0118176 (2015). CAS | PubMed | Article
  92. Johnson, B. M., Gaudreau, M. C., Al-Gadban, M. M., Gudi, R. & Vasu, C. Impact of dietary deviation on disease progression and gut microbiome composition in lupus-prone SNF1mice. Clin. Exp. Immunol. 181, 323–337 (2015). CAS | PubMed | Article
  93. Palm, O., Moum, B., Jahnsen, J. & Gran, J. T. Fibromyalgia and chronic widespread pain in patients with inflammatory bowel disease: a cross sectional population survey. J. Rheumatol.28, 590–594 (2001). CAS | PubMed
  94. Salvarani, C. et al. Musculoskeletal manifestations in a population-based cohort of inflammatory bowel disease patients. Scand. J. Gastroenterol. 36, 1307–1313 (2001). CAS | PubMed | Article
  95. Veloso, F. T., Carvalho, J. & Magro, F. Immune-related systemic manifestations of inflammatory bowel disease. A prospective study of 792 patients. J. Clin. Gastroenterol. 23, 29–34 (1996). CAS | ISI | PubMed | Article
  96. Ditisheim, S. et al. Inflammatory articular disease in patients with inflammatory bowel disease: result of the Swiss IBD Cohort Study. Inflamm. Bowel Dis. 21, 2598–2604 (2015). PubMed | Article
  97. Orchard, T. R. et al. The prevalence, clinical features and association of HLA-B27 in sacroiliitis associated with established Crohn's disease. Aliment. Pharmacol. Ther. 29, 193–197 (2009). CAS | PubMed | Article
  98. Jacques, P. & Elewaut, D. Joint expedition: linking gut inflammation to arthritis. Mucosal Immunol. 1, 364–371 (2008). CAS | PubMed | Article
  99. Cuvelier, C. et al. Histopathology of intestinal inflammation related to reactive arthritis. Gut28, 394–401 (1987). CAS | PubMed | Article
  100. Mielants, H. et al. The evolution of spondyloarthropathies in relation to gut histology. III. Relation between gut and joint. J. Rheumatol. 22, 2279–2284 (1995). CAS | PubMed
  101. Van Praet, L. et al. Degree of bone marrow oedema in sacroiliac joints of patients with axial spondyloarthritis is linked to gut inflammation and male sex: results from the GIANT cohort. Ann. Rheum. Dis. 73, 1186–1189 (2014). PubMed | Article
  102. Van Praet, L. et al. Microscopic gut inflammation in axial spondyloarthritis: a multiparametric predictive model. Ann. Rheum. Dis. 72, 414–417 (2013). PubMed | Article
  103. Nagalingam, N. A. & Lynch, S. V. Role of the microbiota in inflammatory bowel diseases. Inflamm. Bowel Dis. 18, 968–984 (2012). ISI | PubMed | Article
  104. Michail, S. et al. Alterations in the gut microbiome of children with severe ulcerative colitis. Inflamm. Bowel Dis. 18, 1799–1808 (2012). ISI | PubMed | Article
  105. Hansen, R. et al. Microbiota of de-novo pediatric IBD: increased Faecalibacterium prausnitzii and reduced bacterial diversity in Crohn's but not in ulcerative colitis. Am. J. Gastroenterol.107, 1913–1922 (2012). CAS | PubMed | Article
  106. Huttenhower, C., Kostic, A. D. & Xavier, R. J. Inflammatory bowel disease as a model for translating the microbiome. Immunity 40, 843–854 (2014). CAS | ISI | PubMed | Article
  107. Segain, J. P. et al. Butyrate inhibits inflammatory responses through NFκB inhibition: implications for Crohn's disease. Gut 47, 397–403 (2000). CAS | ISI | PubMed | Article
  108. Schatteman, L. et al. Gut inflammation in psoriatic arthritis: a prospective ileocolonoscopic study. J. Rheumatol. 22, 680–683 (1995). CAS | PubMed
  109. Stebbings, S. et al. Comparison of the faecal microflora of patients with ankylosing spondylitis and controls using molecular methods of analysis. Rheumatology (Oxford) 41, 1395–1401 (2002). CAS | PubMed | Article
  110. Costello, M. E. et al. Intestinal dysbiosis in ankylosing spondylitis. Arthritis Rheumatol. http://dx.doi.org/10.1002/art.38967 (2014).
  111. Stoll, M. L. et al. Altered microbiota associated with abnormal humoral immune responses to commensal organisms in enthesitis-related arthritis. Arthritis Res. Ther. 16, 486 (2014). CAS | PubMed | Article
  112. Stebbings, S. M., Taylor, C., Tannock, G. W., Baird, M. A. & Highton, J. The immune response to autologous bacteroides in ankylosing spondylitis is characterized by reduced interleukin 10 production. J. Rheumatol. 36, 797–800 (2009). CAS | PubMed | Article
  113. Gao, Z., Tseng, C. H., Strober, B. E., Pei, Z. & Blaser, M. J. Substantial alterations of the cutaneous bacterial biota in psoriatic lesions. PLoS ONE 3, e2719 (2008). CAS | PubMed | Article
  114. Eppinga, H., Konstantinov, S. R., Peppelenbosch, M. P. & Thio, H. B. The microbiome and psoriatic arthritis. Curr. Rheumatol. Rep. 16, 407 (2014). CAS | PubMed | Article
  115. Scher, J. U. et al. Decreased bacterial diversity characterizes the altered gut microbiota in patients with psoriatic arthritis, resembling dysbiosis in inflammatory bowel disease. Arthritis Rheumatol. 67, 128–139 (2015). CAS | PubMed | Article
  116. Manichanh, C. et al. Reduced diversity of faecal microbiota in Crohn's disease revealed by a metagenomic approach. Gut 55, 205–211 (2006). CAS | ISI | PubMed | Article
  117. McInnes, I. B. & Schett, G. The pathogenesis of rheumatoid arthritis. N. Engl. J. Med. 365, 2205–2219 (2011). ISI | PubMed | Article
  118. Wolff, B. et al. Oral status in patients with early rheumatoid arthritis: a prospective, case–control study. Rheumatology (Oxford) 53, 526–531 (2014). PubMed | Article
  119. Scher, J. U. et al. Periodontal disease and the oral microbiota in new-onset rheumatoid arthritis. Arthritis Rheum. 64, 3083–3094 (2012). ISI | PubMed | Article
  120. Al-Katma, M. K., Bissada, N. F., Bordeaux, J. M., Sue, J. & Askari, A. D. Control of periodontal infection reduces the severity of active rheumatoid arthritis. J. Clin. Rheumatol.13, 134–137 (2007). PubMed | Article
  121. McGraw, W. T., Potempa, J., Farley, D. & Travis, J. Purification, characterization, and sequence analysis of a potential virulence factor from Porphyromonas gingivalis, peptidylarginine deiminase. Infect. Immun. 67, 3248–3256 (1999). CAS | ISI | PubMed
  122. Rosenstein, E. D., Greenwald, R. A., Kushner, L. J. & Weissmann, G. Hypothesis: the humoral immune response to oral bacteria provides a stimulus for the development of rheumatoid arthritis. Inflammation 28, 311–318 (2004). PubMed | Article
  123. Liao, F. et al. Porphyromonas gingivalis may play an important role in the pathogenesis of periodontitis-associated rheumatoid arthritis. Med. Hypotheses 72, 732–735 (2009). CAS | PubMed | Article
  124. Wegner, N. et al. Peptidylarginine deiminase from Porphyromonas gingivalis citrullinates human fibrinogen and α-enolase: implications for autoimmunity in rheumatoid arthritis. Arthritis Rheum. 62, 2662–2672 (2010). CAS | ISI | PubMed | Article
  125. Kinloch, A. J. et al. Immunization with Porphyromonas gingivalis enolase induces autoimmunity to mammalian α-enolase and arthritis in DR4-IE-transgenic mice. Arthritis Rheum. 63, 3818–3823 (2011). CAS | ISI | PubMed | Article
  126. Hitchon, C. A. et al. Antibodies to Porphyromonas gingivalis are associated with anticitrullinated protein antibodies in patients with rheumatoid arthritis and their relatives. J. Rheumatol. 37, 1105–1112 (2010). CAS | ISI | PubMed | Article
  127. Okada, M. et al. Periodontal treatment decreases levels of antibodies to Porphyromonas gingivalis and citrulline in patients with rheumatoid arthritis and periodontitis. J. Periodontol.84, e74–e84 (2013). CAS | PubMed | Article
  128. Martinez-Martinez, R. E. et al. Detection of periodontal bacterial DNA in serum and synovial fluid in refractory rheumatoid arthritis patients. J. Clin. Periodontol. 36, 1004–1010 (2009). CAS | PubMed | Article
  129. Vaahtovuo, J., Munukka, E., Korkeamaki, M., Luukkainen, R. & Toivanen, P. Fecal microbiota in early rheumatoid arthritis. J. Rheumatol. 35, 1500–1505 (2008). CAS | ISI | PubMed
  130. Zhang, X. et al. The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment. Nat. Med. 21, 895–905 (2015). CAS | PubMed | Article
  131. Scher, J. U. et al. Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. eLife 2, e01202 (2013). CAS | PubMed | Article
  132. Cuchacovich, R. et al. Detection of bacterial DNA in Latin American patients with reactive arthritis by polymerase chain reaction and sequencing analysis. J. Rheumatol. 29, 1426–1429 (2002). CAS | PubMed
  133. Morris, A. et al. Comparison of the respiratory microbiome in healthy nonsmokers and smokers. Am. J. Respir. Crit. Care Med. 187, 1067–1075 (2013). ISI | PubMed | Article
  134. Erb-Downward, J. R. et al. Analysis of the lung microbiome in the 'healthy' smoker and in COPD. PLoS ONE 6, e16384 (2011). CAS | PubMed | Article
  135. Hilty, M. et al. Disordered microbial communities in asthmatic airways. PLoS ONE 5, e8578 (2010). CAS | PubMed | Article
  136. Segal, L. N. et al. Enrichment of lung microbiome with supraglottic taxa is associated with increased pulmonary inflammation. Microbiome 1, 19 (2013). PubMed | Article
  137. Makrygiannakis, D. et al. Smoking increases peptidylarginine deiminase 2 enzyme expression in human lungs and increases citrullination in BAL cells. Ann. Rheum. Dis. 67, 1488–1492 (2008). CAS | ISI | PubMed | Article
  138. Gan, R. W. et al. Relationship between air pollution and positivity of RA-related autoantibodies in individuals without established RA: a report on SERA. Ann. Rheum. Dis.72, 2002–2005 (2013). PubMed | Article
  139. Willis, V. C. et al. Sputum autoantibodies in patients with established rheumatoid arthritis and subjects at risk of future clinically apparent disease. Arthritis Rheum. 65, 2545–2554 (2013). CAS | ISI | PubMed
  140. Lugli, E. B. et al. Expression of citrulline and homocitrulline residues in the lungs of non-smokers and smokers: implications for autoimmunity in rheumatoid arthritis. Arthritis Res. Ther. 17, 9 (2015). CAS | PubMed | Article
  141. Hevia, A. et al. Intestinal dysbiosis associated with systemic lupus erythematosus. mBio 5, e01548–01514 (2014). CAS | PubMed | Article
  142. Castelino, M., Eyre, S., Upton, M., Ho, P. & Barton, A. The bacterial skin microbiome in psoriatic arthritis, an unexplored link in pathogenesis: challenges and opportunities offered by recent technological advances. Rheumatology (Oxford) 53, 777–784 (2014). PubMed | Article
  143. Arbuckle, M. R. et al. Development of autoantibodies before the clinical onset of systemic lupus erythematosus. N. Engl. J. Med. 349, 1526–1533 (2003). CAS | ISI | PubMed | Article
  144. Ghouri, Y. A. et al. Systematic review of randomized controlled trials of probiotics, prebiotics, and synbiotics in inflammatory bowel disease. Clin. Exp. Gastroenterol. 7, 473–487 (2014). PubMed
  145. Kerman, D. H. & Deshpande, A. R. Gut microbiota and inflammatory bowel disease: the role of antibiotics in disease management. Postgrad. Med. 126, 7–19 (2014). PubMed | Article
  146. Van Praet, L., Jacques, P., Van den Bosch, F. & Elewaut, D. The transition of acute to chronic bowel inflammation in spondyloarthritis. Nat. Rev. Rheumatol. 8, 288–295 (2012). CAS | PubMed | Article
  147. Kruglov, A. A. et al. Nonredundant function of soluble LTα3 produced by innate lymphoid cells in intestinal homeostasis. Science 342, 1243–1246 (2013). CAS | ISI | PubMed | Article
  148. Vijay-Kumar, M. et al. Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science 328, 228–231 (2010). CAS | ISI | PubMed | Article
  149. Elinav, E. et al. NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell 145, 745–757 (2011). CAS | ISI | PubMed | Article
  150. Goodrich, J. K. et al. Human genetics shape the gut microbiome. Cell 159, 789–799 (2014). CAS | ISI | PubMed | Article
  151. Kokkonen, H. et al. Associations of antibodies against citrullinated peptides with human leukocyte antigen-shared epitope and smoking prior to the development of rheumatoid arthritis. Arthritis Res. Ther. 17, 125 (2015). CAS | PubMed | Article
  152. Too, C. L. et al. Smoking interacts with HLA-DRB1 shared epitope in the development of anti-citrullinated protein antibody-positive rheumatoid arthritis: results from the Malaysian Epidemiological Investigation of Rheumatoid Arthritis (MyEIRA). Arthritis Res. Ther. 14, R89 (2012). CAS | PubMed | Article
  153. Mahdi, H. et al. Specific interaction between genotype, smoking and autoimmunity to citrullinated α-enolase in the etiology of rheumatoid arthritis. Nat. Genet. 41, 1319–1324 (2009). CAS | ISI | PubMed | Article
  154. Lundstrom, E., Kallberg, H., Alfredsson, L., Klareskog, L. & Padyukov, L. Gene–environment interaction between the DRB1 shared epitope and smoking in the risk of anti-citrullinated protein antibody-positive rheumatoid arthritis: all alleles are important. Arthritis Rheum. 60, 1597–1603 (2009). CAS | ISI | PubMed | Article
  155. Kallberg, H. et al. Gene–gene and gene–environment interactions involving HLA-DRB1, PTPN22, and smoking in two subsets of rheumatoid arthritis. Am. J. Hum. Genet. 80, 867–875 (2007). CAS | ISI | PubMed | Article
  156. Wu, G. D. et al. Linking long-term dietary patterns with gut microbial enterotypes. Science334, 105–108 (2011). CAS | ISI | PubMed | Article
  157. David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature505, 559–563 (2014). CAS | ISI | PubMed | Article
  158. Chassaing, B. et al. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature 519, 92–96 (2015). CAS | ISI | PubMed | Article
  159. Evans, C. H., Ghivizzani, S. C. & Robbins, P. D. Gene therapy of the rheumatic diseases: 1998 to 2008. Arthritis Res. Ther. 11, 209 (2009). CAS | PubMed | Article
  160. Edwards, C. J. & Cooper, C. Early environmental factors and rheumatoid arthritis. Clin. Exp. Immunol. 143, 1–5 (2006). CAS | PubMed | Article
  161. Atarashi, K. et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 500, 232–236 (2013). CAS | ISI | PubMed | Article
  162. Gibson, S. A., McFarlan, C., Hay, S. & MacFarlane, G. T. Significance of microflora in proteolysis in the colon. Appl. Environ. Microbiol. 55, 679–683 (1989). CAS | PubMed
  163. Marzorati, M. et al. In vitro modulation of the human gastrointestinal microbial community by plant-derived polysaccharide-rich dietary supplements. Int. J. Food Microbiol. 139, 168–176 (2010). CAS | PubMed | Article
  164. Voreades, N., Kozil, A. & Weir, T. L. Diet and the development of the human intestinal microbiome. Front. Microbiol. 5, 494 (2014). PubMed | Article
  165. Saad, N., Delattre, C., Urdaci, M., Schmitter, J. M. & Bressollier, P. An overview of the last advances in probiotic and prebiotic field. Lebenson. Wiss. Technol. 50, 1–16 (2013). CAS | Article
  166. Preidis, G. A. & Versalovic, J. Targeting the human microbiome with antibiotics, probiotics, and prebiotics: gastroenterology enters the metagenomics era. Gastroenterology 136, 2015–2031 (2009). CAS | ISI | PubMed | Article
  167. Roberfroid, M. et al. Prebiotic effects: metabolic and health benefits. Br. J. Nutr. 104, S1–S63 (2010). CAS | ISI | PubMed | Article
  168. Neyrinck, A. M. et al. Prebiotic effects of wheat arabinoxylan related to the increase in bifidobacteria, Roseburia and Bacteroides/Prevotella in diet-induced obese mice. PLoS ONE6, e20944 (2011). CAS | PubMed | Article
  169. Everard, A. et al. Responses of gut microbiota and glucose and lipid metabolism to prebiotics in genetic obese and diet-induced leptin-resistant mice. Diabetes 60, 2775–2786 (2011). CAS | ISI | PubMed | Article
  170. Van Loo, J. et al. Functional food properties of non-digestible oligosaccharides: a consensus report from the ENDO project (DGXII AIRII-CT94-1095). Br. J. Nutr. 81, 121–132 (1999). CAS | PubMed | Article
  171. Alipour, B. et al. Effects of Lactobacillus casei supplementation on disease activity and inflammatory cytokines in rheumatoid arthritis patients: a randomized double-blind clinical trial. Int. J. Rheum. Dis. 17, 519–527 (2014). CAS | PubMed
  172. Vaghef-Mehrabany, E. et al. Probiotic supplementation improves inflammatory status in patients with rheumatoid arthritis. Nutrition 30, 430–435 (2014). CAS | PubMed | Article
  173. van Nood, E. et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N. Engl. J. Med. 368, 407–415 (2013). CAS | ISI | PubMed | Article
  174. McFarland, L. V. Use of probiotics to correct dysbiosis of normal microbiota following disease or disruptive events: a systematic review. BMJ Open 4, e005047 (2014). PubMed | Article
  175. Lemon, K. P., Armitage, G. C., Relman, D. A. & Fischbach, M. A. Microbiota-targeted therapies: an ecological perspective. Sci. Transl. Med. 4, 137rv5 (2012). CAS | PubMed | Article
  176. Khoruts, A., Dicksved, J., Jansson, J. K. & Sadowsky, M. J. Changes in the composition of the human fecal microbiome after bacteriotherapy for recurrent Clostridium difficile-associated diarrhea. J. Clin. Gastroenterol. 44, 354–360 (2010). ISI | PubMed
  177. de Vrieze, J. Medical research. The promise of poop. Science 341, 954–957 (2013). CAS | PubMed | Article
  178. Allen-Vercoe, E. et al. A Canadian Working Group report on fecal microbial therapy: microbial ecosystems therapeutics. Can. J. Gastroenterol. 26, 457–462 (2012). PubMed | Article
  179. Petrof, E. O. et al. Stool substitute transplant therapy for the eradication of Clostridium difficile infection: 'RePOOPulating' the gut. Microbiome 1, 3 (2013). PubMed | Article
  180. Dziechciarz, P., Horvath, A., Shamir, R. & Szajewska, H. Meta-analysis: enteral nutrition in active Crohn's disease in children. Aliment. Pharmacol. Ther. 26, 795–806 (2007). CAS | ISI | PubMed | Article
  181. Holmes, E. et al. Therapeutic modulation of microbiota–host metabolic interactions. Sci. Transl. Med. 4, 137rv6 (2012). CAS | PubMed | Article
  182. Sonnenburg, J. L. Microbiome engineering. Nature 518, S10 (2015). CAS | PubMed | Article
  183. Donaldson, G. P., Lee, S. M. & Mazmanian, S. K. Gut biogeography of the bacterial microbiota. Nat. Rev. Microbiol. 14, 20–32 (2016). CAS | PubMed | Article
  184. Ottman, N., Smidt, H., de Vos, W. M. & Belzer, C. The function of our microbiota: who is out there and what do they do? Front. Cell. Infect. Microbiol. 2, 104 (2012). CAS | PubMed | Article
  185. Sekirov, I., Russell, S. L., Antunes, L. C. & Finlay, B. B. Gut microbiota in health and disease. Physiol. Rev. 90, 859–904 (2010). CAS | ISI | PubMed | Article
  186. Aziz, Q., Dore, J., Emmanuel, A., Guarner, F. & Quigley, E. M. Gut microbiota and gastrointestinal health: current concepts and future directions. Neurogastroenterol. Motil. 25, 4–15 (2013). CAS | ISI | PubMed | Article
  187. Lawley, T. D. & Walker, A. W. Intestinal colonization resistance. Immunology 138, 1–11 (2013). CAS | ISI | PubMed | Article
  188. Delzenne, N. M. & Cani, P. D. A place for dietary fibre in the management of the metabolic syndrome. Curr. Opin. Clin. Nutr. Metab. Care 8, 636–640 (2005). PubMed | Article
  189. Schmidt, C. Mental health: thinking from the gut. Nature 518, S12–15 (2015). CAS | PubMed | Article
  190. Knoop, K. A. & Newberry, R. D. Isolated lymphoid follicles are dynamic reservoirs for the induction of intestinal IgA. Front. Immunol. 3, 84 (2012). PubMed | Article