Skip to main content
Top

29-01-2015 | Microbiome | Article

The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment

Authors: Xuan Zhang, Dongya Zhang, Huijue Jia, Qiang Feng, Donghui Wang, Di Liang, Xiangni Wu, Junhua Li, Longqin Tang, Yin Li, Zhou Lan, Bing Chen, Yanli Li, Huanzi Zhong, Hailiang Xie, Zhuye Jie, Weineng Chen, Shanmei Tang, Xiaoqiang Xu, Xiaokai Wang, Xianghang Cai, Sheng Liu, Yan Xia, Jiyang Li, Xingye Qiao, Jumana Yousuf Al-Aama, hua Chen, Li Wang, Qing-jun Wu, Fengchun Zhang, Wenjie Zheng, Yongzhe Li, Mingrong Zhang, Guangwen Luo, Wenbin Xue, Liang Xiao, Jun Li, Wanting Chen, Xun Xu, Ye Yin, Huanming Yang, Jian Wang, Karsten Kristiansen, Liang Liu, Ting Li, Qingchun Huang, Yingrui Li, Jun Wang

Abstract

We carried out metagenomic shotgun sequencing and a metagenome-wide association study (MGWAS) of fecal, dental and salivary samples from a cohort of individuals with rheumatoid arthritis (RA) and healthy controls. Concordance was observed between the gut and oral microbiomes, suggesting overlap in the abundance and function of species at different body sites. Dysbiosis was detected in the gut and oral microbiomes of RA patients, but it was partially resolved after RA treatment. Alterations in the gut, dental or saliva microbiome distinguished individuals with RA from healthy controls, were correlated with clinical measures and could be used to stratify individuals on the basis of their response to therapy. In particular, Haemophilus spp. were depleted in individuals with RA at all three sites and negatively correlated with levels of serum autoantibodies, whereas Lactobacillus salivarius was over-represented in individuals with RA at all three sites and was present in increased amounts in cases of very active RA. Functionally, the redox environment, transport and metabolism of iron, sulfur, zinc and arginine were altered in the microbiota of individuals with RA. Molecular mimicry of human antigens related to RA was also detectable. Our results establish specific alterations in the gut and oral microbiomes in individuals with RA and suggest potential ways of using microbiome composition for prognosis and diagnosis.

Subject terms: Metagenomics • Rheumatoid arthritis

Nat Med 2015;21:895–905. doi:10.1038/nm.3914

A is an autoimmune disorder affecting tens of millions of people worldwide and is associated with increased mortality owing to cardiovascular and other systemic complications. However, the etiology of RA remains elusive1. Although studies on genetic predisposition to RA have implicated genes such as HLA-DRB1, TNFAIP3, PTPN22 and PADI4, environmental factors have also been shown to contribute to disease pathogenesis1, 2, 3, 4, 5. Microbial triggers have been implicated in RA1; however, the identity and pathogenicity of specific microbes have remained unclear. Although there are reports of clinical success in reducing inflammation in RA with disease-modifying antirheumatic drugs (DMARDs), the development of specific and more effective therapies has been hindered by insufficient understanding of factors that trigger or promote the disease. Investigation of the microbiome might also reveal probiotics that could prevent or attenuate RA symptoms.

Literature
  1. McInnes, I.B. & Schett, G. The pathogenesis of rheumatoid arthritis. N. Engl. J. Med. 365, 2205–2219 (2011). ISI | PubMed | Article
  2. Raychaudhuri, S. et al. Five amino acids in three HLA proteins explain most of the association between MHC and seropositive rheumatoid arthritis. Nat. Genet. 44, 291–296 (2012). CAS | ISI | PubMed | Article
  3. Okada, Y. et al. Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature 506, 376–381 (2014). CAS | ISI | PubMed | Article
  4. McInnes, I.B. & Schett, G. Cytokines in the pathogenesis of rheumatoid arthritis. Nat. Rev. Immunol. 7, 429–442 (2007). CAS | ISI | PubMed | Article
  5. Viatte, S., Plant, D. & Raychaudhuri, S. Genetics and epigenetics of rheumatoid arthritis. Nat. Rev. Rheumatol. 9, 141–153 (2013). CAS | ISI | PubMed | Article
  6. Deane, K.D. & El-Gabalawy, H. Pathogenesis and prevention of rheumatic disease: focus on preclinical RA and SLE. Nat. Rev. Rheumatol. 10, 212–228 (2014). CAS | PubMed | Article
  7. Demoruelle, M.K., Deane, K.D. & Holers, V.M. When and where does inflammation begin in rheumatoid arthritis? Curr. Opin. Rheumatol. 26, 64–71 (2014). CAS | PubMed | Article
  8. Clemente, J.C., Ursell, L.K., Parfrey, L.W. & Knight, R. The impact of the gut microbiota on human health: an integrative view. Cell 148, 1258–1270 (2012). CAS | ISI | PubMed | Article
  9. Kamada, N., Seo, S.-U., Chen, G.Y. & Núñez, G. Role of the gut microbiota in immunity and inflammatory disease. Nat. Rev. Immunol. 13, 321–335 (2013). CAS | ISI | PubMed | Article
  10. Schloissnig, S. et al. Genomic variation landscape of the human gut microbiome. Nature493, 45–50 (2013). CAS | ISI | PubMed | Article
  11. Faith, J.J. et al. The long-term stability of the human gut microbiota. Science 341, 1237439 (2013). CAS | PubMed | Article
  12. Li, J. et al. An integrated catalog of reference genes in the human gut microbiome. Nat. Biotechnol. 32, 834–841 (2014). CAS | ISI | PubMed | Article
  13. Yatsunenko, T. et al. Human gut microbiome viewed across age and geography. Nature 486, 222–227 (2012). CAS | ISI | PubMed | Article
  14. The Human Microbiome Project Consortium. A framework for human microbiome research. Nature 486, 215–221 (2012). CAS | ISI | PubMed | Article
  15. Wade, W.G. The oral microbiome in health and disease. Pharmacol. Res. 69, 137–143 (2013). CAS | ISI | PubMed | Article
  16. Liu, X., Zou, Q., Zeng, B., Fang, Y. & Wei, H. Analysis of fecal Lactobacillus community structure in patients with early rheumatoid arthritis. Curr. Microbiol. 67, 170–176 (2013). CAS | ISI | PubMed | Article
  17. Vaahtovuo, J., Munukka, E., Korkeamäki, M., Luukkainen, R. & Toivanen, P. Fecal microbiota in early rheumatoid arthritis. J. Rheumatol. 35, 1500–1505 (2008). CAS | ISI | PubMed
  18. Scher, J.U. et al. Periodontal disease and the oral microbiota in new-onset rheumatoid arthritis. Arthritis Rheum. 64, 3083–3094 (2012). ISI | PubMed | Article
  19. Scher, J.U. et al. Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. Elife 2, e01202 (2013). CAS | PubMed | Article
  20. Qin, J. et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490, 55–60 (2012). CAS | ISI | PubMed | Article
  21. Cotillard, A. et al. Dietary intervention impact on gut microbial gene richness. Nature 500, 585–588 (2013). CAS | ISI | PubMed | Article
  22. Nielsen, H.B. et al. Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes. Nat. Biotechnol. 32, 822–828 (2014). CAS | ISI | PubMed | Article
  23. Hsiao, A. et al. Recovery from Vibrio cholerae infection. Nature 515, 423–426 (2014). CAS | PubMed | Article
  24. Bäckhed, F. et al. Dynamics and stabilization of the human gut microbiome in the first year of life. Cell Host Microbe 17, 690–703 (2015). CAS | PubMed | Article
  25. Franzosa, E.A. et al. Identifying personal microbiomes using metagenomic codes. Proc. Natl. Acad. Sci. USA 112, E2930–E2938 (2015). CAS | PubMed | Article
  26. Verschoor, A. et al. A platelet-mediated system for shuttling blood-borne bacteria to CD8α+dendritic cells depends on glycoprotein GPIb and complement C3. Nat. Immunol. 12, 1194–1201 (2011). CAS | PubMed | Article
  27. Yeaman, M.R. Platelets: at the nexus of antimicrobial defence. Nat. Rev. Microbiol. 12, 426–437 (2014). CAS | ISI | PubMed | Article
  28. Konig, M.F., Paracha, A.S., Moni, M., Bingham, C.O. & Andrade, F. Defining the role of Porphyromonas gingivalis peptidylarginine deiminase (PPAD) in rheumatoid arthritis through the study of PPAD biology. Ann. Rheum. Dis. (2014).
  29. Michels, F. et al. Late prosthetic joint infection due to Rothia mucilaginosaActa Orthop. Belg. 73, 263–267 (2007). PubMed
  30. Verrall, A.J., Robinson, P.C., Tan, C.E., Mackie, W.G. & Blackmore, T.K. Rothia aeria as a cause of sepsis in a native joint. J. Clin. Microbiol. 48, 2648–2650 (2010). PubMed | Article
  31. Colombo, A.P. et al. Impact of periodontal therapy on the subgingival microbiota of severe periodontitis: comparison between good responders and individuals with refractory periodontitis using the human oral microbe identification microarray. J. Periodontol. 83, 1279–1287 (2012). ISI | PubMed | Article
  32. Hilty, M. et al. Disordered microbial communities in asthmatic airways. PLoS One 5, e8578 (2010). CAS | PubMed | Article
  33. Park, H., Shin, J.W., Park, S. & Kim, W. Microbial communities in the upper respiratory tract of patients with asthma and chronic obstructive pulmonary disease. PLoS One 9, e109710 (2014). CAS | PubMed | Article
  34. Rashid, T. & Ebringer, A. Autoimmunity in rheumatic diseases is induced by microbial infections via crossreactivity or molecular mimicry. Autoimmune Dis. 2012, 539282 (2012). PubMed
  35. van Heemst, J. et al. Crossreactivity to vinculin and microbes provides a molecular basis for HLA-based protection against rheumatoid arthritis. Nat. Commun. 6, 6681 (2015). CAS | PubMed | Article
  36. van der Helm-van Mil, A.H. Risk estimation in rheumatoid arthritis: from bench to bedside. Nat. Rev. Rheumatol. 10, 171–180 (2014). CAS | PubMed | Article
  37. Chen, L., Xiong, Z., Sun, L., Yang, J. & Jin, Q. VFDB 2012 update: toward the genetic diversity and molecular evolution of bacterial virulence factors. Nucleic Acids Res. 40, D641–D645 (2012). CAS | ISI | PubMed | Article
  38. Goldbach-Mansky, R. et al. Comparison of Tripterygium wilfordii Hook F versus sulfasalazine in the treatment of rheumatoid arthritis: a randomized trial. Ann. Intern. Med. 151, 229–240 W49–W51 (2009). ISI | PubMed | Article
  39. Tao, X., Younger, J., Fan, F.Z., Wang, B. & Lipsky, P.E. Benefit of an extract of Tripterygium wilfordii Hook F in patients with rheumatoid arthritis: a double-blind, placebo-controlled study. Arthritis Rheum. 46, 1735–1743 (2002). ISI | PubMed | Article
  40. Lv, Q.-W. et al. Comparison of Tripterygium wilfordii Hook F with methotrexate in the treatment of active rheumatoid arthritis (TRIFRA): a randomised, controlled clinical trial. Ann. Rheum. Dis. 74, 1078–1086 (2015). PubMed | Article
  41. Feng, Q. et al. Gut microbiome development along the colorectal adenoma–carcinoma sequence. Nat. Commun. 6, 6528 (2015). CAS | PubMed | Article
  42. Luo, R. et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 1, 18 (2012). PubMed | Article
  43. Kent, W.J. BLAT—the BLAST-like alignment tool. Genome Res. 12, 656–664 (2002). CAS | ISI | PubMed | Article
  44. Le Chatelier, E. et al. Richness of human gut microbiome correlates with metabolic markers. Nature 500, 541–546 (2013). CAS | ISI | PubMed | Article
  45. McArdle, B.H. & Anderson, M.J. Fitting multivariate models to community data: a comment on distance-based redundancy analysis. Ecology 82, 290–297 (2001). ISI | Article
  46. Zapala, M.A. & Schork, N.J. Multivariate regression analysis of distance matrices for testing associations between gene expression patterns and related variables. Proc. Natl. Acad. Sci. USA 103, 19430–19435 (2006). CAS | PubMed | Article
  47. Karlsson, F.H. et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 498, 99–103 (2013). CAS | ISI | PubMed | Article
  48. Patil, K.R. & Nielsen, J. Uncovering transcriptional regulation of metabolism by using metabolic network topology. Proc. Natl. Acad. Sci. USA 102, 2685–2689 (2005). CAS | PubMed | Article