Skip to main content
Top

08-02-2015 | Microbiome | Article

Spondyloarthritis and the Microbiome: New Insights From an Ancient Hypothesis

Journal: Current Rheumatology Reports

Authors: Julia Manasson, Jose U. Scher

Publisher: Springer US

Abstract

The human microbiome, which represents the total collection of microorganisms (and their genes) inhabiting the human body, has increasingly been recognized as a potential key factor in the development of autoimmune disease. Multiple studies suggest that the microbiome has significant influence on immune homeostasis, while disruptions in local microbiome composition can result in a heightened systemic inflammatory response. The intestinal microbiome, in particular, harbors the densest assembly of bacteria and appears to influence the immune system in the context of inflammatory arthropathies. Although studies are still sparse, this review will examine the role of the microbiome in the pathogenesis of spondyloarthritis (SpA), particularly in enteropathic arthritis (EA), reactive arthritis (ReA), ankylosing spondylitis (AS), and psoriatic arthritis (PsA).
Literature
1.
Bakland G, Nossent HC. Epidemiology of spondyloarthritis: a review. Curr. Rheumatol. Rep. [Internet]. 2013 [cited 2014 Oct 10];15:351. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​23888360
2.
Romano-Keeler J, Weitkamp J-H. Maternal influences on fetal microbial colonization and immune development. Pediatr. Res. [Internet]. 2014 [cited 2014 Nov 28]; Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​25310759
3.
Bäckhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI. Host-bacterial mutualism in the human intestine. Science [Internet]. 2005 [cited 2014 Jul 11];307:1915–20. Available from: http://​www.​sciencemag.​org.​ezproxy.​med.​nyu.​edu/​content/​307/​5717/​1915.​full
4.
Rosenbaum JT, Davey MP. Time for a gut check: evidence for the hypothesis that HLA-B27 predisposes to ankylosing spondylitis by altering the microbiome. Arthritis Rheum. [Internet]. 2011 [cited 2014 Oct 13];63:3195–8. Available from: http://​www.​pubmedcentral.​nih.​gov/​articlerender.​fcgi?​artid=​3204318&​tool=​pmcentrez&​rendertype=​abstract
5.
Hill DA, Artis D. Intestinal bacteria and the regulation of immune cell homeostasis. Annu. Rev. Immunol. [Internet]. 2010 [cited 2014 Sep 26];28:623–67. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​20192812
6.
Fung I, Garrett JP-D, Shahane A, Kwan M. Do bugs control our fate? The influence of the microbiome on autoimmunity. Curr. Allergy Asthma Rep. [Internet]. 2012 [cited 2014 Oct 13];12:511–9. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​22886439
7.
Eppinga H, Konstantinov S, Peppelenbosch M, Thio HB. The microbiome and psoriatic arthritis. Curr. Rheumatol. Rep. [Internet]. 2014 [cited 2014 Oct 1];16:407. Available from: papers://6d7233c7-0c7f-43d7-b776-a2bbe7398ece/Paper/p2660
8.•
Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, et al. Richness of human gut microbiome correlates with metabolic markers. Nature [Internet]. Nature Publishing Group; 2013 [cited 2014 Jul 9];500:541–6. Available from: http://​www.​nature.​com.​ezproxy.​med.​nyu.​edu/​nature/​journal/​v500/​n7464/​full/​nature12506.​html#f3 Showed that decreased intestinal microbial diversity correlates with an inflammatory phenotype, including obesity, insulin resistance, and dyslipidemia.
9.
Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease. Nat. Rev. Immunol. [Internet]. Nature Publishing Group; 2009 [cited 2014 Jul 10];9:313–23. Available from: http://​dx.​doi.​org/​10.​1038/​nri2515
10.
Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI. The human microbiome project. Nature [Internet]. 2007 [cited 2014 Jul 10];449:804–10. Available from: http://​www.​pubmedcentral.​nih.​gov/​articlerender.​fcgi?​artid=​3709439&​tool=​pmcentrez&​rendertype=​abstract
11.
Ley RE, Peterson DA, Gordon JI. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell [Internet]. 2006 [cited 2014 Jul 13];124:837–48. Available from: http://​www.​sciencedirect.​com/​science/​article/​pii/​S009286740600192​9
12.
Lederberg J. Infectious history. Science (80-.). [Internet]. 2000 [cited 2014 Oct 13];288:287–93. Available from: http://​www.​sciencemag.​org.​ezproxy.​med.​nyu.​edu/​content/​288/​5464/​287.​long
13.
Actis G. The gut microbiome. Inflamm. Allergy-drug targets [Internet]. 2014;13:217–23. Available from: http://​www.​eurekaselect.​com/​openurl/​content.​php?​genre=​article&​issn=​1871-5281&​volume=​13&​issue=​4&​spage=​217
14.
De Preter V, Machiels K, Joossens M, Arijs I, Matthys C, Vermeire S, et al. Faecal metabolite profiling identifies medium-chain fatty acids as discriminating compounds in IBD. Gut [Internet]. 2014 [cited 2014 Dec 2]; Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​24811995
15.
Human Microbiome Project [Internet]. [cited 2014 Oct 15]. Available from: http://​www.​hmpdacc.​org
16.
MetaHIT: Welcome to MetaHIT website [Internet]. [cited 2014 Oct 15]. Available from: http://​www.​metahit.​eu
17.
Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, et al. Diversity of the human intestinal microbial flora. Science [Internet]. 2005 [cited 2014 Jul 9];308:1635–8. Available from: http://​www.​pubmedcentral.​nih.​gov/​articlerender.​fcgi?​artid=​1395357&​tool=​pmcentrez&​rendertype=​abstract
18.
Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. [Internet]. 1991 [cited 2014 Sep 16];173:697–703. Available from: http://​www.​pubmedcentral.​nih.​gov/​articlerender.​fcgi?​artid=​207061&​tool=​pmcentrez&​rendertype=​abstract
19.
Huse SM, Dethlefsen L, Huber JA, Mark Welch D, Welch DM, Relman DA, et al. Exploring microbial diversity and taxonomy using SSU rRNA hypervariable tag sequencing. Eisen JA, editor. PLoS Genet. [Internet]. Public Library of Science; 2008 [cited 2014 Jul 14];4:e1000255. Available from: http://​dx.​plos.​org/​10.​1371/​journal.​pgen.​1000255
20.
Sogin ML, Morrison HG, Huber JA, Mark Welch D, Huse SM, Neal PR, et al. Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc. Natl. Acad. Sci. U. S. A. [Internet]. 2006 [cited 2014 Jul 16];103:12115–20. Available from: http://​www.​pnas.​org/​content/​103/​32/​12115.​full
21.
Scher JU, Abramson SB. The microbiome and rheumatoid arthritis. Nat. Rev. Rheumatol. [Internet]. Nature Publishing Group; 2011 [cited 2014 Sep 14];7:569–78. Available from: http://​www.​nature.​com.​ezproxy.​med.​nyu.​edu/​nrrheum/​journal/​v7/​n10/​full/​nrrheum.​2011.​121.​html
22.
Hattori M, Taylor TD. The human intestinal microbiome: a new frontier of human biology. DNA Res. [Internet]. 2009 [cited 2014 Nov 29];16:1–12. Available from: http://​www.​pubmedcentral.​nih.​gov/​articlerender.​fcgi?​artid=​2646358&​tool=​pmcentrez&​rendertype=​abstract
23.
Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, et al. Enterotypes of the human gut microbiome. Nature [Internet]. Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.; 2011 [cited 2014 Jul 9];473:174–80. Available from: http://​dx.​doi.​org/​10.​1038/​nature09944
24.
Peluso R, Di Minno MND, Iervolino S, Manguso F, Tramontano G, Ambrosino P, et al. Enteropathic spondyloarthritis: from diagnosis to treatment. Clin. Dev. Immunol. [Internet]. 2013 [cited 2014 Oct 21];2013:631408. Available from: http://​www.​pubmedcentral.​nih.​gov/​articlerender.​fcgi?​artid=​3649644&​tool=​pmcentrez&​rendertype=​abstract
25.
Resende GG, Lanna CCD, Bortoluzzo AB, Gonçalves CR, Sampaio-Barros PD, da Silva JAB, et al. Enteropathic arthritis in Brazil: data from the Brazilian Registry of Spondyloarthritis. Rev. Bras. Reumatol. [Internet]. 2013 [cited 2014 Oct 21];53:452–9. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​24477722
26.
Orchard TR, Wordsworth BP, Jewell DP. Peripheral arthropathies in inflammatory bowel disease: their articular distribution and natural history. Gut [Internet]. 1998 [cited 2014 Oct 21];42:387–91. Available from: http://​www.​pubmedcentral.​nih.​gov/​articlerender.​fcgi?​artid=​1727027&​tool=​pmcentrez&​rendertype=​abstract
27.
Arvikar SL, Fisher MC. Inflammatory bowel disease associated arthropathy. Curr. Rev. Musculoskelet. Med. [Internet]. 2011 [cited 2014 Sep 21];4:123–31. Available from: http://​www.​pubmedcentral.​nih.​gov/​articlerender.​fcgi?​artid=​3261248&​tool=​pmcentrez&​rendertype=​abstract
28.
Turkcapar N, Toruner M, Soykan I, Aydintug OT, Cetinkaya H, Duzgun N, et al. The prevalence of extraintestinal manifestations and HLA association in patients with inflammatory bowel disease. Rheumatol. Int. [Internet]. 2006 [cited 2014 Oct 21];26:663–8. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​16136311
29.
Hammer RE, Maika SD, Richardson JA, Tang JP, Taurog JD. Spontaneous inflammatory disease in transgenic rats expressing HLA-B27 and human beta 2m: an animal model of HLA-B27-associated human disorders. Cell [Internet]. 1990 [cited 2014 Oct 13];63:1099–112. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​2257626
30.
Taurog JD, Richardson JA, Croft JT, Simmons WA, Zhou M, Fernández-Sueiro JL, et al. The germfree state prevents development of gut and joint inflammatory disease in HLA-B27 transgenic rats. J. Exp. Med. [Internet]. 1994 [cited 2014 Oct 13];180:2359–64. Available from: http://​www.​pubmedcentral.​nih.​gov/​articlerender.​fcgi?​artid=​2191772&​tool=​pmcentrez&​rendertype=​abstract
31.
Rath HC, Wilson KH, Sartor RB. Differential induction of colitis and gastritis in HLA-B27 transgenic rats selectively colonized with Bacteroides vulgatus or Escherichia coli. Infect. Immun. [Internet]. 1999 [cited 2014 Oct 21];67:2969–74. Available from: http://​www.​pubmedcentral.​nih.​gov/​articlerender.​fcgi?​artid=​96608&​tool=​pmcentrez&​rendertype=​abstract
32.
Dieleman LA, Goerres MS, Arends A, Sprengers D, Torrice C, Hoentjen F, et al. Lactobacillus GG prevents recurrence of colitis in HLA-B27 transgenic rats after antibiotic treatment. Gut [Internet]. 2003 [cited 2014 Oct 15];52:370–6. Available from: http://​www.​pubmedcentral.​nih.​gov/​articlerender.​fcgi?​artid=​1773552&​tool=​pmcentrez&​rendertype=​abstract
33.
Laukens D, Peeters H, Marichal D, Vander Cruyssen B, Mielants H, Elewaut D, et al. CARD15 gene polymorphisms in patients with spondyloarthropathies identify a specific phenotype previously related to Crohn’s disease. Ann. Rheum. Dis. [Internet]. 2005 [cited 2014 Oct 21];64:930–5. Available from: http://​www.​pubmedcentral.​nih.​gov/​articlerender.​fcgi?​artid=​1755516&​tool=​pmcentrez&​rendertype=​abstract
34.
Jacques P, Elewaut D, Mielants H. Interactions between gut inflammation and arthritis/spondylitis. Curr. Opin. Rheumatol. [Internet]. 2010 [cited 2014 Oct 16];22:368–74. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​20485176
35.
Palm O, Moum B, Ongre A, Gran JT. Prevalence of ankylosing spondylitis and other spondyloarthropathies among patients with inflammatory bowel disease: a population study (the IBSEN study). J. Rheumatol. [Internet]. 2002 [cited 2014 Nov 29];29:511–5. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​11908564
36.
Bernstein CN, Wajda A, Blanchard JF. The clustering of other chronic inflammatory diseases in inflammatory bowel disease: a population-based study. Gastroenterology [Internet]. 2005 [cited 2014 Nov 7];129:827–36. Available from: http://​www.​sciencedirect.​com/​science/​article/​pii/​S001650850501123​6
37.
Lees CW, Barrett JC, Parkes M, Satsangi J. New IBD genetics: common pathways with other diseases. Gut [Internet]. 2011 [cited 2014 Oct 12];60:1739–53. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​21300624
38.
Brand S. Crohn’s disease: Th1, Th17 or both? The change of a paradigm: new immunological and genetic insights implicate Th17 cells in the pathogenesis of Crohn’s disease. Gut [Internet]. 2009 [cited 2014 Nov 27];58:1152–67. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​19592695
39.
Reveille JD, Sims A-M, Danoy P, Evans DM, Leo P, Pointon JJ, et al. Genome-wide association study of ankylosing spondylitis identifies non-MHC susceptibility loci. Nat. Genet. [Internet]. 2010 [cited 2014 Nov 17];42:123–7. Available from: http://​www.​pubmedcentral.​nih.​gov/​articlerender.​fcgi?​artid=​3224997&​tool=​pmcentrez&​rendertype=​abstract
40.
Nair RP, Ruether A, Stuart PE, Jenisch S, Tejasvi T, Hiremagalore R, et al. Polymorphisms of the IL12B and IL23R genes are associated with psoriasis. J. Invest. Dermatol. [Internet]. 2008 [cited 2014 Nov 29];128:1653–61. Available from: http://​www.​pubmedcentral.​nih.​gov/​articlerender.​fcgi?​artid=​2739284&​tool=​pmcentrez&​rendertype=​abstract
41.
Carter JD, Hudson AP. Reactive arthritis: clinical aspects and medical management. Rheum. Dis. Clin. North Am. [Internet]. Elsevier; 2009 [cited 2014 Oct 18];35:21–44. Available from: http://​www.​rheumatic.​theclinics.​com/​article/​S0889-857X(09)00011-8/​abstract
42.
Paget SA. The microbiome, autoimmunity, and arthritis: cause and effect: an historical perspective. Trans. Am. Clin. Climatol. Assoc. [Internet]. 2012 [cited 2014 Oct 17];123:257–66; discussion 266–7. Available from: http://​www.​pubmedcentral.​nih.​gov/​articlerender.​fcgi?​artid=​3540616&​tool=​pmcentrez&​rendertype=​abstract
43.
Selmi C, Gershwin ME. Diagnosis and classification of reactive arthritis. Autoimmun. Rev. [Internet]. 2014 [cited 2014 Oct 4];13:546–9. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​24418301
44.
Martínez-González O, Cantero-Hinojosa J, Paule-Sastre P, Gómez-Magán JC, Salvatierra-Ríos D. Intestinal permeability in patients with ankylosing spondylitis and their healthy relatives. Br. J. Rheumatol. [Internet]. 1994 [cited 2014 Oct 13];33:644–7. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​8019793
45.
Stebbings S, Jenks K, Roberts R, Schultz M. The immune response to gut bacteria in spondyloarthritis: a role in pathogenesis? J Clin Rheumatol Musculoskelet Med. 2010;1:1–10.
46.
Siala M, Gdoura R, Fourati H, Rihl M, Jaulhac B, Younes M, et al. Broad-range PCR, cloning and sequencing of the full 16S rRNA gene for detection of bacterial DNA in synovial fluid samples of Tunisian patients with reactive and undifferentiated arthritis. Arthritis Res. Ther. [Internet]. 2009 [cited 2014 Oct 20];11:R102. Available from: http://​www.​pubmedcentral.​nih.​gov/​articlerender.​fcgi?​artid=​2745777&​tool=​pmcentrez&​rendertype=​abstract
47.
Merilahti-Palo R, Soderstrom KO, Lahesmaa-Rantala R, Granfors K, Toivanen A. Bacterial antigens in synovial biopsy specimens in yersinia triggered reactive arthritis. Ann. Rheum. Dis. [Internet]. 1991;50:87–90. Available from: http://​ard.​bmj.​com/​cgi/​doi/​10.​1136/​ard.​50.​2.​87
48.
Granfors K, Jalkanen S, Mäki-Ikola O, Lahesmaa-Rantala R, Saario R, Toivanen A, et al. Salmonella lipopolysaccharide in synovial cells from patients with reactive arthritis. Lancet [Internet]. 1990 [cited 2014 Oct 13];335:685–8. Available from: http://​www.​sciencedirect.​com/​science/​article/​pii/​014067369090804E​
49.
Albert LJ, Inman RD. Molecular mimicry and autoimmunity. N. Engl. J. Med. [Internet]. 1999 [cited 2014 Oct 18];341:2068–74. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​10615080
50.
Foxman B, Goldberg D, Murdock C, Xi C, Gilsdorf JR. Conceptualizing human microbiota: from multicelled organ to ecological community. Interdiscip. Perspect. Infect. Dis. [Internet]. 2008 [cited 2014 Oct 17];2008:613979. Available from: http://​www.​pubmedcentral.​nih.​gov/​articlerender.​fcgi?​artid=​2648621&​tool=​pmcentrez&​rendertype=​abstract
51.
Lahesmaa R, Skurnik M, Toivanen P. Molecular mimicry: any role in the pathogenesis of spondyloarthropathies? Immunol. Res. [Internet]. 1993 [cited 2014 Oct 18];12:193–208. Available from: http://​link.​springer.​com/​10.​1007/​BF02918304
52.
Scofield RH, Warren WL, Koelsch G, Harley JB. A hypothesis for the HLA-B27 immune dysregulation in spondyloarthropathy: contributions from enteric organisms, B27 structure, peptides bound by B27, and convergent evolution. Proc. Natl. Acad. Sci. U. S. A. [Internet]. 1993 [cited 2014 Oct 20];90:9330–4. Available from: http://​www.​pubmedcentral.​nih.​gov/​articlerender.​fcgi?​artid=​47561&​tool=​pmcentrez&​rendertype=​abstract
53.
Tsui FWL, Xi N, Rohekar S, Riarh R, Bilotta R, Tsui HW, et al. Toll-like receptor 2 variants are associated with acute reactive arthritis. Arthritis Rheum. [Internet]. 2008 [cited 2014 Oct 18];58:3436–8. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​18975326
54.
Robinson PC, Brown MA. Genetics of ankylosing spondylitis. Mol. Immunol. [Internet]. 2014 [cited 2014 Sep 23];57:2–11. Available from: http://​www.​sciencedirect.​com/​science/​article/​pii/​S016158901300432​X
55.
Tsui FW, Tsui HW, Akram A, Haroon N, Inman RD. The genetic basis of ankylosing spondylitis: new insights into disease pathogenesis. Appl. Clin. Genet. [Internet]. 2014 [cited 2014 Oct 14];7:105–15. Available from: http://​www.​pubmedcentral.​nih.​gov/​articlerender.​fcgi?​artid=​4070859&​tool=​pmcentrez&​rendertype=​abstract
56.
Brown MA, Laval SH, Brophy S, Calin A. Recurrence risk modelling of the genetic susceptibility to ankylosing spondylitis. Ann. Rheum. Dis. [Internet]. 2000 [cited 2014 Oct 14];59:883–6. Available from: http://​www.​pubmedcentral.​nih.​gov/​articlerender.​fcgi?​artid=​1753017&​tool=​pmcentrez&​rendertype=​abstract
57.
Brewerton DA, Hart FD, Nicholls A, Caffrey M, James DCO, Sturrock RD. Ankylosing spondylitis and HLA-27. Lancet [Internet]. 1973 [cited 2014 Oct 14];301:904–7. Available from: http://​www.​thelancet.​com/​journals/​a/​article/​PIIS0140-6736(73)91360-3/​fulltext
58.
Caffrey MFP, James DCO. Human lymphocyte antigen association in ankylosing spondylitis. Nature [Internet]. 1973 [cited 2014 Oct 14];242:121–121. Available from: http://​dx.​doi.​org/​10.​1038/​242121a0
59.
Schlosstein L, Terasaki PI, Bluestone R, Pearson CM. High association of an HL-a antigen, W27, with ankylosing spondylitis. N Engl J Med. 1973;288:704–6.CrossRefPubMed
60.
Weinreich S, Eulderink F, Capkova J, Pla M, Gaede K, Heesemann J, et al. HLA-B27 as a relative risk factor in ankylosing enthesopathy in transgenic mice. Hum. Immunol. [Internet]. 1995 [cited 2014 Oct 15];42:103–15. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​7744613
61.
Hacquard-Bouder C, Ittah M, Breban M. Animal models of HLA-B27-associated diseases: new outcomes. Joint. Bone. Spine [Internet]. 2006 [cited 2014 Oct 13];73:132–8. Available from: http://​www.​sciencedirect.​com/​science/​article/​pii/​S1297319X0500130​2
62.
Reháková Z, Capková J, Stĕpánková R, Sinkora J, Louzecká A, Ivanyi P, et al. Germ-free mice do not develop ankylosing enthesopathy, a spontaneous joint disease. Hum. Immunol. [Internet]. 2000 [cited 2014 Oct 13];61:555–8. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​10825583
63.
Sinkorová Z, Capková J, Niederlová J, Stepánková R, Sinkora J. Commensal intestinal bacterial strains trigger ankylosing enthesopathy of the ankle in inbred B10.BR (H-2(k)) male mice. Hum. Immunol. [Internet]. 2008 [cited 2014 Oct 15];69:845–50. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​18840492
64.•
Capkova J, Hrncir T, Kubatova A, Tlaskalova-Hogenova H. Lipopolysaccharide treatment suppresses spontaneously developing ankylosing enthesopathy in B10.BR male mice: the potential role of interleukin-10. BMC Musculoskelet. Disord. [Internet]. 2012 [cited 2014 Oct 15];13:110. Available from: http://​www.​biomedcentral.​com/​1471-2474/​13/​110 Showed that repeated exposure to lipopolysaccharide, a component of bacterial cell walls, decreases the incidence of ANKylosing ENThesopathy (ANKENT) in susceptible mice.
65.
Sakaguchi N, Takahashi T, Hata H, Nomura T, Tagami T, Yamazaki S, et al. Altered thymic T-cell selection due to a mutation of the ZAP-70 gene causes autoimmune arthritis in mice. Nature [Internet]. 2003 [cited 2014 Oct 15];426:454–60. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​14647385
66.•
Ruutu M, Thomas G, Steck R, Degli-Esposti MA, Zinkernagel MS, Alexander K, et al. β-glucan triggers spondylarthritis and Crohn’s disease-like ileitis in SKG mice. Arthritis Rheum. [Internet]. 2012 [cited 2014 Oct 15];64:2211–22. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​22328069 Showed that SKG mutant mice develop an SpA-like disease after exposure to curdlan, a major component of bacterial cell walls.
67.•
Benham H, Rehaume LM, Hasnain SZ, Velasco J, Baillet AC, Ruutu M, et al. Interleukin-23 mediates the intestinal response to microbial β-1,3-glucan and the development of spondyloarthritis pathology in SKG mice. Arthritis Rheumatol. (Hoboken, N.J.) [Internet]. 2014 [cited 2014 Nov 14];66:1755–67. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​24664521 Showed that the development of SpA-like disease in SKG mice exposed to curdlan is dependent on the IL-23 signalling pathway.
68.•
Rehaume LM, Mondot S, Aguirre de Cárcer D, Velasco J, Benham H, Hasnain SZ, et al. ZAP-70 genotype disrupts the relationship between microbiota and host leading to spondyloarthritis and ileitis. Arthritis Rheumatol. (Hoboken, N.J.) [Internet]. 2014 [cited 2014 Oct 13];66:2780–92. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​25048686 Showed that incidence and severity of arthritis and ileitis in SKG mice is dependent on the diversity of the host microbiome, and correlates with Il-23 expression in the ileus.
69.•
Sherlock JP, Joyce-Shaikh B, Turner SP, Chao C-C, Sathe M, Grein J, et al. IL-23 induces spondyloarthropathy by acting on ROR-γt+ CD3+CD4-CD8- entheseal resident T cells. Nat. Med. [Internet]. 2012 [cited 2014 Nov 18];18:1069–76. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​22772566 Showed that Il-23 promotes enthesitis in the murine model by acting on a novel population of CD3+CD4-CD8- enthesial resident lymphocytes. Mice exposed to Il-23 also develop systemic SpA features.
70.
Rashid T, Ebringer A. Ankylosing spondylitis is linked to Klebsiella—the evidence. Clin. Rheumatol. [Internet]. 2007 [cited 2014 Oct 15];26:858–64. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​17186116
71.
Beukelman CJ, Quarles van Ufford HC, van Bree FP, Aerts PC, Nieuwenhoff C, Reerink G, et al. Trial and error in producing ankylosing-spondylitis-selective antisera according to Andrew Geczy. Scand. J. Rheumatol. Suppl. [Internet]. 1990 [cited 2014 Oct 15];87:74–9; discussion 79–80. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​2259890
72.
Stebbings S, Munro K, Simon MA, Tannock G, Highton J, Harmsen H, et al. Comparison of the faecal microflora of patients with ankylosing spondylitis and controls using molecular methods of analysis. Rheumatology (Oxford). [Internet]. 2002 [cited 2014 Oct 14];41:1395–401. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​12468819
73.•
Lin P, Bach M, Asquith M, Lee AY, Akileswaran L, Stauffer P, et al. HLA-B27 and human β2-microglobulin affect the gut microbiota of transgenic rats. PLoS One [Internet]. 2014 [cited 2014 Sep 19];9:e105684. Available from: http://​www.​pubmedcentral.​nih.​gov/​articlerender.​fcgi?​artid=​4139385&​tool=​pmcentrez&​rendertype=​abstract Showed a higher prevalence of Bacteroides vulgatus and Paraprevotella, and a lower abundance of an unknown Rikenellaceae genus in the cecum of HLA-B27/human-ß2m transgenic rats compared to wild-type animals.
74.•
Costello M-E, Ciccia F, Willner D, Warrington N, Robinson PC, Gardiner B, et al. Intestinal dysbiosis in ankylosing spondylitis. Arthritis Rheumatol. (Hoboken, N.J.) [Internet]. 2014 [cited 2014 Nov 30]; Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​25417597 Showed that subjects with AS have higher prevalence of the Lachnospiraceae, Veillonellaceae, Prevotellaceae, Porphyromonadaceae, and Bacteroidaceae families, and a lower prevalence of the Ruminococcaceae and Rikenellaceae families in the terminal ileum compared to healthy controls.
75.
Nagalingam NA, Kao JY, Young VB. Microbial ecology of the murine gut associated with the development of dextran sodium sulfate-induced colitis. Inflamm. Bowel Dis. [Internet]. 2011 [cited 2014 Nov 14];17:917–26. Available from: http://​www.​pubmedcentral.​nih.​gov/​articlerender.​fcgi?​artid=​3058753&​tool=​pmcentrez&​rendertype=​abstract
76.
Elinav E, Strowig T, Kau AL, Henao-Mejia J, Thaiss C a, Booth CJ, et al. NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell [Internet]. Elsevier Inc.; 2011 [cited 2014 Oct 13];145:745–57. Available from: http://​www.​pubmedcentral.​nih.​gov/​articlerender.​fcgi?​artid=​3140910&​tool=​pmcentrez&​rendertype=​abstract
77.
Ritchlin C. Psoriatic disease—from skin to bone. Nat. Clin. Pract. Rheumatol. [Internet]. Nature Publishing Group; 2007 [cited 2014 Oct 20];3:698–706. Available from: http://​dx.​doi.​org/​10.​1038/​ncprheum0670
78.
Winchester R, Minevich G, Steshenko V, Kirby B, Kane D, Greenberg DA, et al. HLA associations reveal genetic heterogeneity in psoriatic arthritis and in the psoriasis phenotype. Arthritis Rheum. [Internet]. 2012 [cited 2014 Oct 20];64:1134–44. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​22006066
79.
Gao Z, Tseng C, Strober BE, Pei Z, Blaser MJ. Substantial alterations of the cutaneous bacterial biota in psoriatic lesions. PLoS One [Internet]. 2008 [cited 2014 Oct 20];3:e2719. Available from: http://​www.​pubmedcentral.​nih.​gov/​articlerender.​fcgi?​artid=​2447873&​tool=​pmcentrez&​rendertype=​abstract
80.•
Fahlén A, Engstrand L, Baker BS, Powles A, Fry L. Comparison of bacterial microbiota in skin biopsies from normal and psoriatic skin. Arch. Dermatol. Res. [Internet]. 2012 [cited 2014 Oct 20];304:15–22. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​22065152 Showed an overrepresentation of the Proteobacteria phylum and lower prevalence of Propionibacterium spp and Staphylococci spp in psoriasis subjects compared to healthy controls.
81.
Christophers E, Barker JNWN, Griffiths CEM, Daudén E, Milligan G, Molta C, et al. The risk of psoriatic arthritis remains constant following initial diagnosis of psoriasis among patients seen in European dermatology clinics. J. Eur. Acad. Dermatol. Venereol. [Internet]. 2010 [cited 2014 Oct 6];24:548–54. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​19874432
82.
Castelino M, Eyre S, Upton M, Ho P, Barton A. The bacterial skin microbiome in psoriatic arthritis, an unexplored link in pathogenesis: challenges and opportunities offered by recent technological advances. Rheumatol. (United Kingdom) [Internet]. Oxford University Press; 2014 [cited 2014 Oct 13];53:777–84. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​24067887
83.•
Scher JU, Ubeda C, Artacho A, Attur M, Isaac S, Reddy SM, et al. Decreased bacterial diversity characterizes an altered gut microbiota in psoriatic arthritis and resembles dysbiosis of inflammatory bowel disease. Arthritis Rheumatol. (Hoboken, N.J.) [Internet]. 2014 [cited 2014 Oct 20]; Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​25319745 Showed that the gut microbiome of PsA patients is significantly less diverse, and correlates with higher levels of sIgA and lower levels of RANKL in the feces.
84.
Png CW, Lindén SK, Gilshenan KS, Zoetendal EG, McSweeney CS, Sly LI, et al. Mucolytic bacteria with increased prevalence in IBD mucosa augment in vitro utilization of mucin by other bacteria. Am. J. Gastroenterol. [Internet]. 2010 [cited 2014 Oct 5];105:2420–8. Available from: http://​www.​ncbi.​nlm.​nih.​gov/​pubmed/​20648002