Skip to main content
Top

14-03-2017 | Osteoarthritis | Article

Accuracy of magnetic resonance imaging to detect cartilage loss in severe osteoarthritis of the first carpometacarpal joint: comparison with histological evaluation

Journal: Arthritis Research & Therapy

Authors: Michael S. Saltzherr, J. Henk Coert, Ruud W. Selles, Johan W. van Neck, Jean-Bart Jaquet, Gerjo J. V. M. van Osch, Edwin H. G. Oei, Jolanda J. Luime, Galied S. R. Muradin

Publisher: BioMed Central

Abstract

Background

Magnetic resonance imaging (MRI) is increasingly used for research in hand osteoarthritis, but imaging the thin cartilage layers in the hand joints remains challenging. We therefore assessed the accuracy of MRI in detecting cartilage loss in patients with symptomatic osteoarthritis of the first carpometacarpal (CMC1) joint.

Methods

Twelve patients scheduled for trapeziectomy to treat severe symptomatic osteoarthritis of the CMC1 joint underwent a preoperative high resolution 3D spoiled gradient (SPGR) MRI scan. Subsequently, the resected trapezium was evaluated histologically. The sections were scored for cartilage damage severity (Osteoarthritis Research Society International (OARSI) score), and extent of damage (percentage surface area). Each MRI scan was scored for the area of normal cartilage, partial cartilage loss and full cartilage loss. The percentages of the total surface area with any cartilage loss and full-thickness cartilage loss were calculated using MRI and histological evaluation.

Results

MRI and histological evaluation both identified large areas of overall cartilage loss. The median (IQR) surface area of any cartilage loss on MRI was 98% (82–100%), and on histological assessment 96% (87–98%). However, MRI underestimated the extent of full-thickness cartilage loss. The median (IQR) surface area of full-thickness cartilage loss on MRI was 43% (22–70%), and on histological evaluation 79% (67–85%). The difference was caused by a thin layer of high signal on the articulating surface, which was interpreted as damaged cartilage on MRI but which was not identified on histological evaluation.

Conclusions

Three-dimensional SPGR MRI of the CMC1 joint demonstrates overall cartilage damage, but underestimates full-thickness cartilage loss in patients with advanced osteoarthritis.
Literature
1.
Dahaghin S, Bierma-Zeinstra SM, Ginai AZ, et al. Prevalence and pattern of radiographic hand osteoarthritis and association with pain and disability (the Rotterdam study). Ann Rheum Dis. 2005;64(5):682–7.CrossRefPubMed
2.
Maheu E, Altman RD, Bloch DA, et al. Design and conduct of clinical trials in patients with osteoarthritis of the hand: recommendations from a task force of the Osteoarthritis Research Society International. Osteoarthritis Cartilage. 2006;14(4):303–22.CrossRefPubMed
3.
Kloppenburg M, Bøyesen P, Smeets W, et al. Report from the OMERACT Hand Osteoarthritis Special Interest Group: advances and future research priorities. J Rheumatol. 2014;41(4):810–8.CrossRefPubMed
4.
Haugen IK, Lillegraven S, Slatkowsky-Christensen B, et al. Hand osteoarthritis and MRI: development and first validation step of the proposed Oslo hand osteoarthritis MRI score. Ann Rheum Dis. 2011;70(6):1033–8.CrossRefPubMed
5.
Haugen IK, Ostergaard M, Eshed I, et al. Iterative development and reliability of the OMERACT hand osteoarthritis MRI scoring system. J Rheumatol. 2014;41(2):386–91.CrossRefPubMed
6.
Tan AL, Grainger AJ, Tanner SF, et al. High-resolution magnetic resonance imaging for the assessment of hand osteoarthritis. Arthritis Rheum. 2005;52(8):2355–65.CrossRefPubMed
7.
Tan AL, Toumi H, Benjamin M, et al. Combined high-resolution magnetic resonance imaging and histological examination to explore the role of ligaments and tendons in the phenotypic expression of early hand osteoarthritis. Ann Rheum Dis. 2006;65(10):1267–72.CrossRefPubMedPubMedCentral
8.
Wittoek R, Jans L, Lambrecht V, et al. Reliability and construct validity of ultrasonography of soft tissue and destructive changes in erosive osteoarthritis of the interphalangeal finger joints: a comparison with MRI. Ann Rheum Dis. 2011;70(2):278–83.CrossRefPubMed
9.
Haugen IK, Boyesen P, Slatkowsky-Christensen B, et al. Associations between MRI-defined synovitis, bone marrow lesions and structural features and measures of pain and physical function in hand osteoarthritis. Ann Rheum Dis. 2012;71(6):899–904.CrossRefPubMed
10.
Haugen IK, Slatkowsky Christensen B, Boyesen P, et al. Increasing synovitis and bone marrow lesions are associated with incident joint tenderness in hand osteoarthritis. Ann Rheum Dis. 2016;75(4):702–8. doi:10.​1136/​annrheumdis-2014-2068292015.CrossRefPubMed
11.
Peterfy CG, van Dijke CF, Lu Y, et al. Quantification of the volume of articular cartilage in the metacarpophalangeal joints of the hand: accuracy and precision of three-dimensional MR imaging. AJR Am J Roentgenol. 1995;165(2):371–5.CrossRefPubMed
12.
Lazovic-Stojkovic J, Mosher TJ, Smith HE, et al. Interphalangeal joint cartilage: high-spatial-resolution in vivo MR T2 mapping–a feasibility study. Radiology. 2004;233(1):292–6.CrossRefPubMed
13.
Dupuy DE, Spillane RM, Rosol MS, et al. Quantification of articular cartilage in the knee with three-dimensional MR imaging. Acad Radiol. 1996;3(11):919–24.CrossRefPubMed
14.
Saadat E, Jobke B, Chu B, et al. Diagnostic performance of in vivo 3-T MRI for articular cartilage abnormalities in human osteoarthritic knees using histology as standard of reference. Eur Radiol. 2008;18(10):2292–302.CrossRefPubMedPubMedCentral
15.
Hunter DJ, Guermazi A, Lo GH, et al. Evolution of semi-quantitative whole joint assessment of knee OA: MOAKS (MRI osteoarthritis knee score). Osteoarthritis Cartilage. 2011;19(8):990–1002.CrossRefPubMedPubMedCentral
16.
Bulstra SK, Drukker J, Kuijer R, et al. Thionin staining of paraffin and plastic embedded sections of cartilage. Biotech Histochem. 1993;68(1):20–8.CrossRefPubMed
17.
Pritzker KP, Gay S, Jimenez SA, et al. Osteoarthritis cartilage histopathology: grading and staging. Osteoarthritis Cartilage. 2006;14(1):13–29.CrossRefPubMed
18.
Shrout PE, Fleiss JL. Intraclass correlations: uses in assessing rater reliability. Psychol Bull. 1979;86(2):420–8.CrossRefPubMed
19.
Disler DG, McCauley TR, Kelman CG, et al. Fat-suppressed three-dimensional spoiled gradient-echo MR imaging of hyaline cartilage defects in the knee: comparison with standard MR imaging and arthroscopy. AJR Am J Roentgenol. 1996;167(1):127–32.CrossRefPubMed
20.
Recht MP, Piraino DW, Paletta GA, et al. Accuracy of fat-suppressed three-dimensional spoiled gradient-echo FLASH MR imaging in the detection of patellofemoral articular cartilage abnormalities. Radiology. 1996;198(1):209–12.CrossRefPubMed
21.
McGibbon CA, Trahan CA. Measurement accuracy of focal cartilage defects from MRI and correlation of MRI graded lesions with histology: a preliminary study. Osteoarthritis Cartilage. 2003;11(7):483–93.CrossRefPubMed
22.
Kladny B, Martus P, Schiwy-Bochat KH, et al. Measurement of cartilage thickness in the human knee-joint by magnetic resonance imaging using a three-dimensional gradient-echo sequence. Int Orthop. 1999;23(5):264–7.CrossRefPubMedPubMedCentral
23.
Yoshioka H, Stevens K, Hargreaves BA, et al. Magnetic resonance imaging of articular cartilage of the knee: comparison between fat-suppressed three-dimensional SPGR imaging, fat-suppressed FSE imaging, and fat-suppressed three-dimensional DEFT imaging, and correlation with arthroscopy. J Magn Reson Imaging. 2004;20(5):857–64.CrossRefPubMed
24.
Burgkart R, Glaser C, Hyhlik-Durr A, et al. Magnetic resonance imaging-based assessment of cartilage loss in severe osteoarthritis: accuracy, precision, and diagnostic value. Arthritis Rheum. 2001;44(9):2072–7.CrossRefPubMed
25.
Frobell RB, Wirth W, Nevitt M, et al. Presence, location, type and size of denuded areas of subchondral bone in the knee as a function of radiographic stage of OA - data from the OA initiative. Osteoarthritis Cartilage. 2010;18(5):668–76.CrossRefPubMedPubMedCentral
26.
Yoshioka H, Stevens K, Genovese M, et al. Articular cartilage of knee: normal patterns at MR imaging that mimic disease in healthy subjects and patients with osteoarthritis. Radiology. 2004;231(1):31–8.CrossRefPubMed
27.
Kwok WE, You Z, Monu J, et al. High-resolution uniform MR imaging of finger joints using a dedicated RF coil at 3 T. J Magn Reson Imaging. 2010;31(1):240–7.CrossRefPubMedPubMedCentral
28.
Siepmann DB, McGovern J, Brittain JH, et al. High-resolution 3D cartilage imaging with IDEAL SPGR at 3 T. AJR Am J Roentgenol. 2007;189(6):1510–5.CrossRefPubMed
29.
Friedrich KM, Reiter G, Kaiser B, et al. High-resolution cartilage imaging of the knee at 3 T: Basic evaluation of modern isotropic 3D MR-sequences. Eur J Radiol. 2011;78(3):398–405.CrossRefPubMed