Skip to main content
Top

18-04-2018 | Osteoarthritis | Review | Article

Mitochondrial DNA variation and the pathogenesis of osteoarthritis phenotypes

Journal: Nature Reviews Rheumatology

Authors: Francisco J. Blanco, Ana M. Valdes, Ignacio Rego-Pérez

Publisher: Nature Publishing Group UK

Abstract

Mitochondria and mitochondrial DNA (mtDNA) variation are now recognized as important factors in the development of osteoarthritis (OA). Mitochondria are the energy powerhouses of the cell, and also regulate different processes involved in the pathogenesis of OA including inflammation, apoptosis, calcium metabolism and the generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS). Mitochondria contain their own genetic material, mtDNA, which evolved through the sequential accumulation of mtDNA variants to enable humans to adapt to different climates. The ROS and reactive metabolic intermediates that are by-products of mitochondrial metabolism are regulated in part by mtDNA and are among the signals that transmit information between mitochondria and the nucleus. These signals can alter nuclear gene expression and, when disrupted, affect a number of cellular processes and metabolic pathways, leading to disease. mtDNA variation influences OA-associated phenotypes, including those related to metabolism, inflammation and even ageing, as well as nuclear epigenetic regulation. This influence also enables the use of specific mtDNA haplogroups as complementary diagnostic and prognostic biomarkers of OA.
Literature
1.
Blanco, F. J., Rego, I. & Ruiz-Romero, C. The role of mitochondria in osteoarthritis. Nat. Rev. Rheumatol. 7, 161–169 (2011).PubMedCrossRef
2.
Kraus, V. B., Blanco, F. J., Englund, M., Karsdal, M. A. & Lohmander, L. S. Call for standardized definitions of osteoarthritis and risk stratification for clinical trials and clinical use. Osteoarthritis Cartilage 23, 1233–1241 (2015).PubMedPubMedCentralCrossRef
3.
Sellam, J. & Berenbaum, F. Is osteoarthritis a metabolic disease? Joint Bone Spine 80, 568–573 (2013).PubMedCrossRef
4.
Blanco, F. J. & Rego-Pérez, I. Editorial: is it time for epigenetics in osteoarthritis? Arthritis Rheumatol. 66, 2324–2327 (2014).PubMedCrossRef
5.
Berenbaum, F. Osteoarthritis as an inflammatory disease (osteoarthritis is not osteoarthrosis!). Osteoarthritis Cartilage 21, 16–21 (2013).PubMedCrossRef
6.
Mobasheri, A. & Batt, M. An update on the pathophysiology of osteoarthritis. Ann. Phys. Rehabil. Med. 59, 333–339 (2016).PubMedCrossRef
7.
Minafra, L. et al. Genetic, clinical and radiographic signs in knee osteoarthritis susceptibility. Arthritis Res. Ther. 16, R91 (2014).PubMedPubMedCentralCrossRef
8.
Wang, Y., Zhao, X., Lotz, M., Terkeltaub, R. & Liu-Bryan, R. Mitochondrial biogenesis is impaired in osteoarthritis chondrocytes but reversible via peroxisome proliferator-activated receptor γ coactivator 1α. Arthritis Rheumatol. 67, 2141–2153 (2015).PubMedPubMedCentralCrossRef
9.
Henze, K. & Martin, W. Evolutionary biology: essence of mitochondria. Nature 426, 127–128 (2003).PubMedCrossRef
10.
Picard, M., Wallace, D. C. & Burelle, Y. The rise of mitochondria in medicine. Mitochondrion 30, 105–116 (2016).PubMedPubMedCentralCrossRef
11.
Shadel, G. S. & Horvath, T. L. Mitochondrial ROS signaling in organismal homeostasis. Cell 163, 560–569 (2015).PubMedPubMedCentralCrossRef
12.
Wallace, D. C. & Fan, W. Energetics, epigenetics, mitochondrial genetics. Mitochondrion 10, 12–31 (2010).PubMedCrossRef
13.
Wallace, D. C. Maternal genes: mitochondrial diseases. Birth Defects Orig. Artic. Ser. 23, 137–190 (1987).PubMed
14.
Torroni, A. et al. Classification of European mtDNAs from an analysis of three European populations. Genetics 144, 1835–1850 (1996).PubMedPubMedCentral
15.
Ruiz-Pesini, E., Mishmar, D., Brandon, M., Procaccio, V. & Wallace, D. C. Effects of purifying and adaptive selection on regional variation in human mtDNA. Science 303, 223–226 (2004).PubMedCrossRef
16.
Kwak, S. H. & Park, K. S. Role of mitochondrial DNA variation in the pathogenesis of diabetes mellitus. Front. Biosci. 21, 1151–1167 (2016).CrossRef
17.
Hudson, G. et al. Two-stage association study and meta-analysis of mitochondrial DNA variants in Parkinson disease. Neurology 80, 2042–2048 (2013).PubMedPubMedCentralCrossRef
18.
De Benedictis, G. et al. Mitochondrial DNA inherited variants are associated with successful aging and longevity in humans. FASEB J. 13, 1532–1536 (1999).PubMedCrossRef
19.
Niemi, A. K. et al. Mitochondrial DNA polymorphisms associated with longevity in a Finnish population. Hum. Genet. 112, 29–33 (2003).PubMedCrossRef
20.
Courtenay, M. D. et al. Mitochondrial haplogroup X is associated with successful aging in the Amish. Hum. Genet. 131, 201–208 (2012).PubMedCrossRef
21.
Wallace, D. C. Mitochondrial DNA variation in human radiation and disease. Cell 163, 33–38 (2015).PubMedPubMedCentralCrossRef
22.
Fang, H. et al. Role of mtDNA haplogroups in the prevalence of knee osteoarthritis in a southern Chinese population. Int. J. Mol. Sci. 15, 2646–2659 (2014).PubMedPubMedCentralCrossRef
23.
Shen, J. M., Feng, L. & Feng, C. Role of mtDNA haplogroups in the prevalence of osteoarthritis in different geographic populations: a meta-analysis. PLoS ONE 9, e108896 (2014).PubMedPubMedCentralCrossRef
24.
Soto-Hermida, A. et al. mtDNA haplogroups and osteoarthritis in different geographic populations. Mitochondrion 15, 18–23 (2014).PubMedCrossRef
25.
Fernández-Moreno, M. et al. A replication study and meta-analysis of mitochondrial DNA variants in the radiographic progression of knee osteoarthritis. Rheumatology 56, 263–270 (2017).PubMedCrossRef
26.
Fernández-Moreno, M. et al. Mitochondrial DNA haplogroups influence the risk of incident knee osteoarthritis in OAI and CHECK cohorts. A meta-analysis and functional study. Ann. Rheum. Dis. 76, 1114–1122 (2017).PubMedCrossRef
27.
Picard, M. et al. Mitochondrial functions modulate neuroendocrine, metabolic, inflammatory, and transcriptional responses to acute psychological stress. Proc. Natl Acad. Sci. USA 112, E6614–E6623 (2015).PubMedPubMedCentralCrossRef
28.
Wallace, D. C. Genetics: Mitochondrial DNA in evolution and disease. Nature 535, 498–500 (2016).PubMedCrossRefPubMedCentral
29.
Terkeltaub, R., Johnson, K., Murphy, A. & Ghosh, S. Invited review: the mitochondrion in osteoarthritis. Mitochondrion 1, 301–319 (2002).PubMedCrossRef
30.
Lee, R. B. & Urban, J. P. Evidence for a negative Pasteur effect in articular cartilage. Biochem. J. 321, 95–102 (1997).PubMedPubMedCentralCrossRef
31.
Maneiro, E. et al. Mitochondrial respiratory activity is altered in osteoarthritic human articular chondrocytes. Arthritis Rheum. 48, 700–708 (2003).PubMedCrossRef
32.
Kim, H. A. & Blanco, F. J. Cell death and apoptosis in osteoarthritic cartilage. Curr. Drug Targets 8, 333–345 (2007).PubMedCrossRef
33.
Hwang, H. S. & Kim, H. A. Chondrocyte apoptosis in the pathogenesis of osteoarthritis. Int. J. Mol. Sci. 16, 26035–26054 (2015).PubMedPubMedCentralCrossRef
34.
Vaamonde-García, C. et al. Mitochondrial dysfunction increases inflammatory responsiveness to cytokines in normal human chondrocytes. Arthritis Rheum. 64, 2927–2936 (2012).PubMedCrossRef
35.
Cillero-Pastor, B. et al. Mitochondrial dysfunction activates cyclooxygenase 2 expression in cultured normal human chondrocytes. Arthritis Rheum. 58, 2409–2419 (2008).PubMedCrossRef
36.
Cillero-Pastor, B., Rego-Perez, I., Oreiro, N., Fernandez-Lopez, C. & Blanco, F. J. Mitochondrial respiratory chain dysfunction modulates metalloproteases -1,-3 and -13 in human normal chondrocytes in culture. BMC Musculoskelet. Disord. 14, 235 (2013).PubMedPubMedCentralCrossRef
37.
Collins, J. A. et al. Oxidative stress promotes peroxiredoxin hyperoxidation and attenuates pro-survival signaling in aging chondrocytes. J. Biol. Chem. 291, 6641–6654 (2016).PubMedPubMedCentralCrossRef
38.
Blanco, F. J., Lopez-Armada, M. J. & Maneiro, E. Mitochondrial dysfunction in osteoarthritis. Mitochondrion 4, 715–728 (2004).PubMedCrossRef
39.
Henrotin, Y. & Kurz, B. Antioxidant to treat osteoarthritis: dream or reality? Curr. Drug Targets 8, 347–357 (2007).PubMedCrossRef
40.
Grishko, V. I., Ho, R., Wilson, G. L. & Pearsall, A. W. Diminished mitochondrial DNA integrity and repair capacity in OA chondrocytes. Osteoarthritis Cartilage 17, 107–113 (2009).PubMedCrossRef
41.
Farnaghi, S. et al. Protective effects of mitochondria-targeted antioxidants and statins on cholesterol-induced osteoarthritis. FASEB J. 31, 356–367 (2017).PubMedCrossRef
42.
Lotz, M. & Loeser, R. F. Effects of aging on articular cartilage homeostasis. Bone 51, 241–248 (2012).PubMedPubMedCentralCrossRef
43.
Gavriilidis, C., Miwa, S., von Zglinicki, T., Taylor, R. W. & Young, D. A. Mitochondrial dysfunction in osteoarthritis is associated with down-regulation of superoxide dismutase 2. Arthritis Rheum. 65, 378–387 (2013).PubMedCrossRef
44.
Ruiz-Romero, C. et al. Mitochondrial dysregulation of osteoarthritic human articular chondrocytes analyzed by proteomics: a decrease in mitochondrial superoxide dismutase points to a redox imbalance. Mol. Cell. Proteom. 8, 172–189 (2009).CrossRef
45.
Scott, J. L. et al. Superoxide dismutase downregulation in osteoarthritis progression and end-stage disease. Ann. Rheum. Dis. 69, 1502–1510 (2010).PubMedCrossRef
46.
Choi, A. M., Ryter, S. W. & Levine, B. Autophagy in human health and disease. N. Engl. J. Med. 368, 1845–1846 (2013).PubMedCrossRef
47.
López de Figueroa, P., Lotz, M. K., Blanco, F. J. & Caramés, B. Autophagy activation and protection from mitochondrial dysfunction in human chondrocytes. Arthritis Rheumatol. 67, 966–976 (2015).PubMedCrossRef
48.
Alvarez-Garcia, O. et al. Regulated in development and DNA damage response 1 deficiency impairs autophagy and mitochondrial biogenesis in articular cartilage and increases the severity of experimental osteoarthritis. Arthritis Rheumatol. 69, 1418–1428 (2017).PubMedCrossRefPubMedCentral
49.
Mishmar, D. et al. Natural selection shaped regional mtDNA variation in humans. Proc. Natl Acad. Sci. USA 100, 171–176 (2003).PubMedCrossRef
50.
Wallace, D. C. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu. Rev. Genet. 39, 359–407 (2005).PubMedPubMedCentralCrossRef
51.
Martínez-Redondo, D. et al. Human mitochondrial haplogroup H: the highest VO2max consumer — is it a paradox? Mitochondrion 10, 102–107 (2010).PubMedCrossRef
52.
Pierron, D. et al. Mutation rate switch inside Eurasian mitochondrial haplogroups: impact of selection and consequences for dating settlement in Europe. PLoS ONE 6, e21543 (2011).PubMedPubMedCentralCrossRef
53.
Wallace, D. C., Brown, M. D. & Lott, M. T. Mitochondrial DNA variation in human evolution and disease. Gene 238, 211–230 (1999).PubMedCrossRef
54.
Chen, A., Raule, N., Chomyn, A. & Attardi, G. Decreased reactive oxygen species production in cells with mitochondrial haplogroups associated with longevity. PLoS ONE 7, e46473 (2012).PubMedPubMedCentralCrossRef
55.
Kenney, M. C. et al. Mitochondrial DNA variants mediate energy production and expression levels for CFH, C3 and EFEMP1 genes: implications for age-related macular degeneration. PLoS ONE 8, e54339 (2013).PubMedPubMedCentralCrossRef
56.
Kenney, M. C. et al. Inherited mitochondrial DNA variants can affect complement, inflammation and apoptosis pathways: insights into mitochondrial-nuclear interactions. Hum. Mol. Genet. 23, 3537–3551 (2014).PubMedCrossRef
57.
Chang, M. C. et al. Accumulation of mitochondrial DNA with 4977-bp deletion in knee cartilage — an association with idiopathic osteoarthritis. Osteoarthritis Cartilage 13, 1004–1011 (2005).PubMedCrossRef
58.
Chomyn, A. Platelet-mediated transformation of human mitochondrial DNA-less cells. Methods Enzymol. 264, 334–339 (1996).PubMedCrossRef
59.
van Gisbergen, M. W. et al. How do changes in the mtDNA and mitochondrial dysfunction influence cancer and cancer therapy? Challenges, opportunities and models. Mutat. Res. Rev. Mutat. Res. 764, 16–30 (2015).PubMedCrossRef
60.
Weng, S. W. et al. Study of insulin resistance in cybrid cells harboring diabetes-susceptible and diabetes-protective mitochondrial haplogroups. Mitochondrion 13, 888–897 (2013).PubMedCrossRef
61.
Fang, H. et al. Mitochondrial DNA haplogroups modify the risk of osteoarthritis by altering mitochondrial function and intracellular mitochondrial signals. Biochim Biophys. Acta 1862, 829–836 (2016).PubMedCrossRef
62.
Roubertoux, P. L. et al. Mitochondrial DNA modifies cognition in interaction with the nuclear genome and age in mice. Nat. Genet. 35, 65–69 (2003).PubMedCrossRef
63.
Yu, X. et al. Dissecting the effects of mtDNA variations on complex traits using mouse conplastic strains. Genome Res. 19, 159–165 (2009).PubMedPubMedCentralCrossRef
64.
Latorre-Pellicer, A. et al. Mitochondrial and nuclear DNA matching shapes metabolism and healthy ageing. Nature 535, 561–565 (2016).PubMedCrossRef
65.
Achilli, A. et al. Mitochondrial DNA backgrounds might modulate diabetes complications rather than T2DM as a whole. PLoS ONE 6, e21029 (2011).PubMedPubMedCentralCrossRef
66.
Rego-Perez, I., Fernandez-Moreno, M., Fernandez-Lopez, C., Arenas, J. & Blanco, F. J. Mitochondrial DNA haplogroups: role in the prevalence and severity of knee osteoarthritis. Arthritis Rheum. 58, 2387–2396 (2008).PubMedCrossRef
67.
Rego, I. et al. Role of European mitochondrial DNA haplogroups in the prevalence of hip osteoarthritis in Galicia, Northern Spain. Ann. Rheum. Dis. 69, 210–213 (2010).PubMedCrossRef
68.
Hudson, G. et al. No evidence of an association between mitochondrial DNA variants and osteoarthritis in 7393 cases and 5122 controls. Ann. Rheum. Dis. 72, 136–139 (2013).PubMedCrossRef
69.
Hannan, M. T., Felson, D. T. & Pincus, T. Analysis of the discordance between radiographic changes and knee pain in osteoarthritis of the knee. J. Rheumatol. 27, 1513–1517 (2000).PubMed
70.
Soto-Hermida, A. et al. Mitochondrial DNA haplogroups modulate the radiographic progression of Spanish patients with osteoarthritis. Rheumatol. Int. 35, 337–344 (2015).PubMedCrossRef
71.
Soto-Hermida, A. et al. Mitochondrial DNA (mtDNA) haplogroups influence the progression of knee osteoarthritis. Data from the Osteoarthritis Initiative (OAI). PLoS ONE 9, e112735 (2014).PubMedPubMedCentralCrossRef
72.
Wesseling, J. et al. CHECK (Cohort Hip and Cohort Knee): similarities and differences with the Osteoarthritis Initiative. Ann. Rheum. Dis. 68, 1413–1419 (2009).PubMedCrossRef
73.
Fernandez-Moreno, M. et al. Mitochondrial haplogroups define two phenotypes of osteoarthritis. Front. Physiol. 3, 129 (2012).PubMedPubMedCentralCrossRef
74.
Rego-Perez, I. et al. Mitochondrial DNA haplogroups modulate the serum levels of biomarkers in patients with osteoarthritis. Ann. Rheum. Dis. 69, 910–917 (2010).PubMedCrossRef
75.
Rego-Perez, I. et al. Mitochondrial DNA haplogroups and serum levels of proteolytic enzymes in patients with osteoarthritis. Ann. Rheum. Dis. 70, 646–652 (2011).PubMedCrossRef
76.
Valdes, A. M. & Goldring, M. B. Mitochondrial DNA haplogroups and ageing mechanisms in osteoarthritis. Ann. Rheum. Dis. 76, 939–941 (2017).PubMedCrossRef
77.
Glyn-Jones, S. et al. Osteoarthritis. Lancet 386, 376–387 (2015).PubMedCrossRef
78.
Visser, A. W. et al. The relative contribution of mechanical stress and systemic processes in different types of osteoarthritis: the NEO study. Ann. Rheum. Dis. 74, 1842–1847 (2015).PubMedCrossRef
79.
Yusuf, E. et al. Association between weight or body mass index and hand osteoarthritis: a systematic review. Ann. Rheum. Dis. 69, 761–765 (2010).PubMedCrossRef
80.
Choi, C. H. J. & Cohen, P. Adipose crosstalk with other cell types in health and disease. Exp. Cell Res. 360, 6–11 (2017).PubMedCrossRef
81.
Azamar-Llamas, D., Hernández-Molina, G., Ramos-Ávalos, B. & Furuzawa-Carballeda, J. Adipokine contribution to the pathogenesis of osteoarthritis. Mediators Inflamm. 2017, 5468023 (2017).PubMedPubMedCentralCrossRef
82.
Scotece, M. et al. Adipokines as drug targets in joint and bone disease. Drug Discov. Today 19, 241–258 (2014).PubMedCrossRef
83.
Nardelli, C. et al. Haplogroup T is an obesity risk factor: mitochondrial DNA haplotyping in a morbid obese population from southern Italy. Biomed. Res. Int. 2013, 631082 (2013).PubMedPubMedCentralCrossRef
84.
Ebner, S. et al. Mitochondrial haplogroup T is associated with obesity in Austrian juveniles and adults. PLoS ONE 10, e0135622 (2015).PubMedPubMedCentralCrossRef
85.
Yang, T. L. et al. Genetic association study of common mitochondrial variants on body fat mass. PLoS ONE 6, e21595 (2011).PubMedPubMedCentralCrossRef
86.
Knoll, N. et al. Mitochondrial DNA variants in obesity. PLoS ONE 9, e94882 (2014).PubMedPubMedCentralCrossRef
87.
Alé, A., Zhang, Y., Han, C. & Cai, D. Obesity-associated extracellular mtDNA activates central TGFβ pathway to cause blood pressure increase. Am. J. Physiol. Endocrinol. Metab. 312, E161–E174 (2017).PubMedCrossRef
88.
Heinonen, S. et al. Mitochondria-related transcriptional signature is downregulated in adipocytes in obesity: a study of young healthy MZ twins. Diabetologia 60, 169–181 (2017).PubMedCrossRef
89.
Cheng, Y. J. et al. Prevalence of diagnosed arthritis and arthritis-attributable activity limitation among adults with and without diagnosed diabetes: United States, 2008–2010. Diabetes Care 35, 1686–1691 (2012).PubMedPubMedCentralCrossRef
90.
Williams, M. F., London, D. A., Husni, E. M., Navaneethan, S. & Kashyap, S. R. Type 2 diabetes and osteoarthritis: a systematic review and meta-analysis. J. Diabetes Complications 30, 944–950 (2016).PubMedCrossRef
91.
Rosa, S. C. et al. Expression and function of the insulin receptor in normal and osteoarthritic human chondrocytes: modulation of anabolic gene expression, glucose transport and GLUT-1 content by insulin. Osteoarthritis Cartilage 19, 719–727 (2011).PubMedCrossRef
92.
Gugliucci, A. Formation of fructose-mediated advanced glycation end products and their roles in metabolic and inflammatory diseases. Adv. Nutr. 8, 54–62 (2017).PubMedPubMedCentralCrossRef
93.
Larkin, D. J. et al. Inflammatory markers associated with osteoarthritis after destabilization surgery in young mice with and without receptor for advanced glycation end-products (RAGE). Front. Physiol. 4, 121 (2013).PubMedPubMedCentralCrossRef
94.
Abella, V. et al. Adipokines, metabolic syndrome and rheumatic diseases. J. Immunol. Res. 2014, 343746 (2014).PubMedPubMedCentralCrossRef
95.
Feder, J. et al. Parental diabetes status reveals association of mitochondrial DNA haplogroup J1 with type 2 diabetes. BMC Med. Genet. 10, 60 (2009).PubMedPubMedCentralCrossRef
96.
Marom, S., Friger, M. & Mishmar, D. MtDNA meta-analysis reveals both phenotype specificity and allele heterogeneity: a model for differential association. Sci. Rep. 7, 43449 (2017).PubMedPubMedCentralCrossRef
97.
Kuo, H. M. et al. Altered mitochondrial dynamics and response to insulin in cybrid cells harboring a diabetes-susceptible mitochondrial DNA haplogroup. Free Rad. Biol. Med. 96, 116–129 (2016).PubMedCrossRef
98.
Chinnery, P. F. et al. Mitochondrial DNA haplogroups and type 2 diabetes: a study of 897 cases and 1010 controls. J. Med. Genet. 44, e80 (2007).PubMedPubMedCentralCrossRef
99.
Estopinal, C. B. et al. Mitochondrial haplogroups are associated with severity of diabetic retinopathy. Invest. Ophthalmol. Vis. Sci. 55, 5589–5595 (2014).PubMedPubMedCentralCrossRef
100.
Bregman, J. A. et al. Mitochondrial haplogroups affect severity but not prevalence of diabetic retinopathy. Invest. Ophthalmol. Vis. Sci. 58, 1346–1351 (2017).PubMedPubMedCentralCrossRef
101.
Sellam, J. & Berenbaum, F. The role of synovitis in pathophysiology and clinical symptoms of osteoarthritis. Nat. Rev. Rheumatol. 6, 625–635 (2010).PubMedCrossRef
102.
Goldring, M. B. & Otero, M. Inflammation in osteoarthritis. Curr. Opin. Rheumatol. 23, 471–478 (2011).PubMedPubMedCentralCrossRef
103.
Goldring, M. B. et al. Roles of inflammatory and anabolic cytokines in cartilage metabolism: signals and multiple effectors converge upon MMP-13 regulation in osteoarthritis. Eur. Cell. Mater. 21, 202–220 (2011).PubMedPubMedCentralCrossRef
104.
Zhang, Q. et al. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 464, 104–107 (2010).PubMedPubMedCentralCrossRef
105.
Escames, G. et al. Mitochondrial DNA and inflammatory diseases. Hum. Genet. 131, 161–173 (2012).PubMedCrossRef
106.
Tang, S. et al. Increased IL-33 in synovial fluid and paired serum is associated with disease activity and autoantibodies in rheumatoid arthritis. Clin. Dev. Immunol. 2013, 985301 (2013).PubMedPubMedCentral
107.
Loeser, R. F. et al. Microarray analysis reveals age-related differences in gene expression during the development of osteoarthritis in mice. Arthritis Rheum. 64, 705–717 (2012).PubMedPubMedCentralCrossRef
108.
Atilano, S. R. et al. Mitochondrial DNA variants can mediate methylation status of inflammation, angiogenesis and signaling genes. Hum. Mol. Genet. 24, 4491–4503 (2015).PubMedPubMedCentralCrossRef
109.
Bougault, C. et al. Stress-induced cartilage degradation does not depend on the NLRP3 inflammasome in human osteoarthritis and mouse models. Arthritis Rheum. 64, 3972–3981 (2012).PubMedCrossRef
110.
Nakahira, K. et al. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat. Immunol. 12, 222–230 (2011).PubMedCrossRef
111.
Zhou, R., Yazdi, A. S., Menu, P. & Tschopp, J. A role for mitochondria in NLRP3 inflammasome activation. Nature 469, 221–225 (2011).PubMedCrossRef
112.
Lepetsos, P. & Papavassiliou, A. G. ROS/oxidative stress signaling in osteoarthritis. Biochim Biophys. Acta 1862, 576–591 (2016).PubMedCrossRef
113.
Jones, D. P. Radical-free biology of oxidative stress. Am. J. Physiol. Cell Physiol. 295, C849–C868 (2008).PubMedPubMedCentralCrossRef
114.
Henrotin, Y. E., Bruckner, P. & Pujol, J. P. The role of reactive oxygen species in homeostasis and degradation of cartilage. Osteoarthritis Cartilage 11, 747–755 (2003).PubMedCrossRef
115.
Henrotin, Y., Kurz, B. & Aigner, T. Oxygen and reactive oxygen species in cartilage degradation: friends or foes? Osteoarthritis Cartilage 13, 643–654 (2005).PubMedCrossRef
116.
Marcuello, A. et al. Human mitochondrial variants influence on oxygen consumption. Mitochondrion 9, 27–30 (2009).PubMedCrossRef
117.
Zhang, J. et al. Strikingly higher frequency in centenarians and twins of mtDNA mutation causing remodeling of replication origin in leukocytes. Proc. Natl Acad. Sci. USA 100, 1116–1121 (2003).PubMedPubMedCentralCrossRef
118.
Vidal-Bralo, L. et al. Specific premature epigenetic aging of cartilage in osteoarthritis. Aging 8, 2222–2231 (2016).PubMedPubMedCentralCrossRef
119.
Goldring, M. B. Chondrogenesis, chondrocyte differentiation, and articular cartilage metabolism in health and osteoarthritis. Ther. Adv. Musculoskelet. Dis. 4, 269–285 (2012).PubMedPubMedCentralCrossRef
120.
Valdes, A. M., Glass, D. & Spector, T. D. Omics technologies and the study of human ageing. Nat. Rev. Genet. 14, 601–607 (2013).PubMedCrossRef
121.
Sun, N., Youle, R. J. & Finkel, T. The mitochondrial basis of aging. Mol. Cell 61, 654–666 (2016).PubMedPubMedCentralCrossRef
122.
Greene, M. A. & Loeser, R. F. Aging-related inflammation in osteoarthritis. Osteoarthritis Cartilage 23, 1966–1971 (2015).PubMedPubMedCentralCrossRef
123.
Loeser, R. F., Collins, J. A. & Diekman, B. O. Ageing and the pathogenesis of osteoarthritis. Nat. Rev. Rheumatol. 12, 412–420 (2016).PubMedPubMedCentralCrossRef
124.
Cesari, M. et al. Sarcopenia, obesity, and inflammation — results from the Trial of Angiotensin Converting Enzyme Inhibition and Novel Cardiovascular Risk Factors study. Am. J. Clin. Nutr. 82, 428–434 (2005).PubMedCrossRef
125.
Fu, Y. et al. Aging promotes sirtuin 3-dependent cartilage superoxide dismutase 2 acetylation and osteoarthritis. Arthritis Rheumatol. 68, 1887–1898 (2016).PubMedPubMedCentralCrossRef
126.
Hirschey, M. D., Shimazu, T., Huang, J. Y. & Verdin, E. Acetylation of mitochondrial proteins. Methods Enzymol. 457, 137–147 (2009).PubMedCrossRef
127.
D’Aquila, P., Rose, G., Panno, M. L., Passarino, G. & Bellizzi, D. SIRT3 gene expression: a link between inherited mitochondrial DNA variants and oxidative stress. Gene 497, 323–329 (2012).PubMedCrossRef
128.
Payne, B. A. & Chinnery, P. F. Mitochondrial dysfunction in aging: much progress but many unresolved questions. Biochim. Biophys. Acta 1847, 1347–1353 (2015).PubMedPubMedCentralCrossRef
129.
Kim, J. et al. Mitochondrial DNA damage is involved in apoptosis caused by pro-inflammatory cytokines in human OA chondrocytes. Osteoarthritis Cartilage 18, 424–432 (2010).PubMedCrossRef
130.
Reed, K. N., Wilson, G., Pearsall, A. & Grishko, V. I. The role of mitochondrial reactive oxygen species in cartilage matrix destruction. Mol. Cell. Biochem. 397, 195–201 (2014).PubMedCrossRef
131.
Ferrington, D. A. et al. Increased retinal mtDNA damage in the CFH variant associated with age-related macular degeneration. Exp. Eye Res. 145, 269–277 (2016).PubMedPubMedCentralCrossRef
132.
Krzywanski, D. M. et al. Endothelial cell bioenergetics and mitochondrial DNA damage differ in humans having African or West Eurasian maternal ancestry. Circ. Cardiovasc. Genet. 9, 26–36 (2016).PubMedPubMedCentralCrossRef
133.
Ross, O. A. et al. Mitochondrial DNA polymorphism: its role in longevity of the Irish population. Exp. Gerontol. 36, 1161–1178 (2001).PubMedCrossRef
134.
Raule, N. et al. The co-occurrence of mtDNA mutations on different oxidative phosphorylation subunits, not detected by haplogroup analysis, affects human longevity and is population specific. Aging Cell 13, 401–407 (2014).PubMedCrossRef
135.
Domínguez-Garrido, E. et al. Association of mitochondrial haplogroup J and mtDNA oxidative damage in two different North Spain elderly populations. Biogerontology 10, 435–442 (2009).PubMedCrossRef
136.
Rea, I. M. et al. Mitochondrial J haplogroup is associated with lower blood pressure and anti-oxidant status: findings in octo/nonagenarians from the BELFAST Study. Age 35, 1445–1456 (2013).PubMedCrossRef
137.
Fernandez-Moreno, M. et al. mtDNA haplogroup J modulates telomere length and nitric oxide production. BMC Musculoskelet. Disord. 12, 283 (2011).PubMedPubMedCentralCrossRef
138.
Maruszak, A., Canter, J. A., Styczynska, M., Zekanowski, C. & Barcikowska, M. Mitochondrial haplogroup H and Alzheimer’s disease — is there a connection? Neurobiol. Aging 30, 1749–1755 (2009).PubMedCrossRef
139.
Gaweda-Walerych, K. & Zekanowski, C. The impact of mitochondrial DNA and nuclear genes related to mitochondrial functioning on the risk of Parkinson’s disease. Curr. Genom. 14, 543–559 (2013).CrossRef
140.
Blein, S. et al. An original phylogenetic approach identified mitochondrial haplogroup T1a1 as inversely associated with breast cancer risk in BRCA2 mutation carriers. Breast Cancer Res. 17, 61 (2015).PubMedPubMedCentralCrossRef
141.
Tranah, G. J. Mitochondrial-nuclear epistasis: implications for human aging and longevity. Ageing Res. Rev. 10, 238–252 (2011).PubMedCrossRef
142.
Warner, S. C. & Valdes, A. M. Genetic association studies in osteoarthritis: is it fairytale? Curr. Opin. Rheumatol. 29, 103–109 (2017).PubMedCrossRef
143.
Roach, H. I. et al. Association between the abnormal expression of matrix-degrading enzymes by human osteoarthritic chondrocytes and demethylation of specific CpG sites in the promoter regions. Arthritis Rheum. 52, 3110–3124 (2005).PubMedCrossRef
144.
Reynard, L. N. & Loughlin, J. Genetics and epigenetics of osteoarthritis. Maturitas 71, 200–204 (2012).PubMedCrossRef
145.
Hashimoto, K. et al. Regulated transcription of human matrix metalloproteinase 13 (MMP13) and interleukin-1β (IL1B) genes in chondrocytes depends on methylation of specific proximal promoter CpG sites. J. Biol. Chem. 288, 10061–10072 (2013).PubMedPubMedCentralCrossRef
146.
Fernández-Tajes, J. et al. Genome-wide DNA methylation analysis of articular chondrocytes reveals a cluster of osteoarthritic patients. Ann. Rheum. Dis. 73, 668–677 (2014).PubMedCrossRef
147.
Rushton, M. et al. Characterization of the cartilage DNA methylome in knee and hip osteoarthritis. Arthritis Rheumatol. 66, 2450–2460 (2014).PubMedPubMedCentralCrossRef
148.
Horan, M. P. & Cooper, D. N. The emergence of the mitochondrial genome as a partial regulator of nuclear function is providing new insights into the genetic mechanisms underlying age-related complex disease. Hum. Genet. 133, 435–458 (2014).PubMedCrossRef
149.
Bellizzi, D., D’Aquila, P., Giordano, M., Montesanto, A. & Passarino, G. Global DNA methylation levels are modulated by mitochondrial DNA variants. Epigenomics 4, 17–27 (2012).PubMedCrossRef
150.
Schroeder, E. A., Raimundo, N. & Shadel, G. S. Epigenetic silencing mediates mitochondria stress-induced longevity. Cell Metab. 17, 954–964 (2013).PubMedPubMedCentralCrossRef