Skip to main content
Top

12-09-2018 | Osteoarthritis | Review | Article

Modern-day environmental factors in the pathogenesis of osteoarthritis

Journal: Nature Reviews Rheumatology

Authors: Francis Berenbaum, Ian J. Wallace, Daniel E. Lieberman, David T. Felson

Publisher: Nature Publishing Group UK

Abstract

The prevalence of osteoarthritis (OA) is rising for reasons that are not fully understood. In this Opinion article, we review the possibility that OA is an evolutionary mismatch disease, which is a disease more common today than in the past because genes inherited from previous generations are inadequately or imperfectly adapted to modern environmental conditions. We focus on four major environmental factors in OA pathogenesis that have become ubiquitous within the past half-century: obesity, metabolic syndrome, dietary changes and physical inactivity. Because a cure for OA does not yet exist, prevention strategies that target these modifiable environmental factors are needed to curb further increases in OA prevalence.
Glossary
Adaptation
A phenotypic trait favoured by natural selection because it improves an organism’s ability to survive and reproduce.
Developed nations
Wealthy countries with post-industrial economies and advanced technological infrastructure.
Hunter–gatherers
People who subsist on foraged wild plants and hunted wild animals, in contrast to agriculturalists who subsist mainly on domesticated plants and animals.
Knee adduction moments
Dynamic rotational forces (torques) that act on the knee in the coronal plane, applying a compressive force to the medial side of the knee.
Kellgren−Lawrence score
A common method of classifying the severity of knee osteoarthritis using radiography.
Mechaflammation
Focal inflammation owing to a local mechanical insult.
Metaflammation
Chronic, low-grade, metabolic and systemic inflammation.
Varus malalignment
A deformity of the knee in which the distal leg is angled medially in relation to the axis of the thigh, resulting in a bowlegged appearance.
Literature
1.
Felson, D. T. et al. Osteoarthritis: new insights. Part 1: the disease and its risk factors. Ann. Intern. Med. 133, 635–646 (2000).PubMed
2.
Bijlsma, J. W., Berenbaum, F. & Lafeber, F. P. Osteoarthritis: an update with relevance for clinical practice. Lancet 377, 2115–2126 (2011).PubMed
3.
Wallace, I. J. et al. Knee osteoarthritis has doubled in prevalence since the mid-20th century. Proc. Natl Acad. Sci. USA 114, 9332–9336 (2017).PubMedPubMedCentral
4.
Nguyen, U. S. et al. Increasing prevalence of knee pain and symptomatic knee osteoarthritis: survey and cohort data. Ann. Intern. Med. 155, 725–732 (2011).PubMedPubMedCentral
5.
GBD 2013 DALYs and HALE Collaborators. Global, regional, and national disability-adjusted life years (DALYs) for 306 diseases and injuries and healthy life expectancy (HALE) for 188 countries, 1990-2013: quantifying the epidemiological transition. Lancet 386, 2145–2191 (2015).PubMedCentral
6.
Kiadaliri, A. A., Lohmander, L. S., Moradi-Lakeh, M., Petersson, I. F. & Englund, M. High and rising burden of hip and knee osteoarthritis in the Nordic region, 1990–2015. Acta Orthop. 89, 177–183 (2017).PubMedPubMedCentral
7.
Sandell, L. J. Etiology of osteoarthritis: genetics and synovial joint development. Nat. Rev. Rheumatol. 8, 77–89 (2012).PubMed
8.
Gluckman, P. D. & Hanson, M. A. Mismatch: The Lifestyle Diseases Timebomb (Oxford Univ. Press, 2013).
9.
Lieberman, D. E. The Story of the Human Body: Evolution, Health and Disease (Pantheon Books, 2013).
10.
Rose, M. R. & Lauder, G. V. Adaptation (Academic Press, 1996).
11.
Menke, A., Casagrande, S., Geiss, L. & Cowie, C. C. Prevalence of and trends in diabetes among adults in the United States, 1988–2012. JAMA 314, 1021–1029 (2015).PubMed
12.
Zuk, M. Paleofantasy: What Evolution Really Tells Us About Sex, Diet, and How We Live (W. H. Norton, 2014).
13.
Pontzer, H. et al. Locomotor anatomy and biomechanics of the Dmanisi hominins. J. Hum. Evol. 58, 492–504 (2010).PubMed
14.
Larsen, C. S. et al. Bioarchaeology of Neolithic Çatalhöyük: lives and lifestyles of an early farming society in transition. J. World Prehistory 28, 27–68 (2015).
15.
Rogers, J. & Dieppe, P. Is tibiofemoral osteoarthritis in the knee joint a new disease? Ann. Rheum. Dis. 53, 612–613 (1994).PubMedPubMedCentral
16.
Inoue, K. et al. Prevalence of large-joint osteoarthritis in Asian and Caucasian skeletal populations. Rheumatology 40, 70–73 (2001).PubMed
17.
Lieberman, D. E. Is exercise really medicine? An evolutionary perspective. Curr. Sports Med. Rep. 14, 313–319 (2015).PubMed
18.
Reyes, C. et al. Association between overweight and obesity and risk of clinically diagnosed knee, hip, and hand osteoarthritis: a population-based cohort study. Arthritis Rheum. 68, 1869–1875 (2016).
19.
Felson, D. T. Epidemiology of hip and knee osteoarthritis. Epidemiol. Rev. 10, 1–28 (1988).PubMed
20.
Ng, M. et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 384, 766–781 (2014).PubMedPubMedCentral
21.
Wluka, A. E., Lombard, C. B. & Cicuttini, F. M. Tackling obesity in knee osteoarthritis. Nat. Rev. Rheumatol. 9, 225–235 (2013).PubMed
22.
Felson, D. T., Anderson, J. J., Naimark, A., Walker, A. M. & Meenan, R. F. Obesity and knee osteoarthritis. The Framingham Study. Ann. Intern. Med. 109, 18–24 (1988).PubMed
23.
Gelber, A. C. et al. Body mass index in young men and the risk of subsequent knee and hip osteoarthritis. Am. J. Med. 107, 542–548 (1999).PubMed
24.
Richette, P. et al. Benefits of massive weight loss on symptoms, systemic inflammation and cartilage turnover in obese patients with knee osteoarthritis. Ann. Rheum. Dis. 70, 139–144 (2011).PubMed
25.
King, W. C. et al. Change in pain and physical function following bariatric surgery for severe obesity. JAMA 315, 1362–1371 (2016).PubMedPubMedCentral
26.
Gersing, A. S. et al. Is weight loss associated with less progression of changes in knee articular cartilage among obese and overweight patients as assessed with MR imaging over 48 months? Data from the Osteoarthritis Initiative. Radiology 284, 508–520 (2017).PubMed
27.
Stefanik, J. J. et al. Changes in pain sensitization after bariatric surgery. Arthritis Care Res. https://​doi.​org/​10.​1002/​acr.​23513 (2018).CrossRef
28.
Wearing, S. C., Hennig, E. M., Byrne, N. M., Steele, J. R. & Hills, A. P. Musculoskeletal disorders associated with obesity: a biomechanical perspective. Obes. Rev. 7, 239–250 (2006).PubMed
29.
Griffin, T. M. & Guilak, F. The role of mechanical loading in the onset and progression of osteoarthritis. Exerc. Sport Sci. Rev. 33, 195–200 (2005).PubMed
30.
Giorgi, M., Carriero, A., Shefelbine, S. J. & Nowlan, N. C. Effects of normal and abnormal loading conditions on morphogenesis of the prenatal hip joint: application to hip dysplasia. J. Biomechan. 48, 3390–3397 (2015).
31.
Felson, D. T. Osteoarthritis as a disease of mechanics. Osteoarthritis Cartilage 21, 10–15 (2013).PubMedPubMedCentral
32.
Felson, D. T., Goggins, J., Niu, J., Zhang, Y. & Hunter, D. J. The effect of body weight on progression of knee osteoarthritis is dependent on alignment. Arthritis Rheum. 50, 3904–3909 (2004).PubMed
33.
Slemenda, C. et al. Reduced quadriceps strength relative to body weight: a risk factor for knee osteoarthritis in women? Arthritis Rheum. 41, 1951–1959 (1998).PubMed
34.
Buckwalter, J. A. & Mankin, H. J. Articular cartilage: tissue design and chondrocyte-matrix interactions. Instr. Course Lect. 47, 477–486 (1998).PubMed
35.
Sanchez-Adams, J., Leddy, H. A., McNulty, A. L., O’Conor, C. J. & Guilak, F. The mechanobiology of articular cartilage: bearing the burden of osteoarthritis. Curr. Rheumatol. Rep. 16, 451–451 (2014).PubMedPubMedCentral
36.
Pottie, P. et al. Obesity and osteoarthritis: more complex than predicted! Ann. Rheum. Dis. 65, 1403–1405 (2006).PubMedPubMedCentral
37.
Houard, X., Goldring, M. B. & Berenbaum, F. Homeostatic mechanisms in articular cartilage and role of inflammation in osteoarthritis. Curr. Rheumatol. Rep. 15, 375–375 (2013).PubMedPubMedCentral
38.
Millward-Sadler, S. J. & Salter, D. M. Integrin-dependent signal cascades in chondrocyte mechanotransduction. Ann. Biomed. Engineer. 32, 435–446 (2004).
39.
Loeser, R. F., Goldring, S. R., Scanzello, C. R. & Goldring, M. B. Osteoarthritis: a disease of the joint as an organ. Arthritis Rheum. 64, 1697–1707 (2012).PubMedPubMedCentral
40.
Yusuf, E. et al. Association between weight or body mass index and hand osteoarthritis: a systematic review. Ann. Rheum. Dis. 69, 761–765 (2010).PubMed
41.
Visser, A. W. et al. The relative contribution of mechanical stress and systemic processes in different types of osteoarthritis: the NEO study. Ann. Rheum. Dis. 74, 1842–1847 (2015).PubMed
42.
Hotamisligil, G. S. Inflammation, metaflammation and immunometabolic disorders. Nature 542, 177–185 (2017).PubMed
43.
Berenbaum, F., Eymard, F. & Houard, X. Osteoarthritis, inflammation and obesity. Curr. Opin. Rheumatol. 25, 114–118 (2013).PubMed
44.
Griffin, T. M., Huebner, J. L., Kraus, V. B. & Guilak, F. Extreme obesity due to impaired leptin signaling in mice does not cause knee osteoarthritis. Arthritis Rheum. 60, 2935–2944 (2009).PubMedPubMedCentral
45.
Berenbaum, F. Osteoarthritis as an inflammatory disease (osteoarthritis is not osteoarthrosis!). Osteoarthritis Cartilage 21, 16–21 (2013).PubMed
46.
Francisco, V. et al. Biomechanics, obesity, and osteoarthritis. The role of adipokines: when the levee breaks. J. Orthop. Res. 36, 594–604 (2018).PubMed
47.
Eckel, R. H., Grundy, S. M. & Zimmet, P. Z. The metabolic syndrome. Lancet 365, 1415–1428 (2005).PubMed
48.
Kaplan, H. et al. Coronary atherosclerosis in indigenous South American Tsimane: a cross-sectional cohort study. Lancet 389, 1730–1739 (2017).PubMedPubMedCentral
49.
Kaminer, B. & Lutz, W. P. Blood pressure in Bushmen of the Kalahari Desert. Circulation 22, 289–295 (1960).PubMed
50.
Raichlen, D. A. et al. Physical activity patterns and biomarkers of cardiovascular disease risk in hunter-gatherers. Am. J. Hum. Biol. 29, e22919 (2017).
51.
Moore, J. X., Chaudhary, N. & Akinyemiju, T. Metabolic syndrome prevalence by race/ethnicity and sex in the United States, National Health and Nutrition Examination Survey, 1988–2012. Prev. Chron. Dis. 14, E24 (2017).
52.
Lee, Y. S., Wollam, J. & Olefsky, J. M. An integrated view of immunometabolism. Cell 172, 22–40 (2018).PubMedPubMedCentral
53.
Berenbaum, F., Griffin, T. M. & Liu-Bryan, R. Metabolic regulation of inflammation in osteoarthritis. Arthritis Rheumatol. 69, 9–21 (2017).PubMedPubMedCentral
54.
Zhuo, Q., Yang, W., Chen, J. & Wang, Y. Metabolic syndrome meets osteoarthritis. Nat. Rev. Rheumatol. 8, 729 (2012).PubMed
55.
Rosa, S. C. et al. Impaired glucose transporter-1 degradation and increased glucose transport and oxidative stress in response to high glucose in chondrocytes from osteoarthritic versus normal human cartilage. Arthritis Res. Ther. 11, R80 (2009).PubMedPubMedCentral
56.
Rosa, S. C. et al. Role of glucose as a modulator of anabolic and catabolic gene expression in normal and osteoarthritic human chondrocytes. J. Cell. Biochem. 112, 2813–2824 (2011).PubMed
57.
Vaamonde-Garcia, C. et al. The nuclear factor-erythroid 2-related factor/heme oxygenase-1 axis is critical for the inflammatory features of type 2 diabetes-associated osteoarthritis. J. Biol. Chem. 292, 14505–14515 (2017).PubMedPubMedCentral
58.
Berenbaum, F. Diabetes-induced osteoarthritis: from a new paradigm to a new phenotype. Ann. Rheum. Dis. 70, 1354–1356 (2011).PubMed
59.
Shane Anderson, A. & Loeser, R. F. Why is osteoarthritis an age-related disease? Best practice and research. Clin. Rheumatol. 24, 15–26 (2010).
60.
Steenvoorden, M. M. et al. Activation of receptor for advanced glycation end products in osteoarthritis leads to increased stimulation of chondrocytes and synoviocytes. Arthritis Rheum. 54, 253–263 (2006).PubMed
61.
de Munter, W., van der Kraan, P. M., van den Berg, W. B. & van Lent, P. L. High systemic levels of low-density lipoprotein cholesterol: fuel to the flames in inflammatory osteoarthritis? Rheumatology 55, 16–24 (2016).PubMed
62.
Conaghan, P. G., Vanharanta, H. & Dieppe, P. A. Is progressive osteoarthritis an atheromatous vascular disease? Ann. Rheum. Dis. 64, 1539–1541 (2005).PubMedPubMedCentral
63.
Niu, J., Clancy, M., Aliabadi, P., Vasan, R. & Felson, D. T. Metabolic syndrome, its components, and knee osteoarthritis: The Framingham Osteoarthritis Study. Arthritis Rheumatol. 69, 1194–1203 (2017).PubMedPubMedCentral
64.
Louati, K., Vidal, C., Berenbaum, F. & Sellam, J. Association between diabetes mellitus and osteoarthritis: systematic literature review and meta-analysis. RMD Open 1, e000077 (2015).PubMedPubMedCentral
65.
Neumann, J. et al. Type 2 diabetes patients have accelerated cartilage matrix degeneration compared to diabetes free controls: data from the Osteoarthritis Initiative. Osteoarthritis Cartilage 26, 751–761 (2018).PubMedPubMedCentral
66.
Ruiz-Nunez, B., Pruimboom, L., Dijck-Brouwer, D. A. & Muskiet, F. A. Lifestyle and nutritional imbalances associated with Western diseases: causes and consequences of chronic systemic low-grade inflammation in an evolutionary context. J. Nutr. Biochem. 24, 1183–1201 (2013).PubMed
67.
Lepetsos, P. & Papavassiliou, A. G. ROS/oxidative stress signaling in osteoarthritis. Biochim. Biophys. Acta 1862, 576–591 (2016).
68.
Simopoulos, A. P. An increase in the omega-6/omega-3 fatty acid ratio increases the risk for obesity. Nutrients 8, 128 (2016).PubMedPubMedCentral
69.
Wu, C. L. et al. Dietary fatty acid content regulates wound repair and the pathogenesis of osteoarthritis following joint injury. Ann. Rheum. Dis. 74, 2076–2083 (2015).PubMed
70.
Cai, A. et al. Metabolic enrichment of omega-3 polyunsaturated fatty acids does not reduce the onset of idiopathic knee osteoarthritis in mice. Osteoarthritis Cartilage 22, 1301–1309 (2014).PubMedPubMedCentral
71.
Senftleber, N. et al. Marine oil supplements for arthritis pain: a systematic review and meta-analysis of randomized trials. Nutrients 9, 42 (2017).PubMedCentral
72.
Hill, C. L. et al. Fish oil in knee osteoarthritis: a randomised clinical trial of low dose versus high dose. Ann. Rheum. Dis. 75, 23–29 (2016).PubMed
73.
Davidson, R. K. et al. Sulforaphane represses matrix-degrading proteases and protects cartilage from destruction in vitro and in vivo. Arthritis Rheum. 65, 3130–3140 (2013).PubMedPubMedCentral
74.
Berenbaum, F. Does broccoli protect from osteoarthritis? Joint Bone Spine 81, 284–286 (2014).PubMed
75.
Davidson, R. et al. Isothiocyanates are detected in human synovial fluid following broccoli consumption and can affect the tissues of the knee joint. Sci. Rep. 7, 3398 (2017).PubMedPubMedCentral
76.
McAlindon, T. E. et al. Do antioxidant micronutrients protect against the development and progression of knee osteoarthritis? Arthritis Rheum. 39, 648–656 (1996).PubMed
77.
Sanghi, D. et al. Elucidation of dietary risk factors in osteoarthritis knee — a case-control study. J. Am. College Nutr. 34, 15–20 (2015).
78.
Peregoy, J. & Wilder, F. V. The effects of vitamin C supplementation on incident and progressive knee osteoarthritis: a longitudinal study. Publ. Health Nutr. 14, 709–715 (2011).
79.
Chaganti, R. K. et al. High plasma levels of vitamin C and E are associated with incident radiographic knee osteoarthritis. Osteoarthritis Cartilage 22, 190–196 (2014).PubMed
80.
Kraus, V. B. et al. Ascorbic acid increases the severity of spontaneous knee osteoarthritis in a guinea pig model. Arthritis Rheum. 50, 1822–1831 (2004).PubMed
81.
Misra, D. et al. Vitamin K deficiency is associated with incident knee osteoarthritis. Am. J. Med. 126, 243–248 (2013).PubMedPubMedCentral
82.
Neogi, T. et al. Low vitamin K status is associated with osteoarthritis in the hand and knee. Arthritis Rheum. 54, 1255–1261 (2006).PubMed
83.
Shea, M. K. et al. The association between vitamin K status and knee osteoarthritis features in older adults: the Health, Aging and Body Composition Study. Osteoarthritis Cartilage 23, 370–378 (2015).PubMed
84.
Datta, P. et al. High-fat diet-induced acceleration of osteoarthritis is associated with a distinct and sustained plasma metabolite signature. Sci. Rep. 7, 8205 (2017).PubMedPubMedCentral
85.
Mooney, R. A., Sampson, E. R., Lerea, J., Rosier, R. N. & Zuscik, M. J. High-fat diet accelerates progression of osteoarthritis after meniscal/ligamentous injury. Arthritis Res. Ther. 13, R198 (2011).PubMedPubMedCentral
86.
Le Chatelier, E. et al. Richness of human gut microbiome correlates with metabolic markers. Nature 500, 541–546 (2013).PubMed
87.
Biagi, E. et al. Through ageing, and beyond: gut microbiota and inflammatory status in seniors and centenarians. PLOS ONE 5, e10667 (2010).PubMedPubMedCentral
88.
Conlon, M. A. & Bird, A. R. The impact of diet and lifestyle on gut microbiota and human health. Nutrients 7, 17–44 (2015).
89.
Brahe, L. K., Astrup, A. & Larsen, L. H. Is butyrate the link between diet, intestinal microbiota and obesity-related metabolic diseases? Obes. Rev. 14, 950–959 (2013).PubMed
90.
Russell, W. R., Hoyles, L., Flint, H. J. & Dumas, M. E. Colonic bacterial metabolites and human health. Curr. Opin. Microbiol. 16, 246–254 (2013).PubMed
91.
Boulange, C. L., Neves, A. L., Chilloux, J., Nicholson, J. K. & Dumas, M. E. Impact of the gut microbiota on inflammation, obesity, and metabolic disease. Genome Med. 8, 42 (2016).PubMedPubMedCentral
92.
Huang, Z. & Kraus, V. B. Does lipopolysaccharide-mediated inflammation have a role in OA? Nat. Rev. Rheumatol. 12, 123–129 (2016).PubMed
93.
Collins, K. H. et al. Relationship between inflammation, the gut microbiota, and metabolic osteoarthritis development: studies in a rat model. Osteoarthritis Cartilage 23, 1989–1998 (2015).PubMed
94.
Dai, Z., Lu, N., Niu, J., Felson, D. T. & Zhang, Y. Dietary fiber intake in relation to knee pain trajectory. Arthritis Care Res. 69, 1331–1339 (2017).
95.
Dai, Z., Niu, J., Zhang, Y., Jacques, P. & Felson, D. T. Dietary intake of fibre and risk of knee osteoarthritis in two US prospective cohorts. Ann. Rheum. Dis. 76, 1411–1419 (2017).PubMed
96.
Schott, E. M. et al. Targeting the gut microbiome to treat the osteoarthritis of obesity. JCI Insight https://​doi.​org/​10.​1172/​jci.​insight.​95997 (2018).
97.
Palmieri-Smith, R. M. et al. The role of athletic trainers in preventing and managing posttraumatic osteoarthritis in physically active populations: a consensus statement of the Athletic Trainers’ Osteoarthritis Consortium. J. Athlet. Train. 52, 610–623 (2017).
98.
Shaw, C. N. & Stock, J. T. Extreme mobility in the Late Pleistocene? Comparing limb biomechanics among fossil Homo, varsity athletes and Holocene foragers. J. Hum. Evol. 64, 242–249 (2013).PubMed
99.
Berger, T. D. & Trinkaus, E. Patterns of trauma among the Neandertals. J. Archaeol. Sci. 22, 841–852 (1995).
100.
Hallal, P. C. et al. Global physical activity levels: surveillance progress, pitfalls and prospects. Lancet 380, 247–257 (2012).PubMed
101.
Jacka, F. N. et al. Lower levels of physical activity in childhood associated with adult depression. J. Sci. Med. Sport 14, 222–226 (2011).PubMed
102.
Arsenis, N. C., You, T., Ogawa, E. F., Tinsley, G. M. & Zuo, L. Physical activity and telomere length: impact of aging and potential mechanisms of action. Oncotarget 8, 45008–45019 (2017).PubMedPubMedCentral
103.
Weibel, E. R., Taylor, C. R. & Hoppeler, H. The concept of symmorphosis: a testable hypothesis of structure-function relationship. Proc. Natl Acad. Sci. USA 88, 10357–10361 (1991).PubMedPubMedCentral
104.
Roos, E. M. & Arden, N. K. Strategies for the prevention of knee osteoarthritis. Nat. Rev. Rheumatol. 12, 92–101 (2016).PubMed
105.
Slemenda, C. et al. Quadriceps weakness and osteoarthritis of the knee. Ann. Intern. Med. 127, 97–104 (1997).PubMed
106.
Vanwanseele, B., Eckstein, F., Knecht, H., Spaepen, A. & Stussi, E. Longitudinal analysis of cartilage atrophy in the knees of patients with spinal cord injury. Arthritis Rheum. 48, 3377–3381 (2003).PubMed
107.
Vanwanseele, B., Eckstein, F., Knecht, H., Stüssi, E. & Spaepen, A. Knee cartilage of spinal cord-injured patients displays progressive thinning in the absence of normal joint loading and movement. Arthritis Rheum. 46, 2073–2078 (2002).PubMed
108.
Urquhart, D. M. et al. What is the effect of physical activity on the knee joint? A systematic review. Med. Sci. Sports Exerc. 43, 432–442 (2011).PubMed
109.
Jones, G. et al. Knee articular cartilage development in children: a longitudinal study of the effect of sex, growth, body composition, and physical activity. Pediatr. Res. 54, 230–236 (2003).PubMed
110.
Racunica, T. L. et al. Effect of physical activity on articular knee joint structures in community-based adults. Arthritis Rheum. 57, 1261–1268 (2007).PubMed
111.
Leong, D. J. et al. Matrix metalloproteinase-3 in articular cartilage is upregulated by joint immobilization and suppressed by passive joint motion. Matrix Biol. 29, 420–426 (2010).PubMedPubMedCentral
112.
Nomura, M. et al. Thinning of articular cartilage after joint unloading or immobilization. An experimental investigation of the pathogenesis in mice. Osteoarthritis Cartilage 25, 727–736 (2017).PubMed
113.
Paukkonen, K., Jurvelin, J. & Helminen, H. J. Effects of immobilization on the articular cartilage in young rabbits. A quantitative light microscopic stereological study. Clin. Orthop. Relat. research, 270–280 (1986).
114.
Campbell, T. M., Reilly, K., Laneuville, O., Uhthoff, H. & Trudel, G. Bone replaces articular cartilage in the rat knee joint after prolonged immobilization. Bone 106, 42–51 (2018).PubMed
115.
Bricca, A., Juhl, C. B., Grodzinsky, A. J. & Roos, E. M. Impact of a daily exercise dose on knee joint cartilage — a systematic review and meta-analysis of randomized controlled trials in healthy animals. Osteoarthritis Cartilage 25, 1223–1237 (2017).PubMed
116.
Teichtahl, A. J. et al. The interaction between physical activity and amount of baseline knee cartilage. Rheumatology 55, 1277–1284 (2016).PubMed
117.
Arokoski, J. P., Jurvelin, J. S., Vaatainen, U. & Helminen, H. J. Normal and pathological adaptations of articular cartilage to joint loading. Scand. J. Med. Sci. Sports 10, 186–198 (2000).PubMed