Skip to main content
Top

07-03-2018 | Osteoarthritis | Article

Detection of differentially expressed genes involved in osteoarthritis pathology

Journal: Journal of Orthopaedic Surgery and Research

Author: Honglai Tian

Publisher: BioMed Central

Abstract

Background

Osteoarthritis (OA) is the most common chronic disorder of joints; however, the key genes and transcription factors (TFs) associated with OA are still unclear. Through bioinformatics tools, the study aimed to understand the mechanism of genes associated with the development of OA.

Methods

Four gene expression profiling datasets were used to identify differentially expressed genes (DEGs) between OA and healthy control samples by a meta-analysis. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed with Multifaceted Analysis Tool for Human Transcriptome (MATHT). Subsequently, a protein–protein interaction (PPI) network was constructed for these DEGs. Significant network modules were identified using ReactomeFIViz, and the pathway of each module was enriched using MATHT. In addition, TFs in the DEGs were identified.

Results

In total, 690 DEGs were identified between OA and healthy control samples, including 449 upregulated and 241 downregulated DEGs. Additionally, 622 nodes and 2752 interactions constituted the PPI network, including 401 upregulated and 221 downregulated DEGs. Among them, FOS, TWIST1, POU2F1, SMARCA4, and CREBBP were also identified as TFs. RT-PCR results showed that the expression levels of Fos, Twist1, Pou2f1, Smarca4, and Crebbp decreased in mice with OA. In addition, FOS, TWIST1, SMARCA4, and CREBBP were involved in the positive regulation of transcription from the RNA polymerase II promoter.

Conclusions

TWIST1, POU2F1, SMARCA4, and CREBBP may play an important role in OA pathology.
Literature
1.
Resnik CS, Bohndorf K. Arthritis. Musculoskeletal Diseases 2017-2020. Cham: Springer; 2017. p. 33-7.
2.
Cheung RT, Ngai SP, Ho KK. Chinese translation and validation of the Oxford Knee Scale for patients with knee osteoarthritis. Hong Kong Physiotherapy Journal. 2017;37:46–9.CrossRef
3.
Chehab E, Asay J, Favre J, Andriacchi T. Features of gait mechanics and biology that predict cartilage thickness change in a population at risk for age-related knee osteoarthritis. Osteoarthr Cartil. 2017;25:S20–1.CrossRef
4.
Filardo G, Kon E, Longo UG, Madry H, Marchettini P, Marmotti A, et al. Non-surgical treatments for the management of early osteoarthritis. Knee Surg Sports Traumatol Arthrosc. 2016;24(6):1775–85.CrossRefPubMed
5.
Harris KP, Driban JB, Sitler MR, Cattano NM, Balasubramanian E, Hootman JM. Tibiofemoral osteoarthritis after surgical or nonsurgical treatment of anterior cruciate ligament rupture: a systematic review. J Athl Train. 2017;52(6):507–17.CrossRefPubMed
6.
Polyakova J, Zavodovsky B, Seewordova L, et al. THU0476 Pathogenic Relationship Between Osteoarthritis, Overweight and Inflammation. Ann Rheum Dis. 2015;74(Suppl 2):372.2-372.
7.
Thomas AC, Hubbard-Turner T, Wikstrom EA, Palmieri-Smith RM. Epidemiology of posttraumatic osteoarthritis. J Athl Train. 2017;52(6):491–6.CrossRefPubMed
8.
Richardson D, Pearson RG, Kurian N, Latif ML, Garle MJ, Barrett DA, et al. Characterisation of the cannabinoid receptor system in synovial tissue and fluid in patients with osteoarthritis and rheumatoid arthritis. Arthritis research & therapy. 2008;10(2):R43.CrossRef
9.
Sagar DR, Staniaszek LE, Okine BN, Woodhams S, Norris LM, Pearson RG, et al. Tonic modulation of spinal hyperexcitability by the endocannabinoid receptor system in a rat model of osteoarthritis pain. Arthritis & Rheumatology. 2010;62(12):3666–76.CrossRef
10.
Huggins JP, Smart TS, Langman S, Taylor L, Young T. An efficient randomised, placebo-controlled clinical trial with the irreversible fatty acid amide hydrolase-1 inhibitor PF-04457845, which modulates endocannabinoids but fails to induce effective analgesia in patients with pain due to osteoarthritis of the knee. Pain. 2012;153(9):1837–46.CrossRefPubMed
11.
Schlosburg JE, Kinsey SG, Lichtman AH. Targeting fatty acid amide hydrolase (FAAH) to treat pain and inflammation. AAPS J. 2009;11(1):39–44.CrossRefPubMedPubMedCentral
12.
Nakajima M, Miyamoto Y, Ikegawa S. Cloning and characterization of the osteoarthritis-associated gene DVWA. J Bone Miner Metab. 2011;29(3):300–8.CrossRefPubMed
13.
Latchman DS. Transcription factors: an overview. International Journal of Biochemistry & Cell Biology. 1997;29(12):1305.CrossRef
14.
Ray A, Ray BK. An inflammation-responsive transcription factor in the pathophysiology of osteoarthritis. Biorheology. 2008;45(3-4):399.PubMed
15.
Gautier L, Cope L, Bolstad BM, Irizarry RA. Affy—analysis of Affymetrix GeneChip data at the probe level. Bioinformatics. 2004;20(3):307–15.CrossRefPubMed
16.
Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics. 2003;4(2):249–64.CrossRefPubMed
17.
Qi C, Hong L, Cheng Z, Yin Q. Identification of metastasis-associated genes in colorectal cancer using metaDE and survival analysis. Oncol Lett. 2016;11(1):568–74.CrossRefPubMed
18.
Wu G, Dawson E, Duong A, et al. ReactomeFIViz: a Cytoscape app for pathway and network-based data analysis. F1000Research. 2014;3:146.
19.
Hayami T, Pickarski M, Zhuo Y, Wesolowski GA, Rodan GA, Duong LT. Characterization of articular cartilage and subchondral bone changes in the rat anterior cruciate ligament transection and meniscectomized models of osteoarthritis. Bone. 2006;38(2):234–43.CrossRefPubMed
20.
Lee MS, Lowe GN, Strong DD, Wergedal JE, Glackin CA. TWIST, a basic helix-loop-helix transcription factor, can regulate the human osteogenic lineage. J Cell Biochem. 1999;75(4):566.CrossRefPubMed
21.
Hopwood B, Tsykin A, Findlay DM, Fazzalari NL. Microarray gene expression profiling of osteoarthritic bone suggests altered bone remodelling, WNT and transforming growth factor-β/bone morphogenic protein signalling. Osteoarthritis & Cartilage. 2007;9(5):R100.
22.
Kumarasinghe D, Perilli E, Tsangari H, Truong L, Kuliwaba J, Hopwood B, et al. Critical molecular regulators, histomorphometric indices and their correlations in the trabecular bone in primary hip osteoarthritis. Osteoarthr Cartil. 2010;18(10):1337–44.CrossRefPubMed
23.
Hopwood B, Tsykin A, Findlay DM, Fazzalari NL. Microarray gene expression profiling of osteoarthritic bone suggests altered bone remodelling, WNT and transforming growth factor-β/bone morphogenic protein signalling. Arthritis research & therapy. 2007;9(5):R100.CrossRef
24.
Krishnan V, Bryant HU, Macdougald OA. Regulation of bone mass by Wnt signaling. J Clin Investig. 2006;116(5):1202.CrossRefPubMedPubMedCentral
25.
Xie C-H, Cao Y-M, Huang Y, Shi Q-W, Guo J-H, Fan Z-W, et al. Long non-coding RNA TUG1 contributes to tumorigenesis of human osteosarcoma by sponging miR-9-5p and regulating POU2F1 expression. Tumor Biol. 2016;37(11):15031–41.CrossRef
26.
Wang P, Dai M, Xuan W, Mceachin RC, Jackson AU, Scott LJ, et al. SNP function portal: a web database for exploring the function implication of SNP alleles. Bioinformatics. 2006;22(14):523–9.CrossRef
27.
Ting WC, Chen LM, Pao JB, Yang YP, You BJ, Chang TY, et al. Common genetic variants in Wnt signaling pathway genes as potential prognostic biomarkers for colorectal cancer. PLoS One. 2013;8(2):e56196.CrossRefPubMedPubMedCentral
28.
Kinne RW, Boehm S, Iftner T, Aigner T, Vornehm S, Weseloh G, et al. Synovial fibroblast-like cells strongly express jun-B and C-fos proto-oncogenes in rheumatoid- and osteoarthritis. Scand J Rheumatol Suppl. 1995;101(s101):121.CrossRefPubMed
29.
Tsuji M, Hirakawa K, Kato A, Fujii K. The possible role of c-fos expression in rheumatoid cartilage destruction. J Rheumatol. 2000;27(7):1606–21.PubMed
30.
Haseeb A, Leigh D, Haqqi T. A small molecule harpagoside inhibits IL-1beta-induced expression of IL-6 by blocking the expression of C-FOS in primary human osteoarthritis chondrocytes. Osteoarthr Cartil. 2015;23:A155–6.CrossRef
31.
Hamers AA, Argmann C, Moerland PD, Koenis DS, Marinković G, Sokolović M, et al. Nur77-deficiency in bone marrow-derived macrophages modulates inflammatory responses, extracellular matrix homeostasis, phagocytosis and tolerance. BMC Genomics. 2016;17(1):162.CrossRefPubMedPubMedCentral