Skip to main content
Top

21-08-2017 | Osteoarthritis | Article

Integrative epigenomics, transcriptomics and proteomics of patient chondrocytes reveal genes and pathways involved in osteoarthritis

Journal: Scientific Reports

Authors: Julia Steinberg, Graham R. S. Ritchie, Theodoros I. Roumeliotis, Raveen L. Jayasuriya, Matthew J. Clark, Roger A. Brooks, Abbie L. A. Binch, Karan M. Shah, Rachael Coyle, Mercedes Pardo, Christine L. Le Maitre, Yolande F. M. Ramos, Rob G. H. H. Nelissen, Ingrid Meulenbelt, Andrew W. McCaskie, Jyoti S. Choudhary, J. Mark Wilkinson, Eleftheria Zeggini

Publisher: Nature Publishing Group UK

Abstract

Osteoarthritis (OA) is a common disease characterized by cartilage degeneration and joint remodeling. The underlying molecular changes underpinning disease progression are incompletely understood. We investigated genes and pathways that mark OA progression in isolated primary chondrocytes taken from paired intact versus degraded articular cartilage samples across 38 patients undergoing joint replacement surgery (discovery cohort: 12 knee OA, replication cohorts: 17 knee OA, 9 hip OA patients). We combined genome-wide DNA methylation, RNA sequencing, and quantitative proteomics data. We identified 49 genes differentially regulated between intact and degraded cartilage in at least two –omics levels, 16 of which have not previously been implicated in OA progression. Integrated pathway analysis implicated the involvement of extracellular matrix degradation, collagen catabolism and angiogenesis in disease progression. Using independent replication datasets, we showed that the direction of change is consistent for over 90% of differentially expressed genes and differentially methylated CpG probes. AQP1, COL1A1 and CLEC3B were significantly differentially regulated across all three –omics levels, confirming their differential expression in human disease. Through integration of genome-wide methylation, gene and protein expression data in human primary chondrocytes, we identified consistent molecular players in OA progression that replicated across independent datasets and that have translational potential.
Literature
1.
Vos, T. et al. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. The Lancet 380, 2163–2196, doi:10.​1016/​s0140-6736(12)61729-2 (2012).CrossRef
2.
Dieppe, P. A. & Lohmander, L. S. Pathogenesis and management of pain in osteoarthritis. The Lancet 365, 965–973, doi:10.​1016/​s0140-6736(05)71086-2 (2005).CrossRef
3.
Valdes, A. M. & Spector, T. D. Genetic epidemiology of hip and knee osteoarthritis. Nat Rev Rheumatol 7, 23–32, doi:10.​1038/​nrrheum.​2010.​191 (2011).CrossRefPubMed
4.
Reynard, L. N. & Loughlin, J. The genetics and functional analysis of primary osteoarthritis susceptibility. Expert Rev. Mol. Med. 15, doi:10.​1017/​erm.​2013.​4 (2013).
5.
Ruiz-Romero, C., Fernández-Puente, P., Calamia, V. & Blanco, F. J. Lessons from the proteomic study of osteoarthritis. Expert Review of Proteomics 12, 433–443, doi:10.​1586/​14789450.​2015.​1065182 (2015).CrossRefPubMed
6.
Ramos, Y. F. & Meulenbelt, I. The role of epigenetics in osteoarthritis: current perspective. Curr Opin Rheumatol. doi:10.​1097/​bor.​0000000000000355​ (2016).
7.
Steinberg, J. & Zeggini, E. Functional genomics in osteoarthritis: Past, present, and future. Journal of orthopaedic research: official publication of the Orthopaedic Research Society 34, 1105–1110, doi:10.​1002/​jor.​23296 (2016).CrossRef
8.
Mankin, H. J., Dorfman, H., Lippiello, L. & Zarins, A. Biochemical and metabolic abnormalities in articular cartilage from osteo-arthritic human hips. II. Correlation of morphology with biochemical and metabolic data. The Journal of bone and joint surgery. American volume 53, 523–537 (1971).CrossRefPubMed
9.
Pearson, R. G., Kurien, T., Shu, K. S. S. & Scammell, B. E. Histopathology grading systems for characterisation of human knee osteoarthritis – reproducibility, variability, reliability, correlation, and validity. Osteoarthritis and Cartilage 19, 324–331, doi:10.​1016/​j.​joca.​2010.​12.​005 (2011).CrossRefPubMed
10.
Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biology 14, R36, doi:10.​1186/​gb-2013-14-4-r36 (2013).CrossRefPubMedCentralPubMed
11.
Anders, S., Pyl, P. T. & Huber, W. HTSeq–a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169, doi:10.​1093/​bioinformatics/​btu638 (2014).CrossRefPubMedCentralPubMed
12.
Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140, doi:10.​1093/​bioinformatics/​btp616 (2009).CrossRefPubMedCentralPubMed
13.
Morris, T. J. et al. ChAMP: 450k Chip Analysis Methylation Pipeline. Bioinformatics 30, 428–430, doi:10.​1093/​bioinformatics/​btt684 (2014).CrossRefPubMed
14.
Pidsley, R. et al. A data-driven approach to preprocessing Illumina 450K methylation array data. BMC Genomics 14, 293, doi:10.​1186/​1471-2164-14-293 (2013).CrossRefPubMedCentralPubMed
15.
Barfield, R. T., Kilaru, V., Smith, A. K. & Conneely, K. N. CpGassoc: an R function for analysis of DNA methylation microarray data. Bioinformatics 28, 1280–1281, doi:10.​1093/​bioinformatics/​bts124 (2012).CrossRefPubMedCentralPubMed
16.
den Hollander, W. et al. Knee and hip articular cartilage have distinct epigenomic landscapes: implications for future cartilage regeneration approaches. Annals of the Rheumatic Diseases 73, 2208–2212, doi:10.​1136/​annrheumdis-2014-205980 (2014).CrossRef
17.
Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842, doi:10.​1093/​bioinformatics/​btq033 (2010).CrossRefPubMedCentralPubMed
18.
Ramos, Y. F. M. et al. Genes Involved in the Osteoarthritis Process Identified through Genome Wide Expression Analysis in Articular Cartilage; the RAAK Study. PLoS ONE 9, e103056, doi:10.​1371/​journal.​pone.​0103056 (2014).ADSCrossRefPubMedCentralPubMed
19.
Kanehisa, M. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Research 28, 27–30, doi:10.​1093/​nar/​28.​1.​27 (2000).CrossRefPubMedCentralPubMed
20.
Matthews, L. et al. Reactome knowledgebase of human biological pathways and processes. Nucleic Acids Research 37, D619–D622, doi:10.​1093/​nar/​gkn863 (2009).CrossRefPubMed
21.
Binns, D. et al. QuickGO: a web-based tool for Gene Ontology searching. Bioinformatics 25, 3045–3046, doi:10.​1093/​bioinformatics/​btp536 (2009).CrossRefPubMedCentralPubMed
22.
Nakayama, N. A novel chordin-like BMP inhibitor, CHL2, expressed preferentially in chondrocytes of developing cartilage and osteoarthritic joint cartilage. Development 131, 229–240, doi:10.​1242/​dev.​00901 (2004).CrossRefPubMed
23.
Uhlen, M. et al. Tissue-based map of the human proteome. Science 347, 1260419–1260419, doi:10.​1126/​science.​1260419 (2015).CrossRefPubMed
24.
Mapp, P. I. & Walsh, D. A. Mechanisms and targets of angiogenesis and nerve growth in osteoarthritis. Nat Rev Rheumatol 8, 390–398, doi:10.​1038/​nrrheum.​2012.​80 (2012).CrossRefPubMed
25.
Law, V. et al. DrugBank 4.0: shedding new light on drug metabolism. Nucleic Acids Research 42, D1091–D1097, doi:10.​1093/​nar/​gkt1068 (2013).CrossRefPubMedCentralPubMed
26.
Attur, M. et al. Elevated expression of periostin in human osteoarthritic cartilage and its potential role in matrix degradation via matrix metalloproteinase-13. The FASEB Journal 29, 4107–4121, doi:10.​1096/​fj.​15-272427 (2015).CrossRefPubMedCentralPubMed
27.
Chijimatsu, R. et al. Expression and pathological effects of periostin in human osteoarthritis cartilage. BMC Musculoskelet Disord 16, 215, doi:10.​1186/​s12891-015-0682-3 (2015).CrossRefPubMedCentralPubMed
28.
Lourido, L. et al. Quantitative Proteomic Profiling of Human Articular Cartilage Degradation in Osteoarthritis. J. Proteome Res. 13, 6096–6106, doi:10.​1021/​pr501024p (2014).CrossRefPubMed
29.
Coutu, D. L. et al. Periostin, a Member of a Novel Family of Vitamin K-dependent Proteins, Is Expressed by Mesenchymal Stromal Cells. Journal of Biological Chemistry 283, 17991–18001, doi:10.​1074/​jbc.​m708029200 (2008).CrossRefPubMed
30.
Misra, D. et al. Vitamin K Deficiency Is Associated with Incident Knee Osteoarthritis. The American Journal of Medicine 126, 243–248, doi:10.​1016/​j.​amjmed.​2012.​10.​011 (2013).CrossRefPubMedCentralPubMed
31.
Meulenbelt, I. M. et al. The first international workshop on the epigenetics of osteoarthritis. Connect Tissue Res 58, 37–48, doi:10.​3109/​03008207.​2016.​1168409 (2017).CrossRefPubMed
32.
Jeffries, M. A. et al. Genome-Wide DNA Methylation Study Identifies Significant Epigenomic Changes in Osteoarthritic Cartilage. Arthritis & Rheumatology 66, 2804–2815, doi:10.​1002/​art.​38762 (2014).CrossRef
33.
Moazedi-Fuerst, F. C. et al. Epigenetic differences in human cartilage between mild and severe OA. Journal of Orthopaedic Research 32, 1636–1645, doi:10.​1002/​jor.​22722 (2014).CrossRefPubMed
34.
Karlsson, C. et al. Genome-wide expression profiling reveals new candidate genes associated with osteoarthritis. Osteoarthritis and Cartilage 18, 581–592, doi:10.​1016/​j.​joca.​2009.​12.​002 (2010).
35.
Tew, S. R., McDermott, B. T., Fentem, R. B., Peffers, M. J. & Clegg, P. D. Transcriptome-Wide Analysis of Messenger RNA Decay in Normal and Osteoarthritic Human Articular Chondrocytes. Arthritis & Rheumatology 66, 3052–3061, doi:10.​1002/​art.​38849 (2014).CrossRef
36.
Snelling, S. et al. A gene expression study of normal and damaged cartilage in anteromedial gonarthrosis, a phenotype of osteoarthritis. Osteoarthritis and Cartilage 22, 334–343, doi:10.​1016/​j.​joca.​2013.​12.​009 (2014).CrossRefPubMedCentralPubMed
37.
Dunn, S. L. et al. Gene expression changes in damaged osteoarthritic cartilage identify a signature of non-chondrogenic and mechanical responses. Osteoarthritis and Cartilage 24, 1431–1440, doi:10.​1016/​j.​joca.​2016.​03.​007 (2016).CrossRefPubMedCentralPubMed
38.
Stenberg, J., Rüetschi, U., Skiöldebrand, E., Kärrholm, J. & Lindahl, A. Quantitative proteomics reveals regulatory differences in the chondrocyte secretome from human medial and lateral femoral condyles in osteoarthritic patients. Proteome Sci 11, 43, doi:10.​1186/​1477-5956-11-43 (2013).CrossRefPubMedCentralPubMed
39.
Ruiz-Romero, C. et al. Proteomic analysis of human osteoarthritic chondrocytes reveals protein changes in stress and glycolysis. Proteomics 8, 495–507, doi:10.​1002/​pmic.​200700249 (2008).CrossRefPubMed
40.
den Hollander, W. et al. Transcriptional Associations of Osteoarthritis-Mediated Loss of Epigenetic Control in Articular Cartilage. Arthritis & Rheumatology 67, 2108–2116, doi:10.​1002/​art.​39162 (2015).CrossRef
41.
Bonin, C. A. et al. Identification of Differentially Methylated Regions in New Genes Associated with Knee Osteoarthritis. Gene 576, 312–318, doi:10.​1016/​j.​gene.​2015.​10.​037 (2016).CrossRefPubMed
42.
Rushton, M. D. et al. Methylation quantitative trait locus analysis of osteoarthritis links epigenetics with genetic risk. Human Molecular Genetics 24, 7432–7444, doi:10.​1093/​hmg/​ddv433 (2015).CrossRefPubMedCentralPubMed
43.
Bush, P. G. & Hall, A. C. The volume and morphology of chondrocytes within non-degenerate and degenerate human articular cartilage. Osteoarthritis and Cartilage 11, 242–251, doi:10.​1016/​s1063-4584(02)00369-2 (2003).CrossRefPubMed
44.
Musumeci, G. et al. Aquaporin 1 (AQP1) expression in experimentally induced osteoarthritic knee menisci: An in vivo and in vitro study. Tissue and Cell 45, 145–152, doi:10.​1016/​j.​tice.​2012.​10.​004 (2013).CrossRefPubMed
45.
Geyer, M. et al. Differential transcriptome analysis of intraarticular lesional vs intact cartilage reveals new candidate genes in osteoarthritis pathophysiology. Osteoarthritis and Cartilage 17, 328–335, doi:10.​1016/​j.​joca.​2008.​07.​010 (2009).CrossRefPubMed
46.
Westergaard, U. B., Andersen, M. H., Heegaard, C. W., Fedosov, S. N. & Petersen, T. E. Tetranectin binds hepatocyte growth factor and tissue-type plasminogen activator. Eur J Biochem 270, 1850–1854, doi:10.​1046/​j.​1432-1033.​2003.​03549.​x (2003).CrossRefPubMed
47.
Valdes, A. M. et al. Association study of candidate genes for the prevalence and progression of knee osteoarthritis. Arthritis & Rheumatism 50, 2497–2507, doi:10.​1002/​art.​20443 (2004).CrossRef
48.
Tchetina, E. V. Developmental Mechanisms in Articular Cartilage Degradation in Osteoarthritis. Arthritis 2011, 1–16, doi:10.​1155/​2011/​683970 (2011).CrossRef
49.
Xia, B. et al. Osteoarthritis Pathogenesis: A Review of Molecular Mechanisms. Calcif Tissue Int 95, 495–505, doi:10.​1007/​s00223-014-9917-9 (2014).CrossRefPubMedCentralPubMed
50.
Remst, D. F. G. et al. Gene Expression Analysis of Murine and Human Osteoarthritis Synovium Reveals Elevation of Transforming Growth Factor β-Responsive Genes in Osteoarthritis-Related Fibrosis. Arthritis & Rheumatology 66, 647–656, doi:10.​1002/​art.​38266 (2014).CrossRef
51.
Halpain, S. & Dehmelt, L. The MAP1 family of microtubule-associated proteins. Genome Biology 7, 224, doi:10.​1186/​gb-2006-7-6-224 (2006).CrossRefPubMedCentralPubMed
52.
Blain, E. J. Involvement of the cytoskeletal elements in articular cartilage homeostasis and pathology. International Journal of Experimental Pathology 90, 1–15, doi:10.​1111/​j.​1365-2613.​2008.​00625.​x (2009).CrossRefPubMedCentralPubMed
53.
Kanenari, M., Zhao, J. & Abiko, Y. Enhancement of microtubule-associated protein-1 Alpha gene expression in osteoblasts by low level laser irradiation. Laser Ther 20, 47–51 (2011).CrossRefPubMedCentralPubMed
54.
Péterfi, Z. & Geiszt, M. Peroxidasins: novel players in tissue genesis. Trends in Biochemical Sciences 39, 305–307, doi:10.​1016/​j.​tibs.​2014.​05.​005 (2014).CrossRefPubMed
55.
Balakrishnan, L. et al. Proteomic analysis of human osteoarthritis synovial fluid. Clin Proteomics 11, 6, doi:10.​1186/​1559-0275-11-6 (2014).CrossRefPubMedCentralPubMed
56.
Hopwood, B., Tsykin, A., Findlay, D. M. & Fazzalari, N. L. Microarray gene expression profiling of osteoarthritic bone suggests altered bone remodelling, WNT and transforming growth factor-β/bone morphogenic protein signalling. Arthritis Res Ther 9, R100, doi:10.​1186/​ar2301 (2007).CrossRefPubMedCentralPubMed
57.
Goldring, M. B. & Otero, M. Inflammation in osteoarthritis. Current Opinion in Rheumatology 23, 471–478, doi:10.​1097/​bor.​0b013e328349c2b1​ (2011).CrossRefPubMedCentralPubMed
58.
Wojdasiewicz, P., Poniatowski, Ł. A. & Szukiewicz, D. The Role of Inflammatory and Anti-Inflammatory Cytokines in the Pathogenesis of Osteoarthritis. Mediators of Inflammation 2014, 1–19, doi:10.​1155/​2014/​561459 (2014).CrossRef
59.
Rushton, M. D. et al. Characterization of the Cartilage DNA Methylome in Knee and Hip Osteoarthritis. Arthritis & Rheumatology 66, 2450–2460, doi:10.​1002/​art.​38713 (2014).CrossRef