Skip to main content
Top

13-06-2018 | Osteoarthritis | Review | Article

Molecular transport in articular cartilage — what have we learned from the past 50 years?

Journal: Nature Reviews Rheumatology

Authors: Chris D. DiDomenico, Marianne Lintz, Lawrence J. Bonassar

Publisher: Nature Publishing Group UK

Abstract

Developing therapeutic molecules that target chondrocytes and locally produced inflammatory factors within arthritic cartilage is an active area of investigation. The extensive studies that have been conducted over the past 50 years have enabled the accurate prediction and reliable optimization of the transport of a wide variety of molecules into cartilage. In this Review, the factors that can be used to tune the transport kinetics of therapeutics are summarized. Overall, the most crucial factor when designing new therapeutic molecules is solute size. The diffusivity and partition coefficient of a solute both decrease with increasing solute size as indicated by molecular mass or by hydrodynamic radius. Surprisingly, despite having an effective pore size of ~6 nm, molecules of ~16 nm radius can diffuse through the cartilage matrix. Alteration of the shape or charge of a solute and the application of physiological loading to cartilage can be used to predictably improve solute transport kinetics, and this knowledge can be used to improve the development of therapeutic agents for osteoarthritis that target the cartilage.
Glossary
Hydrodynamic radius
A molecular characteristic that quantifies the size of the solute; this characteristic assumes that the solute can be approximated as a sphere, so it might not be appropriate to use for all solutes.
Anisotropic
The state of having properties that depend on direction (for example, parallel versus perpendicular to the articular surface).
Fixed charge density
The concentration of charge that results from the constituent parts of the cartilage matrix, primarily determined by the presence of sulfated glycosaminoglycans.
Poroelastic mechanical response
The time-dependent behaviour of cartilage, which arises from fluid movement through the porous matrix.
Diffusion coefficient
A solute transport metric that quantifies how quickly diffusive transport occurs in a medium; this metric decreases rapidly with increasing solute size and also depends on other factors.
Partition coefficient
A solute transport metric that quantifies the equilibrium concentration of a solute in cartilage compared with the concentration of the solute in synovial fluid; this metric often decreases with increasing solute size.
Cyclical mechanical loading
The mechanical loading of cartilage tissue within the joint, which occurs over a wide range of frequencies and amplitudes, depending on the type of physical activity involved.
Convective transport
Transport of solutes caused by induced fluid flow within cartilage; this type of transport can be caused by mechanical loading of the joint during walking or jumping.
Donnan equilibrium
The unequal distribution of solutes across the cartilage–synovial fluid interface as a result of the high fixed charge density of the tissue, which produces high concentrations of cationic solutes and low concentrations of anionic solutes in cartilage.
Isoelectric point
A molecular characteristic that quantifies the charge of a solute by calculating the pH at which the solute is neutrally charged. Values above 7 denote a positive charge, whereas values below 7 denote a negative charge.
Linear solutes
Solutes with a flexible, chain-like molecular structure that can change shape from an extended linear geometry to a more compact geometry (random coil).
Spherical solutes
Solutes with a generally spherical molecular structure that cannot substantially change their shape.
Peclet number
A solute transport metric that quantifies the relative contributions of convective transport and diffusive transport. Values above 1 indicate that convection is more important than diffusion, whereas values below 1 indicate that diffusion is more important than convection.
Literature
1.
Evans, C. H., Kraus, V. B. & Setton, L. A. Progress in intra-articular therapy. Nat. Rev. Rheumatol. 10, 11–22 (2013).PubMedPubMedCentralCrossRef
2.
Evans, C. H. Drug delivery to chondrocytes. Osteoarthritis Cartilage 24, 1–3 (2016).PubMedCrossRef
3.
Bajpayee, A. G. & Grodzinsky, A. J. Cartilage-targeting drug delivery: can electrostatic interactions help? Nat. Rev. Rheumatol. 13, 183–193 (2017).PubMedCrossRef
4.
Moos, V., Fickert, S., Müller, B., Weber, U. & Sieper, J. Immunohistological analysis of cytokine expression in human osteoarthritic and healthy cartilage. J. Rheumatol. 26, 870–879 (1999).PubMed
5.
Fernandes, J. C., Martel-Pelletier, J. & Pelletier, J.-P. The role of cytokines in osteoarthritis pathophysiology. Biorheology 39, 237–246 (2002).PubMed
6.
Hampel, U. et al. Chemokine and cytokine levels in osteoarthritis and rheumatoid arthritis synovial fluid. J. Immunol. Methods 396, 134–139 (2013).PubMedCrossRef
7.
Feldmann, M., Brennan, F. M. & Maini, R. N. Role of cytokines in rheumatoid arthritis. Annu. Rev. Immunol. 14, 397–440 (1996).PubMedCrossRef
8.
Steiner, G. et al. Cytokine production by synovial T cells in rheumatoid arthritis. Rheumatology 38, 202–213 (1999).PubMedCrossRef
9.
Feldmann, M. & Maini, R. N. Anti -TNFα therapy of rheumatoid arthritis: what have we learned? Annu. Rev. Immunol. 19, 163–196 (2001).PubMedCrossRef
10.
McInnes, I. B. & Schett, G. Cytokines in the pathogenesis of rheumatoid arthritis. Nat. Rev. Immunol. 7, 429–442 (2007).PubMedCrossRef
11.
Gerwin, N., Hops, C. & Lucke, A. Intraarticular drug delivery in osteoarthritis. Adv. Drug Deliv. Rev. 58, 226–242 (2006).PubMedCrossRef
12.
McAlindon, T. E. et al. OARSI guidelines for the non-surgical management of knee osteoarthritis. Osteoarthritis Cartilage 22, 363–388 (2014).PubMedCrossRef
13.
da Costa, B. R. et al. Effectiveness of non-steroidal anti-inflammatory drugs for the treatment of pain in knee and hip osteoarthritis: a network meta-analysis. Lancet 390, e21–e33 (2017).PubMedCrossRef
14.
McCabe, P. S., Maricar, N., Parkes, M. J., Felson, D. T. & O’Neill, T. W. The efficacy of intra-articular steroids in hip osteoarthritis: a systematic review. Osteoarthritis Cartilage 24, 1509–1517 (2016).PubMedCrossRef
15.
Raynauld, J.-P. et al. Safety and efficacy of long-term intraarticular steroid injections in osteoarthritis of the knee: a randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 48, 370–377 (2003).PubMedCrossRef
16.
Garg, N., Perry, L. & Deodhar, A. Intra-articular and soft tissue injections, a systematic review of relative efficacy of various corticosteroids. Clin. Rheumatol. 33, 1695–1706 (2014).PubMedCrossRef
17.
Carubbi, F. et al. Safety and efficacy of intra-articular anti-tumor necrosis factor α agents compared to corticosteroids in a treat-to-target strategy in patients with inflammatory arthritis and monoarthritis flare. Int. J. Immunopathol. Pharmacol. 29, 252–266 (2016).PubMedCrossRef
18.
Urech, D. M. et al. Anti-inflammatory and cartilage-protecting effects of an intra-articularly injected anti-TNFα single-chain Fv antibody (ESBA105) designed for local therapeutic use. Ann. Rheum. Dis. 69, 443–449 (2010).PubMedCrossRef
19.
Hunter, D. J. Are there promising biologic therapies for osteoarthritis? Curr. Rheumatol. Rep. 10, 19–25 (2008).PubMedCrossRef
20.
Mow, V. C., Holmes, M. H. & Michael Lai, W. Fluid transport and mechanical properties of articular cartilage: a review. J. Biomech. 17, 377–394 (1984).PubMedCrossRef
21.
Poole, A. R. et al. Composition and structure of articular cartilage: a template for tissue repair. Clin. Orthop. Relat. Res. 1, S26–S33 (2001).CrossRef
22.
Hwang, W. S. et al. Collagen fibril structure of normal, aging, and osteoarthritic cartilage. J. Pathol. 167, 425–433 (1992).PubMedCrossRef
23.
Maroudas, A. Physicochemical properties of cartilage in the light of ion exchange theory. Biophys. J. 8, 575–595 (1968).PubMedPubMedCentralCrossRef
24.
Maroudas, A. Biophysical chemistry of cartilaginous tissues with special reference to solute and fluid transport. Biorheology 12, 233–248 (1975).PubMedCrossRef
25.
Kim, Y. J., Bonassar, L. J. & Grodzinsky, A. J. The role of cartilage streaming potential, fluid flow and pressure in the stimulation of chondrocyte biosynthesis during dynamic compression. J. Biomech. 28, 1055–1066 (1995).PubMedCrossRef
26.
Zhu, W., Mow, V. C., Koob, T. J. & Eyre, D. R. Viscoelastic shear properties of articular cartilage and the effects of glycosidase treatments. J. Orthop. Res. 11, 771–781 (1993).PubMedCrossRef
27.
Fortin, M., Soulhat, J., Shirazi-Adl, A., Hunziker, E. B. & Buschmann, M. D. Unconfined compression of articular cartilage: nonlinear behavior and comparison with a fibril-reinforced biphasic model. J. Biomech. Eng. 122, 189–195 (2000).PubMedCrossRef
28.
Albro, M. B. et al. Dynamic loading of immature epiphyseal cartilage pumps nutrients out of vascular canals. J. Biomech. 44, 1654–1659 (2011).PubMedPubMedCentralCrossRef
29.
Sophia Fox, A. J., Bedi, A. & Rodeo, S. A. The basic science of articular cartilage: structure, composition and function. Orthopaedics 1, 461–468 (2009).
30.
Garcia, A. M., Frank, E. H., Grimshaw, P. E. & Grodzinsky, A. J. Contributions of fluid convection and electrical migration to transport in cartilage: relevance to loading. Arch. Biochem. Biophys. 333, 317–325 (1996).PubMedCrossRef
31.
Maroudas, A. Distribution and diffusion of solutes in articular cartilage. Biophys. J. 10, 365–379 (1970).PubMedPubMedCentralCrossRef
32.
Leddy, H. A. & Guilak, F. Site-specific molecular diffusion in articular cartilage measured using fluorescence recovery after photobleaching. Ann. Biomed. Eng. 31, 753–760 (2003).PubMedCrossRef
33.
Leddy, H. A., Haider, M. A. & Guilak, F. Diffusional anisotropy in collagenous tissues: fluorescence imaging of continuous point photobleaching. Biophys. J. 91, 311–316 (2006).PubMedPubMedCentralCrossRef
34.
Travascio, F. & Gu, W. Y. Simultaneous measurement of anisotropic solute diffusivity and binding reaction rates in biological tissues by FRAP. Ann. Biomed. Eng. 39, 53–65 (2011).PubMedCrossRef
35.
Fetter, N. L., Leddy, H. A., Guilak, F. & Nunley, J. A. Composition and transport properties of human ankle and knee cartilage. J. Orthop. Res. 24, 211–219 (2006).PubMedCrossRef
36.
Garcia, A. M. et al. Transport and binding of insulin-like growth factor I through articular cartilage. Arch. Biochem. Biophys. 415, 69–79 (2003).PubMedCrossRef
37.
Byun, S. et al. Transport and equilibrium uptake of a peptide inhibitor of PACE4 into articular cartilage is dominated by electrostatic interactions. Arch. Biochem. Biophys. 499, 32–39 (2010).PubMedPubMedCentralCrossRef
38.
Maroudas, A. Transport of solutes through cartilage: permeability to large molecules. J. Anat. 122, 335–347 (1976).PubMedPubMedCentral
39.
Maroudas, A. & Bullough, P. Permeability of articular cartilage. Nature 219, 1260–1261 (1968).PubMedCrossRef
40.
Bajpayee, A. G., Wong, C. R., Bawendi, M. G., Frank, E. H. & Grodzinsky, A. J. Avidin as a model for charge driven transport into cartilage and drug delivery for treating early stage post-traumatic osteoarthritis. Biomaterials 35, 538–549 (2014).PubMedCrossRef
41.
Nimer, E., Schneiderman, R. & Maroudas, A. Diffusion and partition of solutes in cartilage under static load. Biophys. Chem. 106, 125–146 (2003).PubMedCrossRef
42.
Bonassar, L. J., Grodzinsky, A. J., Srinivasan, A., Davila, S. G. & Trippel, S. B. Mechanical and physicochemical regulation of the action of insulin-like growth factor-I on articular cartilage. Arch. Biochem. Biophys. 379, 57–63 (2000).PubMedCrossRef
43.
Bonassar, L. J. et al. The effect of dynamic compression on the response of articular cartilage to insulin-like growth factor-I. J. Orthop. Res. 19, 11–17 (2001).PubMedCrossRef
44.
Buschmann, M. D. et al. Stimulation of aggrecan synthesis in cartilage explants by cyclic loading is localized to regions of high interstitial fluid flow. Arch. Biochem. Biophys. 366, 1–7 (1999).PubMedCrossRef
45.
Allen, K. D., Adams, S. B. & Setton, L. A. Evaluating intra-articular drug delivery for the treatment of osteoarthritis in a rat model. Tissue Eng. Part B. Rev. 16, 81–92 (2010).PubMedCrossRef
46.
Torzilli, P. A., Arduino, J. M., Gregory, J. D. & Bansal, M. Effect of proteoglycan removal on solute mobility in articular cartilage. J. Biomech. 30, 895–902 (1997).PubMedCrossRef
47.
Quinn, T. M., Kocian, P. & Meister, J. J. Static compression is associated with decreased diffusivity of dextrans in cartilage explants. Arch. Biochem. Biophys. 384, 327–334 (2000).PubMedCrossRef
48.
Albro, M. B., Li, R., Banerjee, R. E., Hung, C. T. & Ateshian, G. A. Validation of theoretical framework explaining active solute uptake in dynamically loaded porous media. J. Biomech. 43, 2267–2273 (2010).PubMedPubMedCentralCrossRef
49.
Quinn, T. M., Morel, V. & Meister, J. J. Static compression of articular cartilage can reduce solute diffusivity and partitioning: implications for the chondrocyte biological response. J. Biomech. 34, 1463–1469 (2001).PubMedCrossRef
50.
Chin, H. C., Moeini, M. & Quinn, T. M. Solute transport across the articular surface of injured cartilage. Arch. Biochem. Biophys. 535, 241–247 (2013).PubMedCrossRef
51.
Torzilli, P. A., Grande, D. A. & Arduino, J. M. Diffusive properties of immature articular cartilage. J. Biomed. Mater. Res. 40, 132–138 (1998).PubMedCrossRef
52.
Torzilli, P. A., Adams, T. C. & Mis, R. J. Transient solute diffusion in articular cartilage. J. Biomech. 20, 203–214 (1987).PubMedCrossRef
53.
Allhands, R. V., Torzilli, P. A. & Kallfelz, F. A. Measurement of diffusion of uncharged molecules in articular cartilage. Cornell Vet. 74, 111–123 (1984).PubMed
54.
Evans, R. C. & Quinn, T. M. Dynamic compression augments interstitial transport of a glucose-like solute in articular cartilage. Biophys. J. 91, 1541–1547 (2006).PubMedPubMedCentralCrossRef
55.
O’Hara, B. P., Urban, J. P. & Maroudas, A. Influence of cyclic loading on the nutrition of articular cartilage. Ann. Rheum. Dis. 49, 536–539 (1990).PubMedPubMedCentralCrossRef
56.
Kokkonen, H. T., Chin, H. C., Töyräs, J., Jurvelin, J. S. & Quinn, T. M. Solute transport of negatively charged contrast agents across articular surface of injured cartilage. Ann. Biomed. Eng. 45, 973–981 (2017).PubMedCrossRef
57.
Shafieyan, Y., Khosravi, N., Moeini, M. & Quinn, T. M. Diffusion of MRI and CT contrast agents in articular cartilage under static compression. Biophys. J. 107, 485–492 (2014).PubMedPubMedCentralCrossRef
58.
Decker, S. G. A., Moeini, M., Chin, H. C., Rosenzweig, D. H. & Quinn, T. M. Adsorption and distribution of fluorescent solutes near the articular surface of mechanically injured cartilage. Biophys. J. 105, 2427–2436 (2013).PubMedPubMedCentralCrossRef
59.
Burstein, D., Gray, M. L., Hartman, A. L., Gipe, R. & Foy, B. D. Diffusion of small solutes in cartilage as measured by nuclear magnetic resonance (NMR) spectroscopy and imaging. J. Orthop. Res. 11, 465–478 (1993).PubMedCrossRef
60.
Yin, Y., Zhao, C., Kuroki, S. & Ando, I. Diffusion of rodlike polypeptides with different main-chain lengths in the thermotropic liquid crystalline state as studied by the field-gradient 1H NMR method. Macromolecules 35, 2335–2338 (2002).CrossRef
61.
Foy, B. D. & Blake, J. Diffusion of paramagnetically labeled proteins in cartilage: enhancement of the 1D NMR imaging technique. J. Magn. Reson. 148, 126–134 (2001).PubMedCrossRef
62.
Honkanen, J. T. J. et al. Cationic contrast agent diffusion differs between cartilage and meniscus. Ann. Biomed. Eng. 44, 2913–2921 (2016).PubMedPubMedCentralCrossRef
63.
Kulmala, K. A. M. et al. Diffusion coefficients of articular cartilage for different CT and MRI contrast agents. Med. Eng. Phys. 32, 878–882 (2010).PubMedCrossRef
64.
Silvast, T. S., Jurvelin, J. S., Tiitu, V., Quinn, T. M. & Töyräs, J. Bath concentration of anionic contrast agents does not affect their diffusion and distribution in articular cartilage in vitro. Cartilage 4, 42–51 (2013).PubMedPubMedCentralCrossRef
65.
Arbabi, V., Pouran, B., Weinans, H. & Zadpoor, A. A. Transport of neutral solute across articular cartilage: the role of zonal diffusivities. J. Biomech. Eng. 137, 71001 (2015).CrossRef
66.
DiDomenico, C. D., Xiang Wang, Z. & Bonassar, L. J. Cyclic mechanical loading enhances transport of antibodies into articular cartilage. J. Biomech. Eng. 139, 11012 (2016).CrossRef
67.
DiDomenico, C. D. et al. The effect of antibody size and mechanical loading on solute diffusion through the articular surface of cartilage. J. Biomech. Eng. 139, 91005 (2017).CrossRef
68.
Ogston, A. G. The spaces in a uniform random suspension of fibres. Trans. Faraday Soc. 54, 1754 (1958).CrossRef
69.
Clague, D. S. & Phillips, R. J. Hindered diffusion of spherical macromolecules through dilute fibrous media. Phys. Fluids 8, 1720–1731 (1996).CrossRef
70.
Amsden, B. Solute diffusion within hydrogels. Mechanisms and models. Macromolecules 31, 8382–8395 (1998).CrossRef
71.
Renkin, E. M. Filtration, diffusion, and molecular sieving through porous cellulose membranes. J. Gen. Physiol. 38, 225–243 (1954).PubMedPubMedCentral
72.
Schneiderman, R. et al. Insulin-like growth factor-I and its complexes in normal human articular cartilage: studies of partition and diffusion. Arch. Biochem. Biophys. 324, 159–172 (1995).PubMedCrossRef
73.
Garcia, A. M., Lark, M. W., Trippel, S. B. & Grodzinsky, A. J. Transport of tissue inhibitor of metalloproteinases-1 through cartilage: contributions of fluid flow and electrical migration. J. Orthop. Res. 16, 734–742 (1998).PubMedCrossRef
74.
Ogston, A. G., Preston, B. N. & Wells, J. D. On the transport of compact particles through solutions of chain-polymers. Proc. R. Soc. A Math. Phys. Eng. Sci. 333, 297–316 (1973).CrossRef
75.
Ng, L. et al. Individual cartilage aggrecan macromolecules and their constituent glycosaminoglycans visualized via atomic force microscopy. J. Struct. Biol. 143, 242–257 (2003).PubMedCrossRef
76.
Levick, J. R. Flow through interstitium and other fibrous matrices. Q. J. Exp. Physiol. 72, 409–437 (1987).PubMedCrossRef
77.
Stell, G. & Joslin, C. G. The donnan equilibrium: a theoretical study of the effects of interionic forces. Biophys. J. 50, 855–859 (1986).PubMedPubMedCentralCrossRef
78.
Fredrickson, G. H. The theory of polymer dynamics. Curr. Opin. Solid State Mater. Sci. 1, 812–816 (1996).CrossRef
79.
de Gennes, P. G. Reptation of a polymer chain in the presence of fixed obstacles. J. Chem. Phys. 55, 572–579 (1971).CrossRef
80.
Deen, W. M. Hindered transport of large molecules in liquid-filled pores. AIChE J. 33, 1409–1425 (1987).CrossRef
81.
Pluen, A., Netti, P. A., Jain, R. K. & Berk, D. A. Diffusion of macromolecules in agarose gels: comparison of linear and globular configurations. Biophys. J. 77, 542–552 (1999).PubMedPubMedCentralCrossRef
82.
Deen, W. M., Bohrer, M. P. & Epstein, N. B. Effects of molecular size and configuration on diffusion in microporous membranes. AIChE J. 27, 952–959 (1981).CrossRef
83.
Baumgärtner, A. & Muthukumar, M. A trapped polymer chain in random porous media. J. Chem. Phys. 87, 3082 (1987).CrossRef
84.
Shen, H., Hu, Y. & Saltzman, W. M. DNA diffusion in mucus: effect of size, topology of DNAs, and transfection reagents. Biophys. J. 91, 639–644 (2006).PubMedPubMedCentralCrossRef
85.
Yamakov, V. & Milchev, A. Diffusion of a polymer chain in porous media. Phys. Rev. E 55, 1704–1712 (1997).CrossRef
86.
Pajevic, S., Bansil, R. & Konák, C. Diffusion of linear polymer chains in methyl methacrylate gels. Macromolecules 26, 305–312 (1993).CrossRef
87.
Doi, M. & Edwards, S. F. in The theory of polymer dynamics (eds Ericksen, J. L., Kinderlehrer, D.) 218–379 (Oxford Univ. Press, 1988).
88.
Tong, J. & Anderson, J. L. Partitioning and diffusion of proteins and linear polymers in polyacrylamide gels. Biophys. J. 70, 1505–1513 (1996).PubMedPubMedCentralCrossRef
89.
Davidson, M. G., Suter, U. W. & Deen, W. M. Equilibrium partitioning of flexible macromolecules between bulk solution and cylindrical pores. Macromolecules 20, 1141–1146 (1987).CrossRef
90.
Truskey, G. A., Yuan, F. & Katz, D. F. Transport phenomena in biological systems (2nd Edition) (Pearson Education, 2009).
91.
Evans, R. C. & Quinn, T. M. Solute diffusivity correlates with mechanical properties and matrix density of compressed articular cartilage. Arch. Biochem. Biophys. 442, 1–10 (2005).PubMedCrossRef
92.
Moeini, M. et al. Decreased solute adsorption onto cracked surfaces of mechanically injured articular cartilage: towards the design of cartilage-specific functional contrast agents. Biochim. Biophys. Acta 1840, 605–614 (2014).PubMedCrossRef
93.
Graham, B. T., Moore, A. C., Burris, D. L. & Price, C. Sliding enhances fluid and solute transport into buried articular cartilage contacts. Osteoarthritis Cartilage 25, 2100–2107 (2017).PubMedCrossRef
94.
Ateshian, G. A. & Weiss, J. A. in Computer Models in Biomechanics (eds Holzapfel, G. A. & Kuhl, E.) 231–249 (Springer, 2013).
95.
Yao, H. & Gu, W. Y. Convection and diffusion in charged hydrated soft tissues: a mixture theory approach. Biomech. Model. Mechanobiol. 6, 63–72 (2007).PubMedCrossRef
96.
Evans, R. C. & Quinn, T. M. Solute convection in dynamically compressed cartilage. J. Biomech. 39, 1048–1055 (2006).PubMedCrossRef
97.
Gardiner, B. et al. Solute transport in cartilage undergoing cyclic deformation. Comput. Methods Biomech. Biomed. Engin. 10, 265–278 (2007).PubMedCrossRef
98.
Ferguson, S. J., Ito, K. & Nolte, L. P. Fluid flow and convective transport of solutes within the intervertebral disc. J. Biomech. 37, 213–221 (2004).PubMedCrossRef
99.
Quinn, T. M., Studer, C., Grodzinsky, A. J. & Meister, J. J. Preservation and analysis of nonequilibrium solute concentration distributions within mechanically compressed cartilage explants. J. Biochem. Biophys. Methods 52, 83–95 (2002).PubMedCrossRef
100.
Zhang, L., Gardiner, B. S., Smith, D. W., Pivonka, P. & Grodzinsky, A. The effect of cyclic deformation and solute binding on solute transport in cartilage. Arch. Biochem. Biophys. 457, 47–56 (2007).PubMedCrossRef
101.
Hung, C. T. Modeling of neutral solute transport in a dynamically loaded porous permeable gel: implications for articular cartilage biosynthesis and tissue engineering. J. Biomech. Eng. 125, 602 (2003).PubMedPubMedCentralCrossRef
102.
Entezari, V. et al. Effect of mechanical convection on the partitioning of an anionic iodinated contrast agent in intact patellar cartilage. J. Orthop. Res. 32, 1333–1340 (2014).PubMedCrossRef
103.
Nia, H. T. et al. High-bandwidth AFM-based rheology reveals that cartilage is most sensitive to high loading rates at early stages of impairment. Biophys. J. 104, 1529–1537 (2013).PubMedPubMedCentralCrossRef
104.
Eckstein, F., Hudelmaier, M. & Putz, R. The effects of exercise on human articular cartilage. J. Anat. 208, 491–512 (2006).PubMedPubMedCentralCrossRef
105.
Chevalier, X. et al. Safety study of intraarticular injection of interleukin 1 receptor antagonist in patients with painful knee osteoarthritis: a multicenter study. J. Rheumatol. 32, 1317–1323 (2005).PubMed
106.
Chevalier, X. et al. Intraarticular injection of anakinra in osteoarthritis of the knee: a multicenter, randomized, double-blind, placebo-controlled study. Arthritis Care Res. 61, 344–352 (2009).CrossRef
107.
Bajpayee, A. G., Scheu, M., Grodzinsky, A. J. & Porter, R. M. A rabbit model demonstrates the influence of cartilage thickness on intra-articular drug delivery and retention within cartilage. J. Orthop. Res. 33, 660–667 (2015).PubMedCrossRef
108.
Ghosh, P. & Guidolin, D. Potential mechanism of action of intra-articular hyaluronan therapy in osteoarthritis: are the effects molecular weight dependent? Semin. Arthritis Rheum. 32, 10–37 (2002).PubMedCrossRef
109.
Winalski, C. S. et al. Enhancement of joint fluid with intravenously administered gadopentetate dimeglumine: technique, rationale, and implications. Radiology 187, 179–185 (1993).PubMedCrossRef
110.
Bajpayee, A. G., Quadir, M. A., Hammond, P. T. & Grodzinsky, A. J. Charge based intra-cartilage delivery of single dose dexamethasone using avidin nano-carriers suppresses cytokine-induced catabolism long term. Osteoarthritis Cartilage 24, 71–81 (2016).PubMedCrossRef
111.
Burstein, D. et al. Protocol issues for delayed Gd(DTPA)2—enhanced MRI (dGEMRIC) for clinical evaluation of articular cartilage. Magn. Reson. Med. 45, 36–41 (2001).PubMedCrossRef
112.
Hawezi, Z. K., Lammentausta, E., Svensson, J., Dahlberg, L. E. & Tiderius, C. J. In vivo transport of Gd-DTPA2- in human knee cartilage assessed by depth-wise dGEMRIC analysis. J. Magn. Reson. Imaging 34, 1352–1358 (2011).PubMedCrossRef
113.
Edwards, S. H. R. Intra-articular drug delivery: the challenge to extend drug residence time within the joint. Vet. J. 190, 15–21 (2011).PubMedCrossRef
114.
Chevalier, X., Eymard, F. & Richette, P. Biologic agents in osteoarthritis: hopes and disappointments. Nat. Rev. Rheumatol. 9, 400–410 (2013).PubMedCrossRef
115.
Owen, S., Francis, H. & Roberts, M. Disappearance kinetics of solutes from synovial fluid after intra- articular injection. Br. J. Clin. Pharmacol. 38, 349–355 (1994).PubMedPubMedCentralCrossRef
116.
Arkill, K. P. & Winlove, C. P. Solute transport in the deep and calcified zones of articular cartilage. Osteoarthritis Cartilage 16, 708–714 (2008).PubMedCrossRef
117.
Pan, J. et al. In situ measurement of transport between subchondral bone and articular cartilage. J. Orthop. Res. 27, 1347–1352 (2009).PubMedPubMedCentralCrossRef
118.
Hughes, C. et al. Human single-chain variable fragment that specifically targets arthritic cartilage. Arthritis Rheum. 62, 1007–1016 (2010).PubMedPubMedCentralCrossRef
119.
Hughes, C. et al. Targeting of viral interleukin-10 with an antibody fragment specific to damaged arthritic cartilage improves its therapeutic potency. Arthritis Res. Ther. 16, R151 (2014).PubMedPubMedCentralCrossRef
120.
Champion, J. A., Walker, A. & Mitragotri, S. Role of particle size in phagocytosis of polymeric microspheres. Pharm. Res. 25, 1815–1821 (2008).PubMedPubMedCentralCrossRef
121.
Horisawa, E. et al. Size-dependency of DL-lactide/glycolide copolymer particulates for intra-articular delivery system on phagocytosis in rat synovium. Pharm. Res. 19, 132–139 (2002).PubMedCrossRef
122.
Palmieri, G. et al. Hyaluronic acid nanoporous microparticles with long in vivo joint residence time and sustained release. Part. Part. Syst. Charact. 34, 1600411 (2017).CrossRef
123.
Bottini, M. et al. Nanodrugs to target articular cartilage: an emerging platform for osteoarthritis therapy. Nanomedicine 12, 255–268 (2016).PubMedCrossRef
124.
Joshi, N. et al. Towards an arthritis flare-responsive drug delivery system. Nat. Commun. 9, 1275 (2018).PubMedPubMedCentralCrossRef
125.
Lynch, I. & Dawson, K. A. Protein-nanoparticle interactions. Nano Today 3, 40–47 (2008).CrossRef
126.
Poole, C. A. Articular cartilage chondrons: form, function and failure. J. Anat. 191, 1–13 (1997).PubMedPubMedCentralCrossRef
127.
Alexopoulos, L. G., Haider, M. A., Vail, T. P. & Guilak, F. Alterations in the mechanical properties of the human chondrocyte pericellular matrix with osteoarthritis. J. Biomech. Eng. 125, 323–333 (2003).PubMedCrossRef
128.
Leddy, H. A., Christensen, S. E. & Guilak, F. Microscale diffusion properties of the cartilage pericellular matrix measured using 3D scanning microphotolysis. J. Biomech. Eng. 130, 61002 (2008).CrossRef
129.
Maroudas, A., Bayliss, M. T. & Venn, M. F. Further studies on the composition of human femoral head cartilage. Ann. Rheum. Dis. 39, 514–523 (1980).PubMedPubMedCentralCrossRef
130.
Venn, M. & Maroudas, A. Chemical composition and swelling of normal and osteoarthrotic femoral head cartilage. I. Chemical composition. Ann. Rheum. Dis. 36, 121–129 (1977).PubMedPubMedCentralCrossRef
131.
Saarakkala, S. et al. Depth-wise progression of osteoarthritis in human articular cartilage: investigation of composition, structure and biomechanics. Osteoarthritis Cartilage 18, 73–81 (2010).PubMedCrossRef
132.
Manning, H. B. et al. Detection of cartilage matrix degradation by autofluorescence lifetime. Matrix Biol. 32, 32–38 (2013).PubMedCrossRef
133.
Kim, S. E. et al. Ultrasmall nanoparticles induce ferroptosis in nutrient-deprived cancer cells and suppress tumour growth. Nat. Nanotechnol. 11, 977–985 (2016).PubMedPubMedCentralCrossRef
134.
Rothenfluh, D. A., Bermudez, H., O’Neil, C. P. & Hubbell, J. A. Biofunctional polymer nanoparticles for intra-articular targeting and retention in cartilage. Nat. Mater. 7, 248–254 (2008).PubMedCrossRef
135.
Pi, Y. et al. Intra-articular delivery of anti-Hif-2α siRNA by chondrocyte-homing nanoparticles to prevent cartilage degeneration in arthritic mice. Gene Ther. 22, 439–448 (2015).PubMedCrossRef
136.
Sacchetti, C. et al. Polyethylene-glycol-modified single-walled carbon nanotubes for intra-articular delivery to chondrocytes. ACS Nano 8, 12280–12291 (2014).PubMedPubMedCentralCrossRef
137.
Pi, Y. et al. Targeted delivery of non-viral vectors to cartilage in vivo using a chondrocyte-homing peptide identified by phage display. Biomaterials 32, 6324–6332 (2011).PubMedCrossRef
138.
DiDomenico, C. & Bonassar, L. Local solute transport kinetics are strongly correlated to local cartilage composition [abstract]. Trans. Annu. Meet. - Orthop. Res. Soc. 43, a0411 (2018).