Skip to main content
Top

15-02-2016 | Osteoporosis | Review | Article

Osteoporosis Imaging in the Geriatric Patient

Journal: Current Radiology Reports

Authors: Ursula Heilmeier, Jiwon Youm, Soheyla Torabi, Thomas M. Link

Publisher: Springer US

Abstract

Given the expected rapid growth of the geriatric world population (=individuals aged >65 years) to 1.3 billion by 2050, age-related diseases such as osteoporosis and its sequelae, osteoporotic fractures, are on the rise. Areal bone mineral density (aBMD) by dual-energy X-ray absorptiometry (DXA) is the current gold standard to diagnose osteoporosis, to assess osteoporotic fracture risk, and to monitor treatment-induced BMD changes. However, most fragility fractures occur in patients with normal or osteopenic aBMD, indicating that factors beyond BMD impact bone strength. Recent developments in DXA technology such as TBS, VFA, and hip geometry analysis are now available to assess some of these non-BMD parameters from the DXA image. This review will discuss the use of DXA and DXA-assisted technologies and their respective advantages and disadvantages. Special attention is given to if and how each method is indicated in the geriatric population, and the latest ISCD 2015 guidelines have been incorporated.
Literature
1.
Ritch A. History of geriatric medicine: from hippocrates to marjory Warren. J R College Phys Edinb. 2012;42(4):368–74. doi:10.​4997/​jrcpe.​2012.​417. A review article on the history of geriatrics from ancient times to Marjory Warren will illustrative examples.
2.
Nascher JL. Geriatrics. NY Med J. 1909;90:358–9.
3.
Besdine RW. Introduction to geriatrics. Whitehouse Station: Merck Manuals Professional Edition, Geriatrics; 2013.
4.
United Nations. World population prospects: the 2015 revision. New York: DVD Edition; 2015.
5.
Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A. Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. J Bone Miner Res. 2007;22(3):465–75. doi:10.​1359/​jbmr.​061113.PubMedCrossRef
6.
Praemer A, Furner S, Rice DP. Musculoskeletal conditions in the United States. Rosemont: American Academy of Orthopaedic Surgeons; 1999.
7.
Melton LJ 3rd, Crowson CS, O’Fallon WM. Fracture incidence in Olmsted County, Minnesota: comparison of urban with rural rates and changes in urban rates over time. Osteoporos Int. 1999;9(1):29–37.PubMedCrossRef
8.
Office of the Surgeon General (US). Bone health and osteoporosis: a report of the surgeon general. In: Services DoHaH, editor. Rockville: Office of the Surgeon General (US); 2004.
9.
Cooley H, Jones G. A population-based study of fracture incidence in southern Tasmania: lifetime fracture risk and evidence for geographic variations within the same country. Osteoporos Int. 2001;12(2):124–30. doi:10.​1007/​s001980170144.PubMedCrossRef
10.
Merrill RM, Weed DL, Feuer EJ. The lifetime risk of developing prostate cancer in white and black men. Cancer Epidemiol Biomark Prev. 1997;6(10):763–8.
11.
WHO. World health statistics. New York: WHO; 2010.
12.
Johnell O, Kanis JA. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int. 2006;17(12):1726–33. doi:10.​1007/​s00198-006-0172-4.PubMedCrossRef
13.
•• Lorentzon M, Cummings SR. Osteoporosis: the evolution of a diagnosis. J Intern Med. 2015;277(6):650–61. doi:10.​1111/​joim.​12369. Very nice review article that elucidates the different approaches how to define osteoporosis.
14.
NIH Consensus Development Panel on Osteoporosis Prevention Diagnosis, and Therapy. Osteoporosis prevention, diagnosis, and therapy. JAMA. 2001;285(6):785–95.CrossRef
15.
World Health Organization. Technical report: assessment of fracture risk and its application to screening for postmenopausal osteoporosis: a report of a WHO study group. Geneva: World Health Organization; 1994.
16.
•• Shepherd JA, Schousboe JT, Broy SB, Engelke K, Leslie WD. Executive summary of the 2015 ISCD position development conference on advanced measures from DXA and QCT: fracture prediction beyond BMD. J Clin Densitom. 2015;18(3):274–86. doi:10.​1016/​j.​jocd.​2015.​06.​013. Very important article. Summarizes the latest official positions of the International Society of Clincial Densitometry (ISCD) 2015 on the use and indications of different bone densitometry methods, such as DXA, TBS and VFA. These positions were released in June 2015 and can also be found on the homepage of the ISCD under http://​www.​iscd.​org/​official-positions/​2015-iscd-official-positions-adult/​.
17.
Kanis JA. Diagnosis of osteoporosis and assessment of fracture risk. Lancet. 2002;359(9321):1929–36. doi:10.​1016/​s0140-6736(02)08761-5.PubMedCrossRef
18.
Link TM. Osteoporosis imaging: state of the art and advanced imaging. Radiology. 2012;263(1):3–17. doi:10.​1148/​radiol.​12110462,10.​1148/​radiol.​2633201203.
19.
National Osteoporosis Foundation. Clinician’s guide to prevention and treatment of osteoporosis. Washington, DC: National Osteoporosis Foundation; 2013.
20.
Krueger D, Caudill J, Colquhoun A, Jankowski L. CBDT study guide. Middletown: International Society for Clinical Densitometry; 2012.
21.
Kanterewicz E, Puigoriol E, Garcia-Barrionuevo J, del Rio L, Casellas M, Peris P. Prevalence of vertebral fractures and minor vertebral deformities evaluated by DXA-assisted vertebral fracture assessment (VFA) in a population-based study of postmenopausal women: the FRODOS study. Osteoporos Int. 2014;25(5):1455–64. doi:10.​1007/​s00198-014-2628-2.PubMed
22.
Siris ES, Miller PD, Barrett-Connor E, Faulkner KG, Wehren LE, Abbott TA, et al. Identification and fracture outcomes of undiagnosed low bone mineral density in postmenopausal women: results from the National Osteoporosis Risk Assessment. JAMA. 2001;286(22):2815–22.PubMedCrossRef
23.
Sornay-Rendu E, Munoz F, Garnero P, Duboeuf F, Delmas PD. Identification of osteopenic women at high risk of fracture: the OFELY study. J Bone Miner Res. 2005;20(10):1813–9. doi:10.​1359/​jbmr.​050609.PubMedCrossRef
24.
Damilakis J, Adams JE, Guglielmi G, Link TM. Radiation exposure in X-ray-based imaging techniques used in osteoporosis. Eur Radiol. 2010;20(11):2707–14. doi:10.​1007/​s00330-010-1845-0.PubMedPubMedCentralCrossRef
25.
•• Licata A, Williams SE. A DXA primer for the practicing clinician. A case-based manual for understanding and interpreting bone densitometry. New York: Springer; 2014. Excellent case-based book dedicated to teach the essentials and pitfalls of interpreting and reporting DXA-exams. Very helpful training resource for residents and any other health care professionals.
26.
Cullum ID, Ell PJ, Ryder JP. X-ray dual-photon absorptiometry: a new method for the measurement of bone density. Br J Radiol. 1989;62(739):587–92. doi:10.​1259/​0007-1285-62-739-587.PubMedCrossRef
27.
Mazess R, Collick B, Trempe J, Barden H, Hanson J. Performance evaluation of a dual-energy x-ray bone densitometer. Calcif Tissue Int. 1989;44(3):228–32.PubMedCrossRef
28.
Wahner HW, Dunn WL, Brown ML, Morin RL, Riggs BL. Comparison of dual-energy X-ray absorptiometry and dual photon absorptiometry for bone mineral measurements of the lumbar spine. Mayo Clin Proc. 1988;63(11):1075–84.PubMedCrossRef
29.
Rutt B, Stebler B, Cann C. High speed, high precision dual photon absorptiometry. In: 7th annual meeting of the American Society for Bone and Mineral Research, Washington, DC; 1985.
30.
Blake GM, Naeem M, Boutros M. Comparison of effective dose to children and adults from dual X-ray absorptiometry examinations. Bone. 2006;38(6):935–42. doi:10.​1016/​j.​bone.​2005.​11.​007.PubMedCrossRef
31.
Kelly TL, Slovik DM, Schoenfeld DA, Neer RM. Quantitative digital radiography versus dual photon absorptiometry of the lumbar spine. J Clin Endocrinol Metab. 1988;67(4):839–44.PubMedCrossRef
32.
Blake GM, Fogelman I. Dual energy X-ray absorptiometry and its clinical applications. Semin Musculoskelet Radiol. 2002;6(3):207–18. doi:10.​1055/​s-2002-36718.PubMedCrossRef
33.
• Blake GM, Fogelman I. Technical principles of dual energy x-ray absorptiometry. Semin Nucl Med. 1997;27(3):210–28. Very good technical article providing a detailed description of the underlying principles of DXA. Explains also other methods such as SPA and DPA, the predecessors of DXA. In addition see also interactive online tool for DXA lectures with animations and simplified explanations under: Pintauro Stephen, Department of Nutrition and Food Sciences, University of Vermont, DEXA, Dual Energy X Ray Absorptiometry, Introduction, available under http://​nutrition.​uvm.​edu/​bodycomp/​dexa/​.
34.
Jacobson JA, Jamadar DA, Hayes CW. Dual X-ray absorptiometry: recognizing image artifacts and pathology. AJR Am J Roentgenol. 2000;174(6):1699–705. doi:10.​2214/​ajr.​174.​6.​1741699.PubMedCrossRef
35.
Bonnick SL. Densitometry in clinical practice: application and interpretation. 3rd ed. New York: Humana Press; 2010.CrossRef
36.
International Society for Clinical Densitometry. ISCD Clinician Study Guide 2009; Version 9.1; 2009.
37.
Johnell O, Kanis JA, Oden A, Johansson H, De Laet C, Delmas P, et al. Predictive value of BMD for hip and other fractures. J Bone Miner Res. 2005;20(7):1185–94. doi:10.​1359/​jbmr.​050304.PubMedCrossRef
38.
Marshall D, Johnell O, Wedel H. Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ. 1996;312(7041):1254–9.PubMedPubMedCentralCrossRef
39.
Nevitt MC, Johnell O, Black DM, Ensrud K, Genant HK, Cummings SR. Bone mineral density predicts non-spine fractures in very elderly women. Study of Osteoporotic Fractures Research Group. Osteoporos Int. 1994;4(6):325–31.PubMedCrossRef
40.
Kanis JA, Borgstrom F, De Laet C, Johansson H, Johnell O, Jonsson B, et al. Assessment of fracture risk. Osteoporos Int. 2005;16(6):581–9. doi:10.​1007/​s00198-004-1780-5.PubMedCrossRef
41.
Rachner TD, Khosla S, Hofbauer LC. Osteoporosis: now and the future. Lancet. 2011;377(9773):1276–87. doi:10.​1016/​s0140-6736(10)62349-5.PubMedPubMedCentralCrossRef
42.
Chapuy MC, Arlot ME, Duboeuf F, Brun J, Crouzet B, Arnaud S, et al. Vitamin D3 and calcium to prevent hip fractures in the elderly women. New Engl J Med. 1992;327(23):1637–42. doi:10.​1056/​nejm199212033272​305.PubMedCrossRef
43.
Laster AJ. Dual-energy X-ray absorptiometry: overused, neglected, or just misunderstood? N C Med J. 2014;75(2):132–6.PubMed
44.
Baim S, Wilson CR, Lewiecki EM, Luckey MM, Downs RW Jr, Lentle BC. Precision assessment and radiation safety for dual-energy X-ray absorptiometry: position paper of the International Society for Clinical Densitometry. J Clin Densitom. 2005;8(4):371–8.PubMedCrossRef
45.
Gluer CC. Monitoring skeletal changes by radiological techniques. J Bone Miner Res. 1999;14(11):1952–62. doi:10.​1359/​jbmr.​1999.​14.​11.​1952.PubMedCrossRef
46.
Kroger H, Vainio P, Nieminen J, Kotaniemi A. Comparison of different models for interpreting bone mineral density measurements using DXA and MRI technology. Bone. 1995;17(2):157–9.PubMedCrossRef
47.
Knapp KM, Welsman JR, Hopkins SJ, Fogelman I, Blake GM. Obesity increases precision errors in dual-energy X-ray absorptiometry measurements. J Clin Densitom. 2012;15(3):315–9. doi:10.​1016/​j.​jocd.​2012.​01.​002.PubMedCrossRef
48.
Yu EW, Thomas BJ, Brown JK, Finkelstein JS. Simulated increases in body fat and errors in bone mineral density measurements by DXA and QCT. J Bone Miner Res. 2012;27(1):119–24. doi:10.​1002/​jbmr.​506.PubMedCrossRef
49.
Yu EW, Bouxsein ML, Roy AE, Baldwin C, Cange A, Neer RM, et al. Bone loss after bariatric surgery: discordant results between DXA and QCT bone density. J Bone Miner Res. 2014;29(3):542–50. doi:10.​1002/​jbmr.​2063.PubMedPubMedCentralCrossRef
50.
Tenne M, McGuigan F, Besjakov J, Gerdhem P, Akesson K. Degenerative changes at the lumbar spine–implications for bone mineral density measurement in elderly women. Osteoporos Int. 2013;24(4):1419–28. doi:10.​1007/​s00198-012-2048-0.PubMedCrossRef
51.
Watts NB. Fundamentals and pitfalls of bone densitometry using dual-energy X-ray absorptiometry (DXA). Osteoporos Int. 2004;15(11):847–54. doi:10.​1007/​s00198-004-1681-7.PubMedCrossRef
52.
Kanis JA, on behalf of the World Health Organisation Scientific Group. Assessment of osteoporosis at the primary health care level: WHO Collaborating Centre for Metabolic Bone Diseases. Sheffield: University of Sheffield; 2007.
53.
Kanis JA, Oden A, Johansson H, Borgstrom F, Strom O, McCloskey E. FRAX and its applications to clinical practice. Bone. 2009;44(5):734–43. doi:10.​1016/​j.​bone.​2009.​01.​373.PubMedCrossRef
54.
Kanis JA, Johnell O, De Laet C, Jonsson B, Oden A, Ogelsby AK. International variations in hip fracture probabilities: implications for risk assessment. J Bone Miner Res. 2002;17(7):1237–44. doi:10.​1359/​jbmr.​2002.​17.​7.​1237.PubMedCrossRef
55.
National Osteoporosis Foundation. Clinician’s Guide to Prevention and Treatment of Osteoporosis. Washington, DC: National Osteoporosis Foundation; 2014.
56.
Kanis JA, Johansson H, Oden A, Cooper C, McCloskey EV. Worldwide uptake of FRAX. Arch osteoporos. 2014;9:166. doi:10.​1007/​s11657-013-0166-8.PubMedCrossRef
57.
Marques A, Ferreira RJ, Santos E, Loza E, Carmona L, da Silva JA. The accuracy of osteoporotic fracture risk prediction tools: a systematic review and meta-analysis. Ann Rheum Dis. 2015;74(11):1958–67. doi:10.​1136/​annrheumdis-2015-207907.PubMedCrossRef
58.
Pothuaud L, Carceller P, Hans D. Correlations between grey-level variations in 2D projection images (TBS) and 3D microarchitecture: applications in the study of human trabecular bone microarchitecture. Bone. 2008;42(4):775–87. doi:10.​1016/​j.​bone.​2007.​11.​018.PubMedCrossRef
59.
• Silva BC, Leslie WD, Resch H, Lamy O, Lesnyak O, Binkley N, et al. Trabecular bone score: a noninvasive analytical method based upon the DXA image. J Bone Miner Res. 2014;29(3):518–30. doi:10.​1002/​jbmr.​2176. In-depth review article on the current body of knowledge with respect to the Trabecular Bone Score, provides also nice illustrations.
60.
Bousson V, Bergot C, Sutter B, Levitz P, Cortet B. Trabecular bone score (TBS): available knowledge, clinical relevance, and future prospects. Osteoporos Int. 2012;23(5):1489–501. doi:10.​1007/​s00198-011-1824-6.PubMedCrossRef
61.
Winzenrieth R, Dufour R, Pothuaud L, Hans D. A retrospective case-control study assessing the role of trabecular bone score in postmenopausal Caucasian women with osteopenia: analyzing the odds of vertebral fracture. Calcif Tissue Int. 2010;86(2):104–9. doi:10.​1007/​s00223-009-9322-y.PubMedCrossRef
62.
Pothuaud L, Barthe N, Krieg MA, Mehsen N, Carceller P, Hans D. Evaluation of the potential use of trabecular bone score to complement bone mineral density in the diagnosis of osteoporosis: a preliminary spine BMD-matched, case-control study. J Clin Densitom. 2009;12(2):170–6. doi:10.​1016/​j.​jocd.​2008.​11.​006.PubMedCrossRef
63.
Rabier B, Heraud A, Grand-Lenoir C, Winzenrieth R, Hans D. A multicentre, retrospective case-control study assessing the role of trabecular bone score (TBS) in menopausal Caucasian women with low areal bone mineral density (BMDa): analysing the odds of vertebral fracture. Bone. 2010;46(1):176–81. doi:10.​1016/​j.​bone.​2009.​06.​032.PubMedCrossRef
64.
Del Rio LM, Winzenrieth R, Cormier C, Di Gregorio S. Is bone microarchitecture status of the lumbar spine assessed by TBS related to femoral neck fracture? A Spanish case-control study. Osteoporos Int. 2013;24(3):991–8. doi:10.​1007/​s00198-012-2008-8.PubMedCrossRef
65.
Vasic J, Petranova T, Povoroznyuk V, Barbu CG, Karadzic M, Gojkovic F, et al. Evaluating spine micro-architectural texture (via TBS) discriminates major osteoporotic fractures from controls both as well as and independent of site matched BMD: the Eastern European TBS study. J Bone Miner Metab. 2014;32(5):556–62. doi:10.​1007/​s00774-013-0529-7.PubMedCrossRef
66.
Leib E, Winzenrieth R, Lamy O, Hans D. Comparing bone microarchitecture by trabecular bone score (TBS) in Caucasian American women with and without osteoporotic fractures. Calcif Tissue Int. 2014;95(3):201–8. doi:10.​1007/​s00223-014-9882-3.PubMedCrossRef
67.
Hans D, Goertzen AL, Krieg MA, Leslie WD. Bone microarchitecture assessed by TBS predicts osteoporotic fractures independent of bone density: the Manitoba study. J Bone Miner Res. 2011;26(11):2762–9. doi:10.​1002/​jbmr.​499.PubMedCrossRef
68.
Boutroy S, Hans D, Sornay-Rendu E, Vilayphiou N, Winzenrieth R, Chapurlat R. Trabecular bone score improves fracture risk prediction in non-osteoporotic women: the OFELY study. Osteoporos Int. 2013;24(1):77–85. doi:10.​1007/​s00198-012-2188-2.PubMedCrossRef
69.
Leib E, Winzenrieth R, Aubry-Rozier B, Hans D. Vertebral microarchitecture and fragility fracture in men: a TBS study. Bone. 2014;62:51–5. doi:10.​1016/​j.​bone.​2013.​12.​015.PubMedCrossRef
70.
Leslie WD, Aubry-Rozier B, Lix LM, Morin SN, Majumdar SR, Hans D. Spine bone texture assessed by trabecular bone score (TBS) predicts osteoporotic fractures in men: the Manitoba Bone Density Program. Bone. 2014;67:10–4. doi:10.​1016/​j.​bone.​2014.​06.​034.PubMedCrossRef
71.
Schousboe JT, Vo T, Taylor BC, Cawthon PM, Schwartz AV, Bauer DC, et al. Prediction of Incident Major Osteoporotic and Hip Fractures by Trabecular Bone Score (TBS) and Prevalent Radiographic Vertebral Fracture in Older Men. J Bone Miner Res. 2015;. doi:10.​1002/​jbmr.​2713.
72.
McCloskey EV, Oden A, Harvey NC, Leslie WD, Hans D, Johansson H, et al. Adjusting fracture probability by trabecular bone score. Calcif Tissue Int. 2015;96(6):500–9. doi:10.​1007/​s00223-015-9980-x.PubMedCrossRef
73.
McCloskey EV, Oden A, Harvey NC, Leslie WD, Hans D, Johansson H, et al. A meta-analysis of trabecular bone score in fracture risk prediction and its relationship to FRAX. J Bone Miner Res. 2015;. doi:10.​1002/​jbmr.​2734.
74.
Bousson V, Bergot C, Sutter B, Thomas T, Bendavid S, Benhamou CL, et al. Trabecular bone score: where are we now? Joint Bone Spine. 2015;82(5):320–5. doi:10.​1016/​j.​jbspin.​2015.​02.​005.PubMedCrossRef
75.
Silva BC, Broy SB, Boutroy S, Schousboe JT, Shepherd JA, Leslie WD. Fracture risk prediction by non-BMD DXA measures: the 2015 ISCD official positions part 2: trabecular bone score. J Clin Densitom. 2015;18(3):309–30. doi:10.​1016/​j.​jocd.​2015.​06.​008.PubMedCrossRef
76.
Winzenrieth R, Michelet F, Hans D. Three-dimensional (3D) microarchitecture correlations with 2D projection image gray-level variations assessed by trabecular bone score using high-resolution computed tomographic acquisitions: effects of resolution and noise. J Clin Densitom. 2013;16(3):287–96. doi:10.​1016/​j.​jocd.​2012.​05.​001.PubMedCrossRef
77.
Hans D, Barthe N, Boutroy S, Pothuaud L, Winzenrieth R, Krieg MA. Correlations between trabecular bone score, measured using anteroposterior dual-energy X-ray absorptiometry acquisition, and 3-dimensional parameters of bone microarchitecture: an experimental study on human cadaver vertebrae. J Clin Densitom. 2011;14(3):302–12. doi:10.​1016/​j.​jocd.​2011.​05.​005.PubMedCrossRef
78.
Roux JP, Wegrzyn J, Boutroy S, Bouxsein ML, Hans D, Chapurlat R. The predictive value of trabecular bone score (TBS) on whole lumbar vertebrae mechanics: an ex vivo study. Osteoporos Int. 2013;24(9):2455–60. doi:10.​1007/​s00198-013-2316-7.PubMedCrossRef
79.
Popp AW, Buffat H, Eberli U, Lippuner K, Ernst M, Richards RG, et al. Microstructural parameters of bone evaluated using HR-pQCT correlate with the DXA-derived cortical index and the trabecular bone score in a cohort of randomly selected premenopausal women. PLoS One. 2014;9(2):e88946. doi:10.​1371/​journal.​pone.​0088946.PubMedPubMedCentralCrossRef
80.
Silva BC, Boutroy S, Zhang C, McMahon DJ, Zhou B, Wang J, et al. Trabecular bone score (TBS)–a novel method to evaluate bone microarchitectural texture in patients with primary hyperparathyroidism. J Clin Endocrinol Metab. 2013;98(5):1963–70. doi:10.​1210/​jc.​2012-4255.PubMedPubMedCentralCrossRef
81.
Silva BC, Walker MD, Abraham A, Boutroy S, Zhang C, McMahon DJ, et al. Trabecular bone score is associated with volumetric bone density and microarchitecture as assessed by central QCT and HRpQCT in Chinese American and white women. J Clin Densitom. 2013;16(4):554–61. doi:10.​1016/​j.​jocd.​2013.​07.​001.PubMedCrossRef
82.
Amstrup AK, Jakobsen NF, Moser E, Sikjaer T, Mosekilde L, Rejnmark L. Association between bone indices assessed by DXA, HR-pQCT and QCT scans in post-menopausal women. J Bone Miner Metab. 2015;. doi:10.​1007/​s00774-015-0708-9.PubMed
83.
Bandirali M, Poloni A, Sconfienza LM, Messina C, Papini GD, Petrini M, et al. Short-term precision assessment of trabecular bone score and bone mineral density using dual-energy X-ray absorptiometry with different scan modes: an in vivo study. Eur Radiol. 2015;25(7):2194–8. doi:10.​1007/​s00330-015-3606-6.PubMedCrossRef
84.
Krueger D, Libber J, Binkley N. Spine trabecular bone score precision, a comparison between GE lunar standard and high-resolution densitometers. J Clin Densitom. 2015;18(2):226–32. doi:10.​1016/​j.​jocd.​2014.​11.​003.PubMedCrossRef
85.
Davies KM, Stegman MR, Heaney RP, Recker RR. Prevalence and severity of vertebral fracture: the Saunders county bone quality study. Osteoporos Int. 1996;6(2):160–5.PubMedCrossRef
86.
O’Neill TW, Felsenberg D, Varlow J, Cooper C, Kanis JA, Silman AJ. The prevalence of vertebral deformity in european men and women: the European Vertebral Osteoporosis Study. J Bone Miner Res. 1996;11(7):1010–8. doi:10.​1002/​jbmr.​5650110719.PubMedCrossRef
87.
Siris ES, Genant HK, Laster AJ, Chen P, Misurski DA, Krege JH. Enhanced prediction of fracture risk combining vertebral fracture status and BMD. Osteoporos Int. 2007;18(6):761–70. doi:10.​1007/​s00198-006-0306-8.PubMedCrossRef
88.
Lindsay R, Silverman SL, Cooper C, Hanley DA, Barton I, Broy SB, et al. Risk of new vertebral fracture in the year following a fracture. JAMA. 2001;285(3):320–3.PubMedCrossRef
89.
Burger H, van Daele PL, Algra D, Hofman A, Grobbee DE, Schutte HE, et al. Vertebral deformities as predictors of non-vertebral fractures. BMJ. 1994;309(6960):991–2.PubMedPubMedCentralCrossRef
90.
Cooper C, Atkinson EJ, O’Fallon WM, Melton LJ 3rd. Incidence of clinically diagnosed vertebral fractures: a population-based study in Rochester, Minnesota, 1985–1989. J Bone Miner Res. 1992;7(2):221–7. doi:10.​1002/​jbmr.​5650070214.PubMedCrossRef
91.
Gehlbach SH, Bigelow C, Heimisdottir M, May S, Walker M, Kirkwood JR. Recognition of vertebral fracture in a clinical setting. Osteoporos Int. 2000;11(7):577–82. doi:10.​1007/​s001980070078.PubMedCrossRef
92.
Bartalena T, Giannelli G, Rinaldi MF, Rimondi E, Rinaldi G, Sverzellati N, et al. Prevalence of thoracolumbar vertebral fractures on multidetector CT: underreporting by radiologists. Eur J Radiol. 2009;69(3):555–9. doi:10.​1016/​j.​ejrad.​2007.​11.​036.PubMedCrossRef
93.
Link TM. Radiology of osteoporosis. Can Assoc Radiol J. 2015;. doi:10.​1016/​j.​carj.​2015.​02.​002.PubMed
94.
•• Griffith JF. Identifying osteoporotic vertebral fracture. Quant Imaging Med Surg. 2015;5(4):592–602. doi:10.​3978/​j.​issn.​2223-4292.​2015.​08.​01. Very good teaching article on how to identify osteoporotic vertebral fractures and how to differentiate a vertebral fracture from other physiological and pathological vertrebal changes.
95.
•• Genant HK, Wu CY, van Kuijk C, Nevitt MC. Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res. 1993;8(9):1137–48. First description of this universal and famous scoring system of vertebral fractures as developed by Dr. Genant. It provides a detailed explanation and depiction on how to diagnose a vertebral fracture.
96.
Genant HK, Delmas PD, Chen P, Jiang Y, Eriksen EF, Dalsky GP, et al. Severity of vertebral fracture reflects deterioration of bone microarchitecture. Osteoporos Int. 2007;18(1):69–76. doi:10.​1007/​s00198-006-0199-6.PubMedCrossRef
97.
Siris E, Adachi JD, Lu Y, Fuerst T, Crans GG, Wong M, et al. Effects of raloxifene on fracture severity in postmenopausal women with osteoporosis: results from the MORE study. Multiple outcomes of raloxifene evaluation. Osteoporos Int. 2002;13(11):907–13. doi:10.​1007/​s001980200125.PubMedCrossRef
98.
Vokes T, Bachman D, Baim S, Binkley N, Broy S, Ferrar L, et al. Vertebral fracture assessment: the 2005 ISCD Official Positions. J Clin Densitom. 2006;9(1):37–46. doi:10.​1016/​j.​jocd.​2006.​05.​006.PubMedCrossRef
99.
Adams JE. Advances in bone imaging for osteoporosis. Nat Rev. 2013;9(1):28–42. doi:10.​1038/​nrendo.​2012.​217.
100.
Hospers IC, van der Laan JG, Zeebregts CJ, Nieboer P, Wolffenbuttel BH, Dierckx RA, et al. Vertebral fracture assessment in supine position: comparison by using conventional semiquantitative radiography and visual radiography. Radiology. 2009;251(3):822–8. doi:10.​1148/​radiol.​2513080887.PubMedCrossRef
101.
Lewiecki EM, Laster AJ. Clinical review: Clinical applications of vertebral fracture assessment by dual-energy X-ray absorptiometry. J Clin Endocrinol Metab. 2006;91(11):4215–22. doi:10.​1210/​jc.​2006-1178.PubMedCrossRef
102.
Olenginski TP, Newman ED, Hummel JL, Hummer M. Development and evaluation of a vertebral fracture assessment program using IVA and its integration with mobile DXA. J Clin Densitom. 2006;9(1):72–7. doi:10.​1016/​j.​jocd.​2005.​08.​002.PubMedCrossRef
103.
Greenspan SL, von Stetten E, Emond SK, Jones L, Parker RA. Instant vertebral assessment: a noninvasive dual X-ray absorptiometry technique to avoid misclassification and clinical mismanagement of osteoporosis. J Clin Densitom. 2001;4(4):373–80.PubMedCrossRef
104.
Jager PL, Jonkman S, Koolhaas W, Stiekema A, Wolffenbuttel BH, Slart RH. Combined vertebral fracture assessment and bone mineral density measurement: a new standard in the diagnosis of osteoporosis in academic populations. Osteoporos Int. 2011;22(4):1059–68. doi:10.​1007/​s00198-010-1293-3.PubMedPubMedCentralCrossRef
105.
Schousboe JT, Ensrud KE, Nyman JA, Kane RL, Melton LJ 3rd. Cost-effectiveness of vertebral fracture assessment to detect prevalent vertebral deformity and select postmenopausal women with a femoral neck T-score >−2.5 for alendronate therapy: a modeling study. J Clin Densitom. 2006;9(2):133–43. doi:10.​1016/​j.​jocd.​2005.​11.​004.PubMedCrossRef
106.
• Rosen HN, Vokes TJ, Malabanan AO, Deal CL, Alele JD, Olenginski TP et al. The official positions of the international society for clinical densitometry: vertebral fracture assessment. J Clin Densitom. 2013;16(4):482–8. doi:10.​1016/​j.​jocd.​2013.​08.​003. Article summarizing the most recent advances in VFA.
107.
Ismail AA, Cooper C, Felsenberg D, Varlow J, Kanis JA, Silman AJ, European Vertebral Osteoporosis Study Group, et al. Number and type of vertebral deformities: epidemiological characteristics and relation to back pain and height loss. Osteoporos Int. 1999;9(3):206–13.PubMedCrossRef
108.
Vogt TM, Ross PD, Palermo L, Musliner T, Genant HK, Black D, Fracture Intervention Trial Research Group, et al. Vertebral fracture prevalence among women screened for the fracture intervention trial and a simple clinical tool to screen for undiagnosed vertebral fractures. Mayo Clin Proc. 2000;75(9):888–96.PubMedCrossRef
109.
Kanis JA, Johansson H, Oden A, Johnell O, de Laet C, Melton IL, et al. A meta-analysis of prior corticosteroid use and fracture risk. J Bone Miner Res. 2004;19(6):893–9. doi:10.​1359/​jbmr.​040134.PubMedCrossRef
110.
Faulkner KG, Cummings SR, Black D, Palermo L, Gluer CC, Genant HK. Simple measurement of femoral geometry predicts hip fracture: the study of osteoporotic fractures. J Bone Miner Res. 1993;8(10):1211–7. doi:10.​1002/​jbmr.​5650081008.PubMedCrossRef
111.
Ripamonti C, Lisi L, Avella M. Femoral neck shaft angle width is associated with hip-fracture risk in males but not independently of femoral neck bone density. Br J Radiol. 1037;2014(87):20130358. doi:10.​1259/​bjr.​20130358.
112.
Beck TJ, Ruff CB, Warden KE, Scott WW Jr, Rao GU. Predicting femoral neck strength from bone mineral data. A structural approach. Investig Radiol. 1990;25(1):6–18.CrossRef
113.
Leslie WD, Pahlavan PS, Tsang JF, Lix LM. Prediction of hip and other osteoporotic fractures from hip geometry in a large clinical cohort. Osteoporos Int. 2009;20(10):1767–74. doi:10.​1007/​s00198-009-0874-5.PubMedCrossRef
114.
Gnudi S, Malavolta N, Testi D, Viceconti M. Differences in proximal femur geometry distinguish vertebral from femoral neck fractures in osteoporotic women. Br J Radiol. 2004;77(915):219–23. doi:10.​1259/​bjr/​79551075.PubMedCrossRef
115.
Leslie WD, Lix LM, Morin SN, Johansson H, Oden A, McCloskey EV, et al. Hip axis length is a FRAX- and bone density-independent risk factor for hip fracture in women. J Clin Endocrinol Metab. 2015;100(5):2063–70. doi:10.​1210/​jc.​2014-4390.PubMedCrossRef
116.
Broy SB, Cauley JA, Lewiecki ME, Schousboe JT, Shepherd JA, Leslie WD. Fracture risk prediction by non-BMD DXA measures: the 2015 ISCD official positions part 1: hip geometry. J Clin Densitom. 2015;18(3):287–308. doi:10.​1016/​j.​jocd.​2015.​06.​005.PubMedCrossRef
117.
Leslie WD, Lix LM, Morin SN, Johansson H, Oden A, McCloskey EV, et al. Adjusting hip fracture probability in men and women using hip axis length: the manitoba bone density database. J Clin Densitom. 2015;. doi:10.​1016/​j.​jocd.​2015.​07.​004.
118.
Kaptoge S, Beck TJ, Reeve J, Stone KL, Hillier TA, Cauley JA, et al. Prediction of incident hip fracture risk by femur geometry variables measured by hip structural analysis in the study of osteoporotic fractures. J Bone Miner Res. 2008;23(12):1892–904. doi:10.​1359/​jbmr.​080802.PubMedPubMedCentralCrossRef
119.
Alonso CG, Curiel MD, Carranza FH, Cano RP, Perez AD. Femoral bone mineral density, neck-shaft angle and mean femoral neck width as predictors of hip fracture in men and women. Multicenter Project for Research in Osteoporosis. Osteoporos Int. 2000;11(8):714–20.PubMedCrossRef
120.
Rivadeneira F, Zillikens MC, De Laet CE, Hofman A, Uitterlinden AG, Beck TJ, et al. Femoral neck BMD is a strong predictor of hip fracture susceptibility in elderly men and women because it detects cortical bone instability: the Rotterdam Study. J Bone Miner Res. 2007;22(11):1781–90. doi:10.​1359/​jbmr.​070712.PubMedCrossRef
121.
Tenne M, McGuigan FE, Ahlborg H, Gerdhem P, Akesson K. Variation in the PTH gene, hip fracture, and femoral neck geometry in elderly women. Calcif Tissue Int. 2010;86(5):359–66. doi:10.​1007/​s00223-010-9351-6.PubMedCrossRef