Skip to main content
Top

15-06-2017 | Osteoporosis | Review | Article

Osteoporosis in Children with Chronic Illnesses: Diagnosis, Monitoring, and Treatment

Journal: Current Osteoporosis Reports

Authors: Monica Grover, Laura K. Bachrach

Publisher: Springer US

Abstract

Purpose of Review

Osteoporosis is an under-recognized complication of chronic illness in childhood. This review will summarize recent literature addressing the risk factors, evaluation, and treatment for early bone fragility.

Recent Findings

Criteria for the diagnosis of pediatric osteoporosis include the presence of low trauma vertebral fractures alone or the combination of low bone mineral density and several long bone fractures. Monitoring for bone health may include screening for vertebral fractures that are common but often asymptomatic. Pharmacologic agents should be offered to those with fragility fractures especially when spontaneous recovery is unlikely. Controversies persist about the optimal bisphosphonate agent, dose, and duration. Newer osteoporosis drugs have not yet been adequately tested in pediatrics, though clinical trials are underway.

Summary

The prevalence of osteoporosis is increased in children with chronic illness. To reduce the frequency of fragility fractures requires increased attention to risk factors, early intervention, and additional research to optimize therapy and potentially prevent their occurrence.
Literature
1.
Wang Q, Seeman E. Skeletal growth and peak bone strength. In: Rosen CJ, editor. Primer on the metabolic bone diseases and disorders of mineral metabolism. Eighth ed. Ames: John Wiley & Sons, Inc.; 2013. p. 127–34.CrossRef
2.
Weaver CM, Gordon CM, Janz KF, Kalkwarf HJ, Lappe JM, Lewis R, et al. The National Osteoporosis Foundation’s position statement on peak bone mass development and lifestyle factors: a systematic review and implementation recommendations. Osteoporos Int. 2016;27(4):1281–386. doi:10.​1007/​s00198-015-3440-3.CrossRefPubMedPubMedCentral
3.
Rizzoli R, Bianchi ML, Garabédian M, McKay HA, Moreno LA. Maximizing bone mineral mass gain during growth for the prevention of fractures in the adolescents and the elderly. Bone. 2010;46(2):294–305. doi:10.​1016/​j.​bone.​2009.​10.​005.CrossRefPubMed
4.
Stagi S, Cavalli L, Seminara S, de Martino M, Brandi ML. The ever-expanding conundrum of primary osteoporosis: aetiopathogenesis, diagnosis, and treatment. Ital J Pediatr. 2014;40:55. doi:10.​1186/​1824-7288-40-55.CrossRefPubMedPubMedCentral
5.
Mäkitie O. Causes, mechanisms and management of paediatric osteoporosis. Nat Rev Rheumatol. 2013;9(8):465–75. doi:10.​1038/​nrrheum.​2013.​45.CrossRefPubMed
6.
•• Ward LM, Konji VN, Ma J. The management of osteoporosis in children. Osteoporos Int. 2016;27(7):2147–79. doi:10.​1007/​s00198-016-3515-9. An extensive review of literature detailing risk factors, evaluation, and management of pediatric osteoporosis including pharmacologic trials to date.CrossRefPubMed
7.
•• Bianchi ML, Leonard MB, Bechtold S, Högler W, Mughal MZ, Schönau E, et al. Bone health in children and adolescents with chronic diseases that may affect the skeleton: the 2013 ISCD pediatric Official Positions. J Clin Densitom. 2014;17(2):281–94. doi:10.​1016/​j.​jocd.​2014.​01.​005. This position statement summarizes the guidelines for screening and monitoring of bone health in children and adolescents at risk for bone fragility due to chronic illnesses.CrossRefPubMed
8.
Report of a WHO Study Group. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. World Health Organ Tech Rep Ser. 1994;843:1–129.
9.
Ma J, Siminoski K, Alos N, Halton J, Ho J, Lentle B, et al. The choice of normative pediatric reference database changes spine bone mineral density Z-scores but not the relationship between bone mineral density and prevalent vertebral fractures. J Clin Endocrinol Metab. 2015;100(3):1018–27. doi:10.​1210/​jc.​2014-3096.CrossRefPubMed
10.
Sbrocchi AM, Rauch F, Matzinger M, Feber J, Ward LM. Vertebral fractures despite normal spine bone mineral density in a boy with nephrotic syndrome. Pediatr Nephrol. 2011;26(1):139–42. doi:10.​1007/​s00467-010-1652-5.CrossRefPubMed
11.
• Bishop N, Arundel P, Clark E, Dimitri P, Farr J, Jones G, et al. Fracture prediction and the definition of osteoporosis in children and adolescents: the ISCD 2013 pediatric Official Positions. J Clin Densitom. 2014;17(2):275–80. doi:10.​1016/​j.​jocd.​2014.​01.​004. This position statement reviews the updated definition of pediatric osteoporosis to include low trauma verterbral fracture irrespective of bone density and discusses limitations of DXA to predict fractures.CrossRefPubMed
12.
Henderson RC, Berglund LM, May R, Zemel BS, Grossberg RI, Johnson J, et al. The relationship between fractures and DXA measures of BMD in the distal femur of children and adolescents with cerebral palsy or muscular dystrophy. J Bone Miner Res. 2010;25(3):520–6. doi:10.​1359/​jbmr.​091007.CrossRefPubMed
13.
•• Cummings EA, Ma J, Fernandez CV, Halton J, Alos N, Miettunen PM, et al. Incident vertebral fractures in children with leukemia during the four years following diagnosis. J Clin Endocrinol Metab. 2015;100(9):3408–17. doi:10.​1210/​JC.​2015-2176. Prospective study determined that a third of children with ALL had vertebral fractures with the highest incidence in the first year since diagnosis. Nearly a third of VF were asymptomatic. Younger age, lower BMD Z-scores and higher glucocorticoid dose were determined to be predictors of bone fragility.CrossRefPubMed
14.
•• LeBlanc CM, Ma J, Taljaard M, Roth J, Scuccimarri R, Miettunen P, et al. Incident vertebral fractures and risk factors in the first three years following glucocorticoid initiation among pediatric patients with rheumatic disorders. J Bone Miner Res. 2015;30(9):1667–75. doi:10.​1002/​jbmr.​2511. Longitudinal observational study in children with rheumatic disorders showed the incidence of vertebral fractures was around 12% with maximum occuring within the first year of diagnosis. Up to 50% were asymptomatic. Higher glucocorticoid dose, increased disease severity, lower BMD Z-scores and higher BMI Z-scores were predictors of bone fragility.CrossRefPubMed
15.
Jaremko JL, Siminoski K, Firth GB, Matzinger MA, Shenouda N, Konji VN, et al. Common normal variants of pediatric vertebral development that mimic fractures: a pictorial review from a national longitudinal bone health study. Pediatr Radiol. 2015;45(4):593–605. doi:10.​1007/​s00247-014-3210-y.CrossRefPubMedPubMedCentral
16.
Kerkeni S, Kolta S, Fechtenbaum J, Roux C. Spinal deformity index (SDI) is a good predictor of incident vertebral fractures. Osteoporos Int. 2009;20(9):1547–52. doi:10.​1007/​s00198-008-0832-7.CrossRefPubMed
17.
Genant HK, Wu CY, van Kuijk C, Nevitt MC. Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res. 1993;8(9):1137–48. doi:10.​1002/​jbmr.​5650080915.CrossRefPubMed
18.
Kyriakou A, Shepherd S, Mason A, Ahmed SF. Prevalence of vertebral fractures in children with suspected osteoporosis. J Pediatr. 2016; doi:10.​1016/​j.​jpeds.​2016.​08.​075.CrossRefPubMed
19.
Mäyränpää MK, Helenius I, Valta H, Mäyränpää MI, Toiviainen-Salo S, Mäkitie O. Bone densitometry in the diagnosis of vertebral fractures in children: accuracy of vertebral fracture assessment. Bone. 2007;41(3):353–9. doi:10.​1016/​j.​bone.​2007.​05.​012.CrossRefPubMed
20.
Crabtree NJ, Högler W, Cooper MS, Shaw NJ. Diagnostic evaluation of bone densitometric size adjustment techniques in children with and without low trauma fractures. Osteoporos Int. 2013;24(7):2015–24. doi:10.​1007/​s00198-012-2263-8.CrossRefPubMed
21.
Zemel BS, Kalkwarf HJ, Gilsanz V, Lappe JM, Oberfield S, Shepherd JA, et al. Revised reference curves for bone mineral content and areal bone mineral density according to age and sex for black and non-black children: results of the bone mineral density in childhood study. J Clin Endocrinol Metab. 2011;96(10):3160–9. doi:10.​1210/​jc.​2011-1111.CrossRefPubMedPubMedCentral
22.
Zemel BS, Leonard MB, Kelly A, Lappe JM, Gilsanz V, Oberfield S, et al. Height adjustment in assessing dual energy x-ray absorptiometry measurements of bone mass and density in children. J Clin Endocrinol Metab. 2010;95(3):1265–73. doi:10.​1172/​jci20641.CrossRefPubMedPubMedCentral
23.
Kalkwarf HJ, Abrams SA, DiMeglio LA, Koo WW, Specker BL, Weiler H, et al. Bone densitometry in infants and young children: the 2013 ISCD pediatric Official Positions. J Clin Densitom. 2014;17(2):243–57. doi:10.​1016/​j.​jocd.​2014.​01.​002.CrossRefPubMed
24.
Tian C, Wong BL, Hornung L, Khoury JC, Miller L, Bange J, et al. Bone health measures in glucocorticoid-treated ambulatory boys with Duchenne muscular dystrophy. Neuromuscul Disord. 2016;26(11):760–7. doi:10.​1016/​j.​nmd.​2016.​08.​011.CrossRefPubMed
25.
Halton J, Gaboury I, Grant R, Alos N, Cummings EA, Matzinger M, et al. Advanced vertebral fracture among newly diagnosed children with acute lymphoblastic leukemia: results of the Canadian steroid-associated osteoporosis in the pediatric population (STOPP) research program. J Bone Miner Res. 2009;24(7):1326–34. doi:10.​1359/​jbmr.​090202.CrossRefPubMed
26.
Zemel BS, Stallings VA, Leonard MB, Paulhamus DR, Kecskemethy HH, Harcke HT, et al. Revised pediatric reference data for the lateral distal femur measured by Hologic discovery/Delphi dual-energy X-ray absorptiometry. J Clin Densitom. 2009;12(2):207–18. doi:10.​1016/​j.​jocd.​2009.​01.​005.CrossRefPubMedPubMedCentral
27.
• Crabtree NJ, Arabi A, Bachrach LK, Fewtrell M, El-Hajj Fuleihan G, Kecskemethy HH, et al. Dual-energy X-ray absorptiometry interpretation and reporting in children and adolescents: the revised 2013 ISCD pediatric Official Positions. J Clin Densitom. 2014;17(2):225–42. doi:10.​1016/​j.​jocd.​2014.​01.​003. Guidelines defined whole body less head and AP spine as preferred sites for DXA. Appropriate reporting should include age, sex, ethnicity, and height adjusted Z-scores and avoid “osteopenia” or “osteoporosis” based on results.CrossRefPubMed
28.
• Adams JE, Engelke K, Zemel BS, Ward KA, Densitometry ISoC. Quantitative computer tomography in children and adolescents: the 2013 ISCD pediatric Official Positions. J Clin Densitom. 2014;17(2):258–74. doi:10.​1016/​j.​jocd.​2014.​01.​006. ISCD task force has reviewed the literature and summarized the clinical use of pQCT and HRpQCT in youth.CrossRefPubMed
29.
Glorieux FH, Travers R, Taylor A, Bowen JR, Rauch F, Norman M, et al. Normative data for iliac bone histomorphometry in growing children. Bone. 2000;26(2):103–9.CrossRefPubMed
30.
•• Misof BM, Roschger P, McMillan HJ, Ma J, Klaushofer K, Rauch F, et al. Histomorphometry and bone matrix mineralization before and after bisphosphonate treatment in boys with Duchenne muscular dystrophy: a paired Transiliac biopsy study. J Bone Miner Res. 2016;31(5):1060–9. doi:10.​1002/​jbmr.​2756. Histomorphometric study showing low bone turnover rate in patients with DMD was further reduced during bisphosphonate therapy.CrossRefPubMed
31.
Huang Y, Eapen E, Steele S, Grey V. Establishment of reference intervals for bone markers in children and adolescents. Clin Biochem. 2011;44(10–11):771–8. doi:10.​1016/​j.​clinbiochem.​2011.​04.​008.CrossRefPubMed
32.
Tuchman S, Thayu M, Shults J, Zemel BS, Burnham JM, Leonard MB. Interpretation of biomarkers of bone metabolism in children: impact of growth velocity and body size in healthy children and chronic disease. J Pediatr. 2008;153(4):484–90. doi:10.​1016/​j.​jpeds.​2008.​04.​028.CrossRefPubMedPubMedCentral
33.
McCloskey EV, Vasikaran S, Cooper C, Members FPDC. Official Positions for FRAX® clinical regarding biochemical markers from joint Official Positions development conference of the International Society for Clinical Densitometry and International Osteoporosis Foundation on FRAX®. J Clin Densitom. 2011;14(3):220–2. doi:10.​1016/​j.​jocd.​2011.​05.​008.CrossRefPubMed
34.
Weinstein RS, Jilka RL, Parfitt AM, Manolagas SC. Inhibition of osteoblastogenesis and promotion of apoptosis of osteoblasts and osteocytes by glucocorticoids. Potential mechanisms of their deleterious effects on bone. J Clin Invest. 1998;102(2):274–82. doi:10.​1172/​JCI2799.CrossRefPubMedPubMedCentral
35.
De Vries F, Bracke M, Leufkens HG, Lammers JW, Cooper C, Van Staa TP. Fracture risk with intermittent high-dose oral glucocorticoid therapy. Arthritis Rheum. 2007;56(1):208–14. doi:10.​1002/​art.​22294.CrossRefPubMed
36.
van Staa TP, Leufkens HG, Cooper C. The epidemiology of corticosteroid-induced osteoporosis: a meta-analysis. Osteoporos Int. 2002;13(10):777–87. doi:10.​1007/​s001980200108.CrossRefPubMed
37.
van Staa TP, Cooper C, Leufkens HG, Bishop N. Children and the risk of fractures caused by oral corticosteroids. J Bone Miner Res. 2003;18(5):913–8. doi:10.​1359/​jbmr.​2003.​18.​5.​913.CrossRefPubMed
38.
Rodd C, Lang B, Ramsay T, Alos N, Huber AM, Cabral DA, et al. Incident vertebral fractures among children with rheumatic disorders 12 months after glucocorticoid initiation: a national observational study. Arthritis Care Res. 2012;64(1):122–31. doi:10.​1002/​acr.​20589.CrossRef
39.
Leonard MB. Glucocorticoid-induced osteoporosis in children: impact of the underlying disease. Pediatrics. 2007;119(Suppl 2):S166–74. doi:10.​1542/​peds.​2006-2023J.CrossRefPubMed
40.
Leonard MB, Feldman HI, Shults J, Zemel BS, Foster BJ, Stallings VA. Long-term, high-dose glucocorticoids and bone mineral content in childhood glucocorticoid-sensitive nephrotic syndrome. N Engl J Med. 2004;351(9):868–75. doi:10.​1056/​NEJMoa040367.CrossRefPubMed
41.
Dubner SE, Shults J, Baldassano RN, Zemel BS, Thayu M, Burnham JM, et al. Longitudinal assessment of bone density and structure in an incident cohort of children with Crohn’s disease. Gastroenterology. 2009;136(1):123–30. doi:10.​1053/​j.​gastro.​2008.​09.​072.CrossRefPubMed
42.
Burnham JM, Shults J, Dubner SE, Sembhi H, Zemel BS, Leonard MB. Bone density, structure, and strength in juvenile idiopathic arthritis: importance of disease severity and muscle deficits. Arthritis Rheum. 2008;58(8):2518–27. doi:10.​1002/​art.​23683.CrossRefPubMedPubMedCentral
43.
Werkstetter KJ, Pozza SB, Filipiak-Pittroff B, Schatz SB, Prell C, Bufler P, et al. Long-term development of bone geometry and muscle in pediatric inflammatory bowel disease. Am J Gastroenterol. 2011;106(5):988–98. doi:10.​1038/​ajg.​2010.​495.CrossRefPubMed
44.
Laakso S, Valta H, Verkasalo M, Toiviainen-Salo S, Viljakainen H, Mäkitie O. Impaired bone health in inflammatory bowel disease: a case-control study in 80 pediatric patients. Calcif Tissue Int. 2012;91(2):121–30. doi:10.​1007/​s00223-012-9617-2.CrossRefPubMed
45.
Ward LM, Rauch F, Matzinger MA, Benchimol EI, Boland M, Mack DR. Iliac bone histomorphometry in children with newly diagnosed inflammatory bowel disease. Osteoporos Int. 2010;21(2):331–7. doi:10.​1007/​s00198-009-0969-z.CrossRefPubMed
46.
Huber AM, Gaboury I, Cabral DA, Lang B, Ni A, Stephure D, et al. Prevalent vertebral fractures among children initiating glucocorticoid therapy for the treatment of rheumatic disorders. Arthritis Care Res. 2010;62(4):516–26. doi:10.​1002/​acr.​20171.CrossRef
47.
Jayanthan A, Miettunen PM, Incoronato A, Ortiz-Neira CL, Lewis VA, Anderson R, et al. Childhood acute lymphoblastic leukemia (ALL) presenting with severe osteolysis: a model to study leukemia-bone interactions and potential targeted therapeutics. Pediatr Hematol Oncol. 2010;27(3):212–27. doi:10.​3109/​0888001100366338​2.CrossRefPubMed
48.
Alos N, Grant RM, Ramsay T, Halton J, Cummings EA, Miettunen PM, et al. High incidence of vertebral fractures in children with acute lymphoblastic leukemia 12 months after the initiation of therapy. J Clin Oncol. 2012;30(22):2760–7. doi:10.​1200/​JCO.​2011.​40.​4830.CrossRefPubMed
49.
Gurney JG, Kaste SC, Liu W, Srivastava DK, Chemaitilly W, Ness KK, et al. Bone mineral density among long-term survivors of childhood acute lymphoblastic leukemia: results from the St. Jude lifetime cohort study. Pediatr Blood Cancer. 2014;61(7):1270–6. doi:10.​1002/​pbc.​25010.CrossRefPubMedPubMedCentral
50.
Mostoufi-Moab S, Brodsky J, Isaacoff EJ, Tsampalieros A, Ginsberg JP, Zemel B, et al. Longitudinal assessment of bone density and structure in childhood survivors of acute lymphoblastic leukemia without cranial radiation. J Clin Endocrinol Metab. 2012;97(10):3584–92. doi:10.​1210/​jc.​2012-2393.CrossRefPubMedPubMedCentral
51.
Fazeli PK, Klibanski A. Bone metabolism in anorexia nervosa. Curr Osteoporos Rep. 2014;12(1):82–9. doi:10.​1007/​s11914-013-0186-8.CrossRefPubMedPubMedCentral
52.
Robinson L, Aldridge V, Clark EM, Misra M, Micali N. A systematic review and meta-analysis of the association between eating disorders and bone density. Osteoporos Int. 2016;27(6):1953–66. doi:10.​1007/​s00198-015-3468-4.CrossRefPubMedPubMedCentral
53.
•• Faje AT, Karim L, Taylor A, Lee H, Miller KK, Mendes N, et al. Adolescent girls with anorexia nervosa have impaired cortical and trabecular microarchitecture and lower estimated bone strength at the distal radius. J Clin Endocrinol Metab. 2013;98(5):1923–9. doi:10.​1210/​jc.​2012-4153. Reduced radius bone strength in patients with anorexia nervosa was attributed to abnormal cortical and trabecular microarchitecture. aBMD at the radius by DXA was not different from controls.CrossRefPubMedPubMedCentral
54.
Ecklund K, Vajapeyam S, Feldman HA, Buzney CD, Mulkern RV, Kleinman PK, et al. Bone marrow changes in adolescent girls with anorexia nervosa. J Bone Miner Res. 2010;25(2):298–304. doi:10.​1359/​jbmr.​090805.CrossRefPubMed
55.
Fazeli PK, Bredella MA, Freedman L, Thomas BJ, Breggia A, Meenaghan E, et al. Marrow fat and preadipocyte factor-1 levels decrease with recovery in women with anorexia nervosa. J Bone Miner Res. 2012;27(9):1864–71. doi:10.​1002/​jbmr.​1640.CrossRefPubMed
56.
Faje AT, Fazeli PK, Miller KK, Katzman DK, Ebrahimi S, Lee H, et al. Fracture risk and areal bone mineral density in adolescent females with anorexia nervosa. Int J Eat Disord. 2014;47(5):458–66. doi:10.​1002/​eat.​22248.CrossRefPubMedPubMedCentral
57.
Misra M, Katzman DK, Clarke H, Snelgrove D, Brigham K, Miller KK, et al. Hip structural analysis in adolescent boys with anorexia nervosa and controls. J Clin Endocrinol Metab. 2013;98(7):2952–8. doi:10.​1210/​jc.​2013-1457.CrossRefPubMedPubMedCentral
58.
DiVasta AD, Feldman HA, O’Donnell JM, Long J, Leonard MB, Gordon CM. Skeletal outcomes by peripheral quantitative computed tomography and dual-energy X-ray absorptiometry in adolescent girls with anorexia nervosa. Osteoporos Int. 2016; doi:10.​1007/​s00198-016-3685-5.CrossRefPubMedPubMedCentral
59.
Bachmann KN, Schorr M, Bruno AG, Bredella MA, Lawson EA, Gill CM, et al. Vertebral volumetric bone density and strength are impaired in women with low-weight and atypical anorexia nervosa. J Clin Endocrinol Metab. 2017;102:57–68. doi:10.​1210/​jc.​2016-2099.
60.
Lucas AR, Melton LJ, Crowson CS, O’Fallon WM. Long-term fracture risk among women with anorexia nervosa: a population-based cohort study. Mayo Clin Proc. 1999;74(10):972–7. doi:10.​4065/​74.​10.​972.CrossRefPubMed
61.
Högler W, Baumann U, Kelly D. Endocrine and bone metabolic complications in chronic liver disease and after liver transplantation in children. J Pediatr Gastroenterol Nutr. 2012;54(3):313–21. doi:10.​1097/​MPG.​0b013e31823e9412​.CrossRefPubMed
62.
Stein EM, Cohen A, Freeby M, Rogers H, Kokolus S, Scott V, et al. Severe vitamin D deficiency among heart and liver transplant recipients. Clin Transpl. 2009;23(6):861–5. doi:10.​1111/​j.​1399-0012.​2009.​00989.​x.CrossRef
63.
Cohen A, Sambrook P, Shane E. Management of bone loss after organ transplantation. J Bone Miner Res. 2004;19(12):1919–32. doi:10.​1359/​JBMR.​040912.CrossRefPubMed
64.
Bechtold S, Putzker S, Birnbaum J, Schwarz HP, Netz H, Dalla PR. Impaired bone geometry after heart and heart-lung transplantation in childhood. Transplantation. 2010;90(9):1006–10. doi:10.​1097/​TP.​0b013e3181f6300b​.CrossRefPubMed
65.
Tamminen IS, Valta H, Jalanko H, Salminen S, Mäyränpää MK, Isaksson H, et al. Pediatric solid organ transplantation and osteoporosis: a descriptive study on bone histomorphometric findings. Pediatr Nephrol. 2014;29(8):1431–40. doi:10.​1007/​s00467-014-2771-1.CrossRefPubMed
66.
Helenius I, Remes V, Salminen S, Valta H, Mäkitie O, Holmberg C, et al. Incidence and predictors of fractures in children after solid organ transplantation: a 5-year prospective, population-based study. J Bone Miner Res. 2006;21(3):380–7. doi:10.​1359/​JBMR.​051107.CrossRefPubMed
67.
Valta H, Jalanko H, Holmberg C, Helenius I, Mäkitie O. Impaired bone health in adolescents after liver transplantation. Am J Transplant. 2008;8(1):150–7. doi:10.​1111/​j.​1600-6143.​2007.​02015.​x.CrossRefPubMed
68.
Cohen A, Shane E. Osteoporosis after solid organ and bone marrow transplantation. Osteoporos Int. 2003;14(8):617–30. doi:10.​1007/​s00198-003-1426-z.CrossRefPubMed
69.
Buckner JL, Bowden SA, Mahan JD. Optimizing bone health in Duchenne muscular dystrophy. Int J Endocrinol. 2015;2015:928385. doi:10.​1155/​2015/​928385.CrossRefPubMedPubMedCentral
70.
McDonald DG, Kinali M, Gallagher AC, Mercuri E, Muntoni F, Roper H, et al. Fracture prevalence in Duchenne muscular dystrophy. Dev Med Child Neurol. 2002;44(10):695–8.CrossRefPubMed
71.
Mayo AL, Craven BC, McAdam LC, Biggar WD. Bone health in boys with Duchenne muscular dystrophy on long-term daily deflazacort therapy. Neuromuscul Disord. 2012;22(12):1040–5. doi:10.​1016/​j.​nmd.​2012.​06.​354.CrossRefPubMed
72.
King WM, Ruttencutter R, Nagaraja HN, Matkovic V, Landoll J, Hoyle C, et al. Orthopedic outcomes of long-term daily corticosteroid treatment in Duchenne muscular dystrophy. Neurology. 2007;68(19):1607–13. doi:10.​1212/​01.​wnl.​0000260974.​41514.​83.CrossRefPubMed
73.
•• Ma J, McMillan HJ, Karagüzel G, Goodin C, Wasson J, Matzinger MA, et al. The time to and determinants of first fractures in boys with Duchenne muscular dystrophy. Osteoporos Int. 2016; doi:10.​1007/​s00198-016-3774-5. Routine lateral spine radiographs at the initiation of GC therapy detected asymptomatic VF. Vertebral body reshaping following VF was absent, and VF were frequent after the first long bone fracture.CrossRefPubMed
74.
Binkley T, Johnson J, Vogel L, Kecskemethy H, Henderson R, Specker B. Bone measurements by peripheral quantitative computed tomography (pQCT) in children with cerebral palsy. J Pediatr. 2005;147(6):791–6. doi:10.​1016/​j.​jpeds.​2005.​07.​014.CrossRefPubMed
75.
• Modlesky CM, Whitney DG, Singh H, Barbe MF, Kirby JT, Miller F. Underdevelopment of trabecular bone microarchitecture in the distal femur of nonambulatory children with cerebral palsy becomes more pronounced with distance from the growth plate. Osteoporos Int. 2015;26(2):505–12. doi:10.​1007/​s00198-014-2873-4. MRI showed underdeveloped trabecular bone microarchitecture in non ambulatory children with CP more pronounced with increased distance from the growth plate.CrossRefPubMed
76.
Finbråten AK, Syversen U, Skranes J, Andersen GL, Stevenson RD, Vik T. Bone mineral density and vitamin D status in ambulatory and non-ambulatory children with cerebral palsy. Osteoporos Int. 2015;26(1):141–50. doi:10.​1007/​s00198-014-2840-0.CrossRefPubMed
77.
Mughal MZ. Fractures in children with cerebral palsy. Curr Osteoporos Rep. 2014;12(3):313–8. doi:10.​1007/​s11914-014-0224-1.CrossRefPubMed
78.
Wang MC, Crawford PB, Hudes M, Van Loan M, Siemering K, Bachrach LK. Diet in midpuberty and sedentary activity in prepuberty predict peak bone mass. Am J Clin Nutr. 2003;77(2):495–503.CrossRefPubMed
79.
Remer T, Manz F, Alexy U, Schoenau E, Wudy SA, Shi L. Long-term high urinary potential renal acid load and low nitrogen excretion predict reduced diaphyseal bone mass and bone size in children. J Clin Endocrinol Metab. 2011;96(9):2861–8. doi:10.​1210/​jc.​2011-1005.CrossRefPubMed
80.
Frost HM, Schönau E. The “muscle-bone unit” in children and adolescents: a 2000 overview. J Pediatr Endocrinol Metab. 2000;13(6):571–90.CrossRefPubMed
81.
El Ghoch M, Gatti D, Calugi S, Viapiana O, Bazzani PV, Dalle Grave R. The Association between Weight Gain/Restoration and Bone Mineral Density in Adolescents with Anorexia Nervosa: A Systematic Review. Nutrients. 2016;8(12). doi:10.​3390/​nu8120769.CrossRefPubMedCentral
82.
Matute-Llorente A, González-Agüero A, Gómez-Cabello A, Vicente-Rodríguez G, Casajús Mallén JA. Effect of whole-body vibration therapy on health-related physical fitness in children and adolescents with disabilities: a systematic review. J Adolesc Health. 2014;54(4):385–96. doi:10.​1016/​j.​jadohealth.​2013.​11.​001.CrossRefPubMed
83.
• Leonard MB, Shults J, Long J, Baldassano RN, Brown JK, Hommel K, et al. Effect of low-magnitude mechanical stimuli on bone density and structure in pediatric Crohn’s disease: a randomized placebo-controlled trial. J Bone Miner Res. 2016;31(6):1177–88. doi:10.​1002/​jbmr.​2799. Randomized placebo control trial of low magnitude mechanical stimulation as an anabolic therapy in patients with Crohn’s disease. No significant changes were noted in trabecular or cortical bone as compared to placebo using DXA and pQCT scans.CrossRefPubMed
84.
•• Griffin LM, Thayu M, Baldassano RN, DeBoer MD, Zemel BS, Denburg MR, et al. Improvements in bone density and structure during anti-TNF-α therapy in pediatric Crohn’s disease. J Clin Endocrinol Metab. 2015;100(7):2630–9. doi:10.​1210/​jc.​2014-4152. Anti-TNF- α Therapy in children with Crohn’s disease was associated with decreased disease activity and gains in vBMD and microarchitecture. The study highlights the importance of controlling inflammation to improve bone health.CrossRefPubMedPubMedCentral
85.
Billiau AD, Loop M, Le PQ, Berthet F, Philippet P, Kasran A, et al. Etanercept improves linear growth and bone mass acquisition in MTX-resistant polyarticular-course juvenile idiopathic arthritis. Rheumatology (Oxford). 2010;49(8):1550–8. doi:10.​1093/​rheumatology/​keq123.CrossRef
86.
Grinspoon S, Thomas L, Miller K, Herzog D, Klibanski A. Effects of recombinant human IGF-I and oral contraceptive administration on bone density in anorexia nervosa. J Clin Endocrinol Metab. 2002;87(6):2883–91. doi:10.​1210/​jcem.​87.​6.​8574.CrossRefPubMed
87.
Misra M, Katzman D, Miller KK, Mendes N, Snelgrove D, Russell M, et al. Physiologic estrogen replacement increases bone density in adolescent girls with anorexia nervosa. J Bone Miner Res. 2011;26(10):2430–8. doi:10.​1002/​jbmr.​447.CrossRefPubMed
88.
Ward L, Tricco AC, Phuong P, Cranney A, Barrowman N, Gaboury I, et al. Bisphosphonate therapy for children and adolescents with secondary osteoporosis. Cochrane Database Syst Rev. 2007;4:CD005324. doi:10.​1002/​14651858.​CD005324.​pub2.CrossRef
89.
Rudge S, Hailwood S, Horne A, Lucas J, Wu F, Cundy T. Effects of once-weekly oral alendronate on bone in children on glucocorticoid treatment. Rheumatology (Oxford). 2005;44(6):813–8. doi:10.​1093/​rheumatology/​keh538.CrossRef
90.
Sbrocchi AM, Forget S, Laforte D, Azouz EM, Rodd C. Zoledronic acid for the treatment of osteopenia in pediatric Crohn’s disease. Pediatr Int. 2010;52(5):754–61. doi:10.​1111/​j.​1442-200X.​2010.​03174.​x.CrossRefPubMed
91.
Sbrocchi AM, Rauch F, Jacob P, McCormick A, McMillan HJ, Matzinger MA, et al. The use of intravenous bisphosphonate therapy to treat vertebral fractures due to osteoporosis among boys with Duchenne muscular dystrophy. Osteoporos Int. 2012;23(11):2703–11. doi:10.​1007/​s00198-012-1911-3.CrossRefPubMed
92.
Houston C, Mathews K, Shibli-Rahhal A. Bone density and alendronate effects in Duchenne muscular dystrophy patients. Muscle Nerve. 2014;49(4):506–11. doi:10.​1002/​mus.​23948.CrossRefPubMed
93.
Kim MJ, Kim SN, Lee IS, Chung S, Lee J, Yang Y, et al. Effects of bisphosphonates to treat osteoporosis in children with cerebral palsy: a meta-analysis. J Pediatr Endocrinol Metab. 2015;28(11–12):1343–50. doi:10.​1515/​jpem-2014-0527.CrossRefPubMed
94.
Ooi HL, Briody J, Biggin A, Cowell CT, Munns CF. Intravenous zoledronic acid given every 6 months in childhood osteoporosis. Horm Res Paediatr. 2013;80(3):179–84. doi:10.​1159/​000354303.CrossRefPubMed
95.
Brown JP, Morin S, Leslie W, Papaioannou A, Cheung AM, Davison KS, et al. Bisphosphonates for treatment of osteoporosis: expected benefits, potential harms, and drug holidays. Can Fam Physician. 2014;60(4):324–33.PubMedPubMedCentral
96.
Biggin A, Zheng L, Briody JN, Coorey CP, Munns CF. The long-term effects of switching from active intravenous bisphosphonate treatment to low-dose maintenance therapy in children with osteogenesis imperfecta. Horm Res Paediatr. 2015;83(3):183–9. doi:10.​1159/​000369582.CrossRefPubMed
97.
Harcke HT, Stevenson KL, Kecskemethy HH, Bachrach SJ, Grissom LE. Fracture after bisphosphonate treatment in children with cerebral palsy: the role of stress risers. Pediatr Radiol. 2012;42(1):76–81. doi:10.​1007/​s00247-011-2198-9.CrossRefPubMed
98.
•• Vasanwala RF, Sanghrajka A, Bishop NJ, Högler W. Recurrent proximal femur fractures in a teenager with osteogenesis imperfecta on continuous bisphosphonate therapy: are we Overtreating? J Bone Miner Res. 2016;31(7):1449–54. doi:10.​1002/​jbmr.​2805. Case report of atypical femur fracture in a pediatric patient with OI treated with long term bisphosphonate therapy.CrossRefPubMed
99.
Trejo P, Fassier F, Glorieux FH, Rauch F. Diaphyseal femur fractures in osteogenesis imperfecta: characteristics and relationship with bisphosphonate treatment. J Bone Miner Res. 2016; doi:10.​1002/​jbmr.​3071.CrossRefPubMed
100.
•• Srinivasan R, Rawlings D, Wood CL, Cheetham T, Moreno AC, Mayhew A, et al. Prophylactic oral bisphosphonate therapy in duchenne muscular dystrophy. Muscle Nerve. 2016;54(1):79–85. doi:10.​1002/​mus.​24991. A primary prevention trial with bisphosphonate in patients with DMD treated with glucocorticoids showed maintenance of BMD and lower fracture rate in treated patients.CrossRefPubMed
101.
Brown JP, Reid IR, Wagman RB, Kendler D, Miller PD, Jensen JE, et al. Effects of up to 5 years of denosumab treatment on bone histology and histomorphometry: the FREEDOM study extension. J Bone Miner Res. 2014;29(9):2051–6. doi:10.​1002/​jbmr.​2236.CrossRefPubMed
102.
Hoyer-Kuhn H, Netzer C, Koerber F, Schoenau E, Semler O. Two years’ experience with denosumab for children with osteogenesis imperfecta type VI. Orphanet J Rare Dis. 2014;9:145. doi:10.​1186/​s13023-014-0145-1.CrossRefPubMedPubMedCentral
103.
Setsu N, Kobayashi E, Asano N, Yasui N, Kawamoto H, Kawai A, et al. Severe hypercalcemia following denosumab treatment in a juvenile patient. J Bone Miner Metab. 2016;34(1):118–22. doi:10.​1007/​s00774-015-0677-z.CrossRefPubMed
104.
Boyce AM, Chong WH, Yao J, Gafni RI, Kelly MH, Chamberlain CE, et al. Denosumab treatment for fibrous dysplasia. J Bone Miner Res. 2012;27(7):1462–70. doi:10.​1002/​jbmr.​1603.CrossRefPubMed
105.
Grasemann C, Schündeln MM, Hövel M, Schweiger B, Bergmann C, Herrmann R, et al. Effects of RANK-ligand antibody (denosumab) treatment on bone turnover markers in a girl with juvenile Paget’s disease. J Clin Endocrinol Metab. 2013;98(8):3121–6. doi:10.​1210/​jc.​2013-1143.CrossRefPubMed
106.
Anastasilakis AD, Polyzos SA, Makras P, Aubry-Rozier B, Kaouri S, Lamy O. Clinical features of 24 patients with rebound-associated vertebral fractures after Denosumab discontinuation: systematic review and additional cases. J Bone Miner Res. 2017; doi:10.​1002/​jbmr.​3110.CrossRefPubMed
107.
•• Feurer E, Chapurlat R. Emerging drugs for osteoporosis. Expert Opin Emerg Drugs. 2014;19(3):385–95. doi:10.​1517/​14728214.​2014.​936377. Review article discusses recent advances with novel drug therapies including Cathepsin K inhibitos, Anti-sclerostin antibodies, and PTHrp 1-34.CrossRefPubMed