Skip to main content
Top

07-03-2017 | Osteoporosis | Review | Article

Pediatric Osteoporosis: Diagnosis and Treatment Considerations

Journal: Drugs

Authors: Edoardo Marrani, Teresa Giani, Gabriele Simonini, Rolando Cimaz

Publisher: Springer International Publishing

Abstract

Osteoporosis is now increasingly recognized in children due to the increased prevalence of disorders associated with bone loss. Fragility fractures represent the cardinal clinical features of pediatric osteoporosis and children presenting with fragility fractures deserve an accurate assessment to rule out a secondary cause. Indeed, in the pediatric population, a low bone mass is often a consequence of a chronic disease or its treatment; genetic bone disorders represent the cause of only a small fraction of cases. The position statement of the International Society for Clinical Densitometry guides physicians in interpreting densitometric data and making diagnoses of osteoporosis in children. Once a diagnosis of osteoporosis has been made, the aim is to identify children in whom bone status may deteriorate if left untreated. To date, bisphosphonates have represented the mainstay of treatment for pediatric osteoporosis. However, due to the peculiar pathophysiology of osteoporosis in this age group, a pharmacological agent with an anabolic effect on bone may provide clinicians with other therapeutic options in children. Multicenter studies are needed to optimize treatments and define optimal clinical response in treated children.
Literature
1.
Alos N, et al. High incidence of vertebral fractures in children with acute lymphoblastic leukemia 12 months after the initiation of therapy. J Clin Oncol. 2012;30(22):2760–7.PubMedPubMedCentralCrossRef
2.
Mok CC, Wong SN, Ma KM. Childhood-onset disease carries a higher risk of low bone mineral density in an adult population of systemic lupus erythematosus. Rheumatology. 2012;51(3):468–75.PubMedCrossRef
3.
Bailey DA, Mckay HA, Mirwald RL, Faulkner RA. A six-year longitudinal study of the relationship of physical activity to bone mineral accrual in growing children: The University of Saskatchewan Bone Mineral. 1999;14(10):1672–9.
4.
Rizzoli R, Bianchi ML, Garabédian M, McKay HA, Moreno LA. Maximizing bone mineral mass gain during growth for the prevention of fractures in the adolescents and the elderly. Bone. 2010;46(2):294–305.PubMedCrossRef
5.
Christoffersen T, Ahmed LA, Winther A, et al. Fracture incidence rates in Norwegian children, The Tromsø Study, fit futures. Arch Osteoporos. 2016;11(1):40.PubMedCrossRef
6.
Leaman LA, Hennrikus WL, Bresnahan JJ. Identifying non-accidental fractures in children aged <2 years. J Child Orthop. 2016;10(4):335–41.PubMedPubMedCentralCrossRef
7.
Paddock M, Sprigg A, Offiah AC. Imaging and reporting considerations for suspected physical abuse (non-accidental injury) in infants and young children. Part 2: axial skeleton and differential diagnoses. Clin Radiol. 2017;72(3):189–201. doi:10.​1016/​j.​crad.​2016.​11.​015.PubMedCrossRef
8.
Krug EG, Dahlberg LL, Mercy JA, Zwi AB. World report on violence and health. Lancet. 2002;360(9339):1083–8.PubMedCrossRef
9.
Marini JC, Blissett AR. New genes in bone development: what’s new in osteogenesis imperfecta. J Clin Endocrinol Metab. 2013;98(8):3095–103.PubMedPubMedCentralCrossRef
10.
Lindahl K, Åström E, Rubin CJ, et al. Genetic epidemiology, prevalence, and genotype–phenotype correlations in the Swedish population with osteogenesis imperfecta. Eur J Hum Genet. 2015;23(8):1042–50.PubMedPubMedCentralCrossRef
11.
Zacharin M, Cundy T. Osteoporosis pseudoglioma syndrome: treatment of spinal osteoporosis with intravenous bisphosphonates. J Pediatr. 2000;137(3):410–5.PubMedCrossRef
12.
Bacchetta J, Wesseling-Perry K, Gilsanz V, Gales B, Pereira RC, Salusky IB. Idiopathic juvenile osteoporosis: a cross-sectional single-centre experience with bone histomorphometry and quantitative computed tomography. Pediatr Rheumatol. 2013;11(1):6.CrossRef
13.
Dent CE, Friedman M. Idiopathic juvenile osteoporosis. Q J Med. 1965;34:177–210.PubMed
14.
Mäkitie RE, et al. Skeletal characteristics of WNT1 osteoporosis in children and young adults. J Bone Miner Res. 2016;31(9):1734–42.PubMedCrossRef
15.
Bishop N, et al. Dual-energy X-ray aborptiometry assessment in children and adolescents with diseases that may affect the skeleton: the 2007 ISCD pediatric official positions. J Clin Densitom. 2008;11(1):29–42.PubMedCrossRef
16.
Buckner JL, Bowden SA, Mahan JD. Optimizing bone health in duchenne muscular dystrophy. Int J Endocrinol. 2015;2015:928385.PubMedPubMedCentralCrossRef
17.
Joseph S, McCarrison S, Wong SC. Skeletal fragility in children with chronic disease. Horm Res Paediatr. 2016;86(2):71–82.PubMedCrossRef
18.
Boyce BF, Schwarz EM, Xing L. Osteoclast precursors: cytokine-stimulated immunomodulators of inflammatory bone disease. Curr Opin Rheumatol. 2006;18(4):427–32.PubMedCrossRef
19.
Devlin RD, Reddy SV, Savino R, Ciliberto G, Roodman GD. IL-6 mediates the effects of IL-1 or TNF, but not PTHrP or 1,25(OH)2D3, on osteoclast-like cell formation in normal human bone marrow cultures. J Bone Miner Res. 1998;13(3):393–9.PubMedCrossRef
20.
Huber AM, Ward LM. The impact of underlying disease on fracture risk and bone mineral density in children with rheumatic disorders: a review of current literature. Semin Arthritis Rheum. 2016;46(1):49–63.PubMedCrossRef
21.
Huber AM, et al. Prevalent vertebral fractures among children initiating glucocorticoid therapy for the treatment of rheumatic disorders. Arthritis Care Res (Hoboken). 2010;62(4):516–26.CrossRef
22.
Stagi S, et al. Bone mass and quality in patients with juvenile idiopathic arthritis: longitudinal evaluation of bone-mass determinants by using dual-energy X-ray absorptiometry, peripheral quantitative computed tomography, and quantitative ultrasonography. Arthritis Res Ther. 2014;16(2):R83.PubMedPubMedCentralCrossRef
23.
Sylvester FA, et al. Natural history of bone metabolism and bone mineral density in children with inflammatory bowel disease. Inflamm Bowel Dis. 2007;13(1):42–50.PubMedCrossRef
24.
Gokhale R, Favus MJ, Karrison T, Sutton MM, Rich B, Kirschner BS. Bone mineral density assessment in children with inflammatory bowel disease. Gastroenterology. 1998;114(5):902–11.PubMedCrossRef
25.
Boot AM, Bouquet J, Krenning EP, de Muinck Keizer-Schrama SM. Bone mineral density and nutritional status in children with chronic inflammatory bowel disease. Gut. 1998;42(2):188–94.PubMedPubMedCentralCrossRef
26.
Burnham JM, et al. Whole body BMC in pediatric crohn disease: independent effects of altered growth, maturation, and body composition. J Bone Miner Res. 2004;19(12):1961–8.PubMedCrossRef
27.
Bernstein CN, Blanchard JF, Leslie W, Wajda A, Yu BN. The incidence of fracture among patients with inflammatory bowel disease. A population-based cohort study. Ann Intern Med. 2000;133(10):795–9.PubMedCrossRef
28.
Semeao EJ, Stallings VA, Peck SN, Piccoli DA. Vertebral compression fractures in pediatric patients with Crohn’s disease. Gastroenterology. 1997;112(5):1710–3.PubMedCrossRef
29.
Ward LM, Rauch F, Matzinger MA, Benchimol EI, Boland M, Mack DR. Iliac bone histomorphometry in children with newly diagnosed inflammatory bowel disease. Osteoporos Int. 2010;21(2):331–7.PubMedCrossRef
30.
Canalis E, Mazziotti G, Giustina A, Bilezikian JP. Glucocorticoid-induced osteoporosis: pathophysiology and therapy. Osteoporos Int. 2007;18(10):1319–28.PubMedCrossRef
31.
Pereira RM, Delany AM, Canalis E. Cortisol inhibits the differentiation and apoptosis of osteoblasts in culture. Bone. 2001;28(5):484–90.PubMedCrossRef
32.
Delany AM, Gabbitas BY, Canalis E. Cortisol downregulates osteoblast alpha 1 (I) procollagen mRNA by transcriptional and posttranscriptional mechanisms. J Cell Biochem. 1995;57(3):488–94.PubMedCrossRef
33.
Weinstein RS, et al. Promotion of osteoclast survival and antagonism of bisphosphonate-induced osteoclast apoptosis by glucocorticoids. J Clin Invest. 2002;109(8):1041–8.PubMedPubMedCentralCrossRef
34.
Umławska W, Prusek-Dudkiewicz A. Growth retardation and delayed puberty in children and adolescents with juvenile idiopathic arthritis. Arch Med Sci. 2010;1(1):19–23.CrossRef
35.
Wang S-J, Yang Y-H, Lin Y-T, Yang C-M, Chiang B-L. Attained adult height in juvenile rheumatoid arthritis with or without corticosteroid treatment. Clin Rheumatol. 2002;21(5):363–8.PubMedCrossRef
36.
Rüegsegger P, Medici TC, Anliker M. Corticosteroid-induced bone loss. A longitudinal study of alternate day therapy in patients with bronchial asthma using quantitative computed tomography. Eur J Clin Pharmacol. 1983;25(5):615–20.PubMedCrossRef
37.
Hansen KE, Kleker B, Safdar N, Bartels CM. A systematic review and meta-analysis of glucocorticoid-induced osteoporosis in children. Semin Arthritis Rheum. 2014;44(1):47–54.PubMedPubMedCentralCrossRef
38.
Rodd C, et al. Incident vertebral fractures among children with rheumatic disorders 12 months after glucocorticoid initiation: a national observational study. Arthritis Care Res. (Hoboken). 2012;64(1):122–31.CrossRef
39.
LeBlanc CM, et al. Incident vertebral fractures and risk factors in the first three years following glucocorticoid initiation among pediatric patients with rheumatic disorders. J Bone Miner Res. 2015;30(9):1667–75.PubMedPubMedCentralCrossRef
40.
van Staa T, Cooper C, Leufkens H, Bishop N. Children and the risk of fractures caused by oral corticosteroids. J Bone Miner Res. 2003;18(5):913–8.PubMedCrossRef
41.
Feber J, et al. Skeletal findings in children recently initiating glucocorticoids for the treatment of nephrotic syndrome. Osteoporos Int. 2012;23(2):751–60.PubMedCrossRef
42.
Mul D, van Suijlekom-Smit LWA, ten Cate R, Bekkering WP, de Muinck Keizer-Schrama SMPF. Bone mineral density and body composition and influencing factors in children with rheumatic diseases treated with corticosteroids. J Pediatr Endocrinol Metab. 2002;15(2):187–92.PubMedCrossRef
43.
Burnham JM, Shults J, Sembhi H, Zemel BS, Leonard MB. The dysfunctional muscle-bone unit in juvenile idiopathic arthritis. J Musculoskelet Neuronal Interact. 2006;6(4):351–2.PubMed
44.
Roth J, Palm C, Scheunemann I, Ranke MB, Schweizer R, Dannecker GE. Musculoskeletal abnormalities of the forearm in patients with juvenile idiopathic arthritis relate mainly to bone geometry. Arthritis Rheum. 2004;50(4):1277–85.PubMedCrossRef
45.
Fehlings D, et al. Informing evidence-based clinical practice guidelines for children with cerebral palsy at risk of osteoporosis: a systematic review. Dev Med Child Neurol. 2012;54(2):106–16.PubMedCrossRef
46.
Gordon CM, Leonard MB, Zemel BS. 2013 Pediatric position development conference: executive summary and reflections. J Clin Densitom. 2014;17(2):219–24.PubMedCrossRef
47.
Bachrach LK, Gordon CM, Section on Endocrinology. Bone densitometry in children and adolescents. Pediatrics. 2016;138(4):e20162398. doi:10.​1542/​peds.​2016-2398.PubMedCrossRef
48.
Kocks J, Ward K, Mughal Z, Moncayo R, Adams J, Högler W. Z-score comparability of bone mineral density reference databases for children. J Clin Endocrinol Metab. 2010;95(10):4652–9.PubMedCrossRef
49.
Bechtold S, Ripperger P, Dalla Pozza R, Schmidt H, Häfner R, Schwarz HP. Musculoskeletal and functional muscle-bone analysis in children with rheumatic disease using peripheral quantitative computed tomography. Osteoporos Int. 2005;16(7):757–63.PubMedCrossRef
50.
Stagi S, et al. Peripheral quantitative computed tomography (pQCT) for the assessment of bone strength in most of bone affecting conditions in developmental age: a review. Ital J Pediatr. 2016;42(1):88.PubMedPubMedCentralCrossRef
51.
Cheung AM, et al. High-resolution peripheral quantitative computed tomography for the assessment of bone strength and structure: a review by the Canadian Bone Strength Working Group. Curr Osteoporos Rep. 2013;11(2):136–46.PubMedPubMedCentralCrossRef
52.
Adams JE, Engelke K, Zemel BS, Ward KA, International Society of Clinical Densitometry. Quantitative computer tomography in children and adolescents: the 2013 ISCD pediatric official positions. J Clin Densitom. 2014;17(2):258–74.PubMedCrossRef
53.
Genant HK, Wu CY, van Kuijk C, Nevitt MC. Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res. 2009;8(9):1137–48.CrossRef
54.
DiVasta AD, Feldman HA, Gordon CM. Vertebral fracture assessment in adolescents and young women with anorexia nervosa: a case series. J Clin Densitom. 2014;17(1):207–11.PubMedCrossRef
55.
Lentle B, et al. The radiology of vertebral fractures in childhood osteoporosis related to glucocorticoid administration. J Clin Densitom. 2016;19(1):81–8.PubMedCrossRef
56.
Ward LM, Konji VN, Ma J. The management of osteoporosis in children. Osteoporos Int. 2016;27(7):2147–79.PubMedCrossRef
57.
Cooper C, Westlake S, Harvey N, Javaid K, Dennison E, Hanson M. Review: developmental origins of osteoporotic fracture. Osteoporos Int. 2006;17(3):337–47.PubMedCrossRef
58.
Simonini G, Giani T, Stagi S, de Martino M, Falcini F. Bone status over 1 yr of etanercept treatment in juvenile idiopathic arthritis. Rheumatology (Oxford). 2005;44(6):777–80.CrossRef
59.
Billiau AD, et al. Etanercept improves linear growth and bone mass acquisition in MTX-resistant polyarticular-course juvenile idiopathic arthritis. Rheumatology. 2010;49(8):1550–8.PubMedCrossRef
60.
Soo J, et al. Use of exclusive enteral nutrition is just as effective as corticosteroids in newly diagnosed pediatric Crohn’s disease. Dig Dis Sci. 2013;58(12):3584–91.PubMedCrossRef
61.
Werkstetter KJ, Schatz SB, Alberer M, Filipiak-Pittroff B, Koletzko S. Influence of exclusive enteral nutrition therapy on bone density and geometry in newly diagnosed pediatric Crohn’s disease patients. Ann Nutr Metab. 2013;63(1–2):10–6.PubMedCrossRef
62.
Behringer M, Gruetzner S, McCourt M, Mester J. Effects of weight-bearing activities on bone mineral content and density in children and adolescents: a meta-analysis. J Bone Miner Res. 2014;29(2):467–78.PubMedCrossRef
63.
Omori CH, Silva CA, Sallum AM, et al. Exercise training in juvenile dermatomyositis. Arthritis Care Res (Hoboken). 2012;64(8):1186–94.PubMed
64.
Gannotti ME, et al. Can exercise influence low bone mineral density in children with juvenile rheumatoid arthritis? Pediatr Phys Ther. 2007;19(2):128–39.PubMedCrossRef
65.
Benchimol EI, et al. Effect of calcium and vitamin d supplementation on bone mineral density in children with inflammatory bowel disease. J Pediatr Gastroenterol Nutr. 2007;45(5):538–45.PubMedCrossRef
66.
Winzenberg T, Powell S, Shaw KA, Jones G. Effects of vitamin D supplementation on bone density in healthy children: systematic review and meta-analysis. BMJ. 2011;342(1):c7254–c7254.
67.
Edouard T, Glorieux FH, Rauch F. Predictors and correlates of vitamin D status in children and adolescents with osteogenesis imperfecta. J Clin Endocrinol Metab. 2011;96(10):3193–8.PubMedCrossRef
68.
Winzenberg T, Shaw K, Fryer J, Jones G. Effects of calcium supplementation on bone density in healthy children: meta-analysis of randomised controlled trials. BMJ. 2006;333(7572):775.PubMedPubMedCentralCrossRef
69.
di N. Umana SI. Livelli di Assunzione di Riferimento di Nutrienti ed energia per la popolazione italiana—IV Revisione. 2014. http://​www.​sinu.​it/​html/​pag/​tabelle_​larn_​2014_​rev.​asp.
70.
Cosman F, et al. Clinician’s guide to prevention and treatment of osteoporosis. Osteoporos Int. 2014;25(10):2359–81.PubMedPubMedCentralCrossRef
71.
Russell RGG. Bisphosphonates: mode of action and pharmacology. Pediatrics. 2007;119(Supplement):S150–62.PubMedCrossRef
72.
Ebetino FH, et al. The relationship between the chemistry and biological activity of the bisphosphonates. Bone. 2011;49(1):20–33.PubMedCrossRef
73.
Soares AP, et al. Bisphosphonates: Pharmacokinetics, bioavailability, mechanisms of action, clinical applications in children, and effects on tooth development. Environ Toxicol Pharmacol. 2016;42:212–7.PubMedCrossRef
74.
Gertz BJ, Holland SD, Kline WF, Matuszewski BK, Porras AG. Clinical pharmacology of alendronate sodium. Osteoporos Int. 1993;3(Suppl 3):S13–6.PubMedCrossRef
75.
Baroncelli GI, Bertelloni S. The use of bisphosphonates in pediatrics. Horm Res Paediatr. 2014;82(5):290–302.PubMedCrossRef
76.
Bishop N, et al. Risedronate in children with osteogenesis imperfecta: a randomised, double-blind, placebo-controlled trial. Lancet. 2013;382(9902):1424–32.PubMedCrossRef
77.
DiMeglio LA, Peacock M. Two-year clinical trial of oral alendronate versus intravenous pamidronate in children with osteogenesis imperfecta. J Bone Miner Res. 2006;21(1):132–40.PubMedCrossRef
78.
Sakkers R, et al. Skeletal effects and functional outcome with olpadronate in children with osteogenesis imperfecta: a 2-year randomised placebo-controlled study. Lancet. 2004;363(9419):1427–31.PubMedCrossRef
79.
Rauch F, Munns CF, Land C, Cheung M, Glorieux FH. Risedronate in the treatment of mild pediatric osteogenesis imperfecta: a randomized placebo-controlled study. J Bone Miner Res. 2009;24(7):1282–9.PubMedCrossRef
80.
Ward LM, et al. Alendronate for the treatment of pediatric osteogenesis imperfecta: a randomized placebo-controlled study. J Clin Endocrinol Metab. 2011;96(2):355–64.PubMedCrossRef
81.
Land C, Rauch F, Munns CF, Sahebjam S, Glorieux FH. Vertebral morphometry in children and adolescents with osteogenesis imperfecta: effect of intravenous pamidronate treatment. Bone. 2006;39(4):901–6.PubMedCrossRef
82.
Zeitlin L, Rauch F, Plotkin H, Glorieux FH. Height and weight development during four years of therapy with cyclical intravenous pamidronate in children and adolescents with osteogenesis imperfecta types I, III, and IV. Pediatrics. 2003;111(5 Pt 1):1030–6.PubMedCrossRef
83.
Munns CF, Rauch F, Travers R, Glorieux FH. Effects of intravenous pamidronate treatment in infants with osteogenesis imperfecta: clinical and histomorphometric outcome. J Bone Miner Res. 2005;20(7):1235–43.PubMedCrossRef
84.
DiMeglio LA, Ford L, McClintock C, Peacock M. Intravenous pamidronate treatment of children under 36 months of age with osteogenesis imperfecta. Bone. 2004;35(5):1038–45.PubMedCrossRef
85.
Kusumi K, Ayoob R, Bowden SA, Ingraham S, Mahan JD. Beneficial effects of intravenous pamidronate treatment in children with osteogenesis imperfecta under 24 months of age. J Bone Miner Metab. 2015;33(5):560–8.PubMedCrossRef
86.
Lin CH, et al. Cyclic pamidronate infusion for neonatal-onset osteogenesis imperfecta. Pediatr Neonatol. 2014;55(4):306–11.PubMedCrossRef
87.
Gandrud LM, Cheung JC, Daniels MW, Bachrach LK. Low-dose intravenous pamidronate reduces fractures in childhood osteoporosis. J Pediatr Endocrinol Metab. 16(6):887–92.
88.
Steelman J, Zeitler P. Treatment of symptomatic pediatric osteoporosis with cyclic single-day intravenous pamidronate infusions. J Pediatr. 2003;142(4):417–23.PubMedCrossRef
89.
Maines E, Monti E, Doro F, Morandi G, Cavarzere P, Antoniazzi F. Children and adolescents treated with neridronate for osteogenesis imperfecta show no evidence of any osteonecrosis of the jaw. J Bone Miner Metab. 2012;30(4):434–8.PubMedCrossRef
90.
Barros ER, Saraiva GL, de Oliveira TP, Lazaretti-Castro M. Safety and efficacy of a 1-year treatment with zoledronic acid compared with pamidronate in children with osteogenesis imperfecta. J Pediatr Endocrinol Metab. 2012;25(5–6):485–91.PubMed
91.
Ooi HL, Briody J, Biggin A, Cowell CT, Munns CF. Intravenous zoledronic acid given every 6 months in childhood osteoporosis. Horm Res Paediatr. 2013;80(3):179–84.PubMedCrossRef
92.
George S, Weber DR, Kaplan P, Hummel K, Monk HM, Levine MA. Short-term safety of zoledronic acid in young patients with bone disorders: an extensive institutional experience. J Clin Endocrinol Metab. 2015;100(11):4163–71.PubMedPubMedCentralCrossRef
93.
Al-Agha A, Hayatalhazmi R. Osteoporosis treatment with zoledronic acid in pediatric population at a university hospital in Western Saudi Arabia. A 13-year experience. Saudi Med J. 2015;36(11):1312–8.PubMedPubMedCentralCrossRef
94.
Robins SP, New SA. Markers of bone turnover in relation to bone health. Proc Nutr Soc. 1997;56(3):903–14.PubMedCrossRef
95.
Wheater G, Elshahaly M, Tuck SP, et al. The clinical utility of bone marker measurements in osteoporosis. J Transl Med. 2013;11:201.PubMedPubMedCentralCrossRef
96.
Parfitt AM, Simon LS, Villanueva AR, Krane SM. Procollagen type I carboxy-terminal extension peptide in serum as a marker of collagen biosynthesis in bone. Correlation with Iliac bone formation rates and comparison with total alkaline phosphatase. J Bone Miner Res. 1987;2(5):427–36.PubMedCrossRef
97.
Minkin C. Bone acid phosphatase: tartrate-resistant acid phosphatase as a marker of osteoclast function. Calcif Tissue Int. 1982;34(3):285–90.PubMedCrossRef
98.
Risteli L, Risteli J. Products of bone collagen metabolism. In: Seibel MJ, Robins SP, Bilezikian JP, editors. Dynamics of bone and cartilage metabolism: principles and clinical applications. London: Academic Press; 1999. p. 275–87.
99.
Vasikaran S, Cooper C, Eastell R, et al. International Osteoporosis Foundation and International Federation of Clinical Chemistry and Laboratory Medicine Position on bone marker standards in osteoporosis. Clin Chem Lab Med. 2011;49(8):1271–4.PubMedCrossRef
100.
Rauchenzauner M, et al. Sex- and age-specific reference curves for serum markers of bone turnover in healthy children from 2 months to 18 years. J Clin Endocrinol Metab. 2007;92(2):443–9.PubMedCrossRef
101.
Bayer M. Reference values of osteocalcin and procollagen type I N-propeptide plasma levels in a healthy Central European population aged 0–18 years. Osteoporos Int. 2014;25(2):729–36.PubMedCrossRef
102.
Rauch F, Plotkin H, Travers R, Zeitlin L, Glorieux FH. Osteogenesis imperfecta types I, III, and IV: effect of pamidronate therapy on bone and mineral metabolism. J Clin Endocrinol Metab. 2003;88(3):986–92.PubMedCrossRef
103.
Kennel KA, Drake MT. Adverse effects of bisphosphonates: implications for osteoporosis management. Mayo Clin Proc. 2009;84(7):632–8.PubMedPubMedCentralCrossRef
104.
Sarraf KM. Radiographic zebra lines from cyclical pamidronate therapy. N Engl J Med. 2011;365(5):2015.
105.
Silva EC, Terreri MT, de Castro TC, et al. Sclerotic metaphyseal lines in children and adolescents treated with alendronate. Rev Bras Reumatol. 2010;50(3):283–90.PubMedCrossRef
106.
Land C, Rauch F, Glorieux FH. Cyclical intravenous pamidronate treatment affects metaphyseal modeling in growing patients with osteogenesis imperfecta. J Bone Miner Res. 2005;21(3):374–9.PubMedCrossRef
107.
Abrahamsen B. Bisphosphonate adverse effects, lessons from large databases. Curr Opin Rheumatol. 2010;22(4):404–9.PubMedCrossRef
108.
Hennedige AA, Jayasinghe J, Khajeh J, Macfarlane TV. Systematic review on the incidence of bisphosphonate related osteonecrosis of the jaw in childrendiagnosed with osteogenesis imperfecta. J Oral Maxillofac Res. 2014;4(4):e1.PubMedPubMedCentral
109.
Ruggiero SL, et al. American association of oral and maxillofacial surgeons position paper on bisphosphonate-related osteonecrosis of the jaw—2009 update. Aust Endod J. 2009;35(3):119–30.PubMedCrossRef
110.
Frost HM. The mechanostat: a proposed pathogenic mechanism of osteoporoses and the bone mass effects of mechanical and nonmechanical agents. Bone Miner. 1987;2:73–85.PubMed
111.
Munns CF, Rauch F, Zeitlin L, Fassier F, Glorieux FH. Delayed osteotomy but not fracture healing in pediatric osteogenesis imperfecta patients receiving pamidronate. J Bone Miner Res. 2004;19(11):1779–86.PubMedCrossRef
112.
Anam EA, Rauch F, Glorieux FH, Fassier F, Hamdy R. Osteotomy healing in children with osteogenesis imperfecta receiving bisphosphonate treatment. J Bone Miner Res. 2015;30(8):1362–8.PubMedCrossRef
113.
Bubbear JS. Atypical femur fractures in patients treated with bisphosphonates: identification, management, and prevention. Rambam Maimonides Med J. 2016;7(4):e0032.PubMedCentralCrossRef
114.
van de Laarschot DM, Zillikens MC. Atypical femur fracture in an adolescent boy treated with bisphosphonates for X-linked osteoporosis based on PLS3 mutation. Bone. 2016;91:148–51.PubMedCrossRef
115.
Etxebarria-Foronda I, Carpintero P. An atypical fracture in male patient with osteogenesis imperfecta. Clin Cases Miner Bone Metab. 2015;12(3):278–81.PubMedPubMedCentral
116.
Whyte MP, Wenkert D, Clements KL, McAlister WH, Mumm S. Bisphosphonate-induced osteopetrosis. N Engl J Med. 2003;349(5):457–63.PubMedCrossRef
117.
Heczey A, Louis C. Images in clinical medicine. Osteopetrosis and erlenmeyer-flask deformity. N Engl J Med. 2015;373(10):e12.PubMedPubMedCentralCrossRef
118.
Whyte MP, McAlister WH, Novack DV, Clements KL, Schoenecker PL, Wenkert D. Bisphosphonate-induced osteopetrosis: novel bone modeling defects, metaphyseal osteopenia, and osteosclerosis fractures after drug exposure ceases. J Bone Miner Res. 2008;23(10):1698–707.PubMedCrossRef
119.
Ward K, Cowell CT, Little DG. Quantification of metaphyseal modeling in children treated with bisphosphonates. Bone. 2005;36(6):999–1002.PubMedCrossRef
120.
Rauch F, Cornibert S, Cheung M, Glorieux FH. Long-bone changes after pamidronate discontinuation in children and adolescents with osteogenesis imperfecta. Bone. 2007;40(4):821–7.PubMedCrossRef
121.
Biggin A, Zheng L, Briody JN, Coorey CP, Munns CF. The long-term effects of switching from active intravenous bisphosphonate treatment to low-dose maintenance therapy in children with osteogenesis imperfecta. Horm Res Paediatr. 2015;83(3):183–9.PubMedCrossRef
122.
McKenzie AF, Budd RS, Yang C, Shapiro B, Hicks RJ. Technetium-99 m-methylene diphosphonate uptake in the fetal skeleton at 30 weeks gestation. J Nucl Med. 1994;35(8):1338–41.PubMed
123.
Patlas N, Golomb G, Yaffe P, Pinto T, Breuer E, Ornoy A. Transplacental effects of bisphosphonates on fetal skeletal ossification and mineralization in rats. Teratology. 1999;60(2):68–73.PubMedCrossRef
124.
Green SB, Pappas AL. Effects of maternal bisphosphonate use on fetal and neonatal outcomes. Am J Heal Pharm. 2014;71(23):2029–36.CrossRef
125.
Ioannis SP, et al. The use of bisphosphonates in women prior to or during pregnancy and lactation. 2011;10(4):280–91.
126.
Papapoulos SE, Cremers SCLM. Prolonged bisphosphonate release after treatment in children. N Engl J Med. 2007;356(10):1075–6.PubMedCrossRef
127.
Glorieux FH, Bishop NJ, Plotkin H, Chabot G, Lanoue G, Travers R. Cyclic administration of pamidronate in children with severe osteogenesis imperfecta. N Engl J Med. 1998;339(14):947–52.PubMedCrossRef
128.
Marom R, Lee Y-C, Grafe I, Lee B. Pharmacological and biological therapeutic strategies for osteogenesis imperfecta. Am J Med Genet Part C Semin Med Genet. 2016;172(4):367–83.PubMedCrossRef
129.
Dwan K, Phillipi CA, Steiner RD, Basel D. Bisphosphonate therapy for osteogenesis imperfecta. In: Basel D, editor. Cochrane database of systematic reviews. Chichester: Wiley; 2016.
130.
Seikaly MG, Kopanati S, Salhab N, et al. Impact of alendronate on quality of life in children with osteogenesis imperfecta. J Pediatr Orthop. 2005;25(6):786–91.PubMedCrossRef
131.
Senthilnathan S, Walker E, Bishop NJ. Two doses of pamidronate in infants with osteogenesis imperfecta. Arch Dis Child. 2008;93(5):398–400.PubMedCrossRef
132.
Shi CG, Zhang Y, Yuan W. Efficacy of bisphosphonates on bone mineral density and fracture rate in patients with osteogenesis imperfecta. Am J Ther. 2016;23(3):e894–904.PubMedCrossRef
133.
Šumník Z, Land C, Rieger-Wettengl G, Körber F, Stabrey A, Schoenau E. Effect of pamidronate treatment on vertebral deformity in children with primary osteoporosis. Horm Res Paediatr. 2004;61(3):137–42.CrossRef
134.
Melchior R, Zabel B, Spranger J, Schumacher R. Effective parenteral clodronate treatment of a child with severe juvenile idiopathic osteoporosis. Eur J Pediatr. 2005;164(1):22–7.PubMedCrossRef
135.
Kauffman RP, Overton TH, Shiflett M, Jennings JC. Osteoporosis in children and adolescent girls: case report of idiopathic juvenile osteoporosis and review of the literature. Obstet Gynecol Surv. 2001;56(8):492–504.PubMedCrossRef
136.
Baroncelli GI, Vierucci F, Bertelloni S, Erba P, Zampollo E, Giuca MR. Pamidronate treatment stimulates the onset of recovery phase reducing fracture rate and skeletal deformities in patients with idiopathic juvenile osteoporosis: comparison with untreated patients. J Bone Miner Metab. 2013;31(5):533–43.PubMedCrossRef
137.
Bellido T, Plotkin LI. Novel actions of bisphosphonates in bone: preservation of osteoblast and osteocyte viability. Bone. 2011;49(1):50–5.PubMedCrossRef
138.
Lara-Castillo N, Johnson ML. LRP receptor family member associated bone disease. Rev Endocr Metab Disord. 2015;16(2):141–8.PubMedPubMedCentralCrossRef
139.
Tüysüz B, Bursalı A, Alp Z, Suyugül N, Laine CM, Mäkitie O. Osteoporosis-pseudoglioma syndrome: three novel mutations in the LRP5 gene and response to bisphosphonate treatment. Horm Res Paediatr. 2012;77(2):115–20.PubMedCrossRef
140.
Bayram F, et al. Effects of 3 years of intravenous pamidronate treatment on bone markers and bone mineral density in a patient with osteoporosis-pseudoglioma syndrome (OPPG). J Pediatr Endocrinol Metab. 2006;19(3):275–9.PubMedCrossRef
141.
Barros ER, Dias da Silva MR, Kunii IS, Lazaretti-Castro M. Three years follow-up of pamidronate therapy in two brothers with osteoporosis-pseudoglioma syndrome (OPPG) carrying an LRP5 mutation. J Pediatr Endocrinol Metab. 2008;21(8):811–8.PubMedCrossRef
142.
Streeten EA, et al. Osteoporosis-pseudoglioma syndrome: description of 9 new cases and beneficial response to bisphosphonates. Bone. 2008;43(3):584–90.PubMedPubMedCentralCrossRef
143.
Streeten EA, et al. Fractures on bisphosphonates in osteoporosis pseudoglioma syndrome (OPPG): pQCT shows poor bone density and structure. Bone. 2015;77:17–23.PubMedPubMedCentralCrossRef
144.
Leonard MB. Glucocorticoid-induced osteoporosis in children: impact of the underlying disease. Pediatrics. 2007;119(Supplement):S166–74.PubMedCrossRef
145.
Allen CS, Yeung JH, Vandermeer B, Homik J. Bisphosphonates for steroid-induced osteoporosis. In: Homik J, editor. Cochrane database of systematic reviews. Chichester: Wiley; 2016.
146.
Jayasena A, Atapattu N, Lekamwasam S. Treatment of glucocorticoid-induced low bone mineral density in children: a systematic review. Int J Rheum Dis. 2015;18(3):287–93.PubMedCrossRef
147.
Bianchi ML, et al. Efficacy and safety of alendronate for the treatment of osteoporosis in diffuse connective tissue diseases in children: a prospective multicenter study. Arthritis Rheum. 2000;43(9):1960–6.PubMedCrossRef
148.
Acott PD, Wong JA, Lang BA, Crocker JFS. Pamidronate treatment of pediatric fracture patients on chronic steroid therapy. Pediatr Nephrol. 2005;20(3):368–73.PubMedCrossRef
149.
Ozel S, Switzer L, Macintosh A, Fehlings D. Informing evidence-based clinical practice guidelines for children with cerebral palsy at risk of osteoporosis: an update. Dev Med Child Neurol. 2016;58(9):918–23.PubMedCrossRef
150.
Guo Z, et al. The efficacy and safety of bisphosphonates for osteoporosis or osteopenia in Crohn’s disease: a meta-analysis. Dig Dis Sci. 2013;58(4):915–22.PubMedCrossRef
151.
Bachrach LK, Ward LM. Clinical review: bisphosphonate use in childhood osteoporosis. J Clin Endocrinol Metab. 2009;94(2):400–9.PubMedCrossRef
152.
Ward L, et al. Bisphosphonate therapy for children and adolescents with secondary osteoporosis. In: Ward L, editor. Cochrane database of systematic reviews. Chichester: Wiley; 2007.
153.
Suda T, Takahashi N, Udagawa N, Jimi E, Gillespie MT, Martin TJ. Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr Rev. 1999;20(3):345–57.PubMedCrossRef
154.
Arai F, et al. Commitment and differentiation of osteoclast precursor cells by the sequential expression of c-Fms and receptor activator of nuclear factor kappaB (RANK) receptors. J Exp Med. 1999;190(12):1741–54.PubMedPubMedCentralCrossRef
155.
Canalis E. Mechanisms of glucocorticoid action in bone. Curr Osteoporos Rep. 2005;3(3):98–102.PubMedCrossRef
156.
Suresh E, Abrahamsen B. Denosumab: a novel antiresorptive drug for osteoporosis. Cleve Clin J Med. 2015;82(2):105–14.PubMedCrossRef
157.
Semler O, Netzer C, Hoyer-Kuhn H, Becker J, Eysel P, Schoenau E. First use of the RANKL antibody denosumab in osteogenesis imperfecta type VI. J Musculoskelet Neuronal Interact. 2012;12(3):183–8.PubMed
158.
Hoyer-Kuhn H, Netzer C, Koerber F, Schoenau E, Semler O. Two years’ experience with denosumab for children with Osteogenesis imperfecta type VI. Orphanet J Rare Dis. 2014;9(1):145.PubMedPubMedCentralCrossRef
159.
Hoyer-Kuhn H, et al. Safety and efficacy of denosumab in children with osteogenesis imperfect—a first prospective trial. J Musculoskelet Neuronal Interact. 2016;16(1):24–32.PubMedPubMedCentral
160.
Wang HD, et al. Effects of denosumab treatment and discontinuation on human growth plates. J Clin Endocrinol Metab. 2014;99(3):891–7.PubMedPubMedCentralCrossRef
161.
Scheinberg MA, Golmia RP, Sallum AME, et al. Bone health in cerebral palsy and introduction of a novel therapy. Einstein (Sao Paulo) 2015;13(4):555–9.CrossRef
162.
Farrier AJ, et al. New anti-resorptives and antibody mediated anti-resorptive therapy. Bone Joint J. 2016;98-B(2):160–165.
163.
Duong LT, Leung AT, Langdahl B. Cathepsin K inhibition: a new mechanism for the treatment of osteoporosis. Calcif Tissue Int. 2016;98(4):381–97.CrossRef
164.
Mukherjee K, Chattopadhyay N. Pharmacological inhibition of cathepsin K: a promising novel approach for postmenopausal osteoporosis therapy. Biochem Pharmacol. 2016;117:10–9.PubMedCrossRef
165.
Rizzoli R, et al. Continuous treatment with odanacatib for up to 8 years in postmenopausal women with low bone mineral density: a phase 2 study. Osteoporos Int. 2016;27(6):2099–107.PubMedCrossRef
166.
Lindsay R, Krege JH, Marin F, Jin L, Stepan JJ. Teriparatide for osteoporosis: importance of the full course. Osteoporos Int. 2016;27(8):2395–410.PubMedPubMedCentralCrossRef
167.
Vahle JL, Sato M, Long GG, et al. Skeletal changes in rats given daily subcutaneous injections of recombinant human parathyroid hormone (1–34) for 2 years and relevance to human safety. Toxicol Pathol. 2002;30(3):312–21.PubMedCrossRef
168.
Cipriani C, Capriani C, Irani D, Bilezikian JP. Safety of osteoanabolic therapy: a decade of experience. J Bone Miner Res. 2012;27(12):2419–28.PubMedCrossRef
169.
McClung MR, et al. Romosozumab in postmenopausal women with low bone mineral density. N Engl J Med. 2014;370(5):412–20.PubMedCrossRef
170.
Genant HK, Engelke K, Bolognese MA, et al. Effects of romosozumab compared with teriparatide on bone density and mass at the spine and hip in postmenopausal women with low bone mass. J Bone Miner Res. 2017;32(1):181–7.PubMedCrossRef
171.
Li X. Sclerostin binds to LRP5/6 and antagonizes canonical Wnt signaling. J Biol Chem. 2005;280(20):19883–7.PubMedCrossRef
172.
Semenov M, Tamai K, He X. SOST is a ligand for LRP5/LRP6 and a Wnt signaling inhibitor. J Biol Chem. 2005;280(29):26770–5.PubMedCrossRef
173.
Kedlaya R, et al. Sclerostin inhibition reverses skeletal fragility in an Lrp5-deficient mouse model of OPPG syndrome. Sci Transl Med. 2013;5(211):211ra158–211ra158.