Skip to main content
Top

22-05-2018 | Osteoporosis | Article

A population-based study of the risk of osteoporosis and fracture with dutasteride and finasteride

Journal: BMC Musculoskeletal Disorders

Authors: Tony Antoniou, Erin M. Macdonald, Zhan Yao, Tara Gomes, Mina Tadrous, Joanne M.-W. Ho, Muhammad M. Mamdani, David N. Juurlink, for the Canadian Drug Safety and Effectiveness Research Network

Publisher: BioMed Central

Abstract

Background

Dutasteride is a potent inhibitor of 5-alpha reductase enzymes that reduces concentrations of dihydrotestosterone to a greater extent than finasteride. Whether this has adverse implications for bone health is unknown. We compared the risk of osteoporosis and fractures in older men treated with dutasteride or finasteride.

Methods

We conducted a population-based retrospective cohort study with high-dimensional propensity score matching of Ontario men aged 66 years or older who started treatment with dutasteride or finasteride between January 1, 2006 and December 31, 2012. The primary outcome was a diagnosis of osteoporosis within 2 years of treatment initiation. A secondary outcome was osteoporotic or fragility fractures.

Results

We studied 31,615 men treated with dutasteride and an equal number of men treated with finasteride. Dutasteride-treated patients had a lower incidence of osteoporosis than those receiving finasteride [2.2 versus 2.6 per 100 person years; hazard ratio (HR) 0.82; 95% confidence interval (CI) 0.72 to 0.93]. This effect was no longer statistically significant following adjustment for specialty of prescribing physician (HR 0.90; 95% CI 0.78 to 1.02)]. There was no differential risk of fractures with dutasteride (HR 1.04; 95% 0.86 to 1.25).

Conclusions

Despite differential effects on 5-alpha reductase, dutasteride is not associated with an increased risk of osteoporosis or fractures in older men relative to finasteride. These findings suggest that dutasteride does not adversely affect bone health.
Literature
1.
Ebeling PR. Clinical practice. Osteoporosis in men. N Engl J Med. 2008;358:1474–82.CrossRefPubMed
2.
Tarride JE, Guo N, Hopkins R, Leslie WD, Morin S, Adachi JD, et al. The burden of illness of osteoporosis in Canadian men. J Bone Miner Res. 2012;27(8):1830–8.CrossRefPubMedPubMedCentral
3.
Jiang HX, Majumdar SR, Dick DA, Moreau M, Raso J, Otto DD, et al. Development and initial validation of a risk score for predicting in-hospital and 1-year mortality in patients with hip fractures. J Bone Miner Res. 2005;20:494–500.CrossRefPubMed
4.
Jackson JA, Riggs MW, Spiekerman AM. Testosterone deficiency as a risk factor for hip fractures in men: a case-control study. Am J Med Sci. 1992;304:4–8.CrossRefPubMed
5.
Behre HM, Kliesch S, Leifke E, Link TM, Nieschlag E. Long-term effect of testosterone therapy on bone mineral density in hypogonadal men. J Clin Endocrinol Metab. 1997;82:2386–90.CrossRefPubMed
6.
Mohamad NV, Soelaiman IN, Chin KY. A concise review of testosterone and bone health. Clin Interv Aging. 2016;11:1317–24.CrossRefPubMedPubMedCentral
7.
Gori F, Hofbauer LC, Conover CA, Khosla S. Effects of androgens on the insulin-like growth factor system in an androgen-responsive human osteoblastic cell line. Endocrinology. 1999;140:5579–86.CrossRefPubMed
8.
Kasperk C, Fitzsimmons R, Strong D, Mohan S, Jennings J, Wergedal J, et al. Studies of the mechanism by which androgens enhance mitogenesis and differentiation in bone cells. J Clin Endocrinol Metab. 1990;71:1322–9.CrossRefPubMed
9.
Ilangovan R, Sittadjody S, Balaganesh M, Sivakumar R, Ravi Sankar B, et al. Dihydrotestosterone is a determinant of calcaneal bone mineral density in men. J Steroid Biochem Mol Biol. 2009;117:132–8.CrossRefPubMed
10.
Saartok T, Dahlberg E, Gustafsson JA. Relative binding affinity of anabolic-androgenic steroids: comparison of the binding to the androgen receptors in skeletal muscle and in prostate, as well as to sex hormone-binding globulin. Endocrinology. 1984;114:2100–6.CrossRefPubMed
11.
Bartsch G, Rittmaster RS, Klocker H. Dihydrotestosterone and the concept of 5alpha-reductase inhibition in human benign prostatic hyperplasia. Eur Urol. 2000;37:367–80.CrossRefPubMed
12.
Nickel JC, Méndez-Probst CE, Whelan TF, Paterson RF, Razvi H. 2010 update: guidelines for the management of benign prostatic hyperplasia. Can Urol Assoc J. 2010;4:310–6.CrossRefPubMedPubMedCentral
13.
Issa S, Schnabel D, Feix M, Wolf L, Schaefer HE, Russell DW, et al. Human osteoblast-like cells express predominantly steroid 5alpha-reductase type 1. J Clin Endocrinol Metab. 2002;87:5401–7.CrossRefPubMed
14.
Amory JK, Wang C, Swerdloff RS, Anawalt BD, Matsumoto AM, Bremner WJ, et al. The effect of 5alpha-reductase inhibition with dutasteride and finasteride on semen parameters and serum hormones in healthy men. J Clin Endocrinol Metab. 2007;92:1659–65.CrossRefPubMed
15.
Clark RV, Hermann DJ, Cunningham GR, Wilson TH, Morrill BB, Hobbs S. Marked suppression of dihydrotestosterone in men with benign prostatic hyperplasia by dutasteride, a dual 5-alpha-reductase inhibitor. J Clin Endocrinol Metab. 2004;89:2179–84.CrossRefPubMed
16.
Amory JK, Anawalt BD, Matsumoto AM, Page ST, Bremner WJ, Wang C, et al. The effect of 5alpha-reductase inhibition with dutasteride and finasteride on bone mineral density, serum lipoproteins, hemoglobin, prostate specific antigen and sexual function in healthy young men. J Urol. 2008;179:2333–8.CrossRefPubMedPubMedCentral
17.
Mačukat IR, Spanjol J, Orlič ZC, Butorac MZ, Marinovič M, Ćupič DF. The effect of 5alpha-reductase inhibition with finasteride and dutasteride on bone mineral density in older men with benign prostatic hyperplasia. Coll Antropol. 2014;38:835–9.PubMed
18.
Robinson D, Garmo H, Stattin P, Michaëlsson K. Risk of fractures and falls during and after 5-α Reductase inhibitor use: a Nationwide cohort study. PLoS One. 2015;10(10):e0140598.CrossRefPubMedPubMedCentral
19.
Vestergaard P, Rejnmark L, Mosekilde L. Risk of fractures associated with treatment for benign prostate hyperplasia in men. Osteoporos Int. 2011;22:731–7.CrossRefPubMed
20.
Souverein PC, Van Staa TP, Egberts AC, De la Rosette JJ, Cooper C, Leufkens HG. Use of alpha-blockers and the risk of hip/femur fractures. J Intern Med. 2003;254:548–54.CrossRefPubMed
21.
Lin WL, Hsieh YW, Lin CL, Sung FC, Wu CH, Kao CH. A population-based nested case-control study: the use of 5-alpha-reductase inhibitors and the increased risk of osteoporosis diagnosis in patients with benign prostate hyperplasia. Clin Endocrinol. 2015;82:503–8.CrossRef
22.
Jacobsen SJ, Cheetham TC, Haque R, Shi JM, Loo RK. Association between 5-alpha reductase inhibition and risk of hip fracture. JAMA. 2008;300:1660–4.CrossRefPubMed
23.
Hux JE, Ivis F, Flintoft V, Bica A. Diabetes in Ontario: determination of prevalence and incidence using a validated administrative data algorithm. Diabetes Care. 2002;25:512–6.CrossRefPubMed
24.
Tu K, Campbell NR, Chen ZL, Cauch-Dudek KJ, McAlister FA. Accuracy of administrative databases in identifying patients with hypertension. Open Med. 2007;1:e18–26.PubMedPubMedCentral
25.
Gershon AS, Wang C, Guan J, Vasilevska-Ristovska J, Cicutto L, To T. Identifying individuals with physcian diagnosed COPD in health administrative databases. COPD. 2009;6:388–94.CrossRefPubMed
26.
Gershon AS, Wang C, Guan J, Vasilevska-Ristovska J, Cicutto L, To T. Identifying patients with physician-diagnosed asthma in health administrative databases. Can Respir J. 2009;16:183–8.CrossRefPubMedPubMedCentral
27.
Schultz SE, Rothwell DM, Chen Z, Tu K. Identifying cases of congestive heart failure from administrative data: a validation study using primary care patient records. Chronic Dis Inj Can. 2013;33:160–6.PubMed
28.
Antoniou T, Macdonald EM, Yao Z, Hollands S, Gomes T, Tadrous M, et al. Association between statin use and ischemic stroke or major hemorrhage in patients taking dabigatran for atrial fibrillation. CMAJ. 2017;189:E4–E10.CrossRefPubMedPubMedCentral
29.
Juurlink DN, Gomes T, Shah BR, Mamdani MM. Adverse cardiovascular events during treatment with glyburide (glibenclamide) or gliclazide in a high-risk population. Diabet Med. 2012;29:1524–8.CrossRefPubMed
30.
Antoniou T, Yao Z, Camacho X, Mamdani MM, Juurlink DN, Gomes T. Safety of valproic acid in patients with chronic obstructive pulmonary disease: a population-based cohort study. Pharmacoepidemiol Drug Saf. 2015;24:256–61.CrossRefPubMedPubMedCentral
31.
Leslie WD, Lix LM, Yogendran MS. Validation of a case definition for osteoporosis disease surveillance. Osteoporos Int. 2011;2:37–46.CrossRef
32.
Austin PC, Grootendorst P, Anderson GM. A comparison of the ability of different propensity score models to balance measured variables between treated and untreated subjects: a Monte Carlo study. Stat Med. 2007;26:734–53.CrossRefPubMed
33.
Van Pottelbergh I, Goemaere S, Kaufman JM. Bioavailable estradiol and an aromatase gene polymorphism are determinants of bone mineral density changes in men over 70 years of age. J Clin Endocrinol Metab. 2003;88:3075–81.CrossRefPubMed
34.
Gennari L, Merlotti D, Martini G, Gonnelli S, Franci B, Campagna S, et al. Longitudinal association between sex hormone levels, bone loss, and bone turnover in elderly men. J Clin Endocrinol Metab. 2003;88:5327–33.CrossRefPubMed
35.
Glazier RH, Agha MM, Moineddin R, Sibley LM. Universal health insurance and equity in primary care and specialist office visits: a population-based study. Ann Fam Med. 2009;7:396–405.CrossRefPubMedPubMedCentral
36.
Health Quality Ontario. Utilization of DXA bone mineral densitometry in Ontario: an evidence-based analysis. Ont Health Technol Assess Ser. 2006;6:1–180.
37.
Jaglal S, Hawker G, Croxford R, Cameron C, Schott AM, Munce S, et al. Impact of a change in physician reimbursement on bone mineral density testing in Ontario, Canada: a population-based study. CMAJ Open. 2014;2:E45–50.CrossRefPubMedPubMedCentral
38.
Papaioannou A, Kennedy CC, Ioannidis G, Gao Y, Sawka AM, Goltzman D, et al. The osteoporosis care gap in men with fragility fractures: the Canadian multicentre osteoporosis study. Osteoporos Int. 2008;19:581–7.CrossRefPubMed