Skip to main content
Top

30-04-2018 | Osteoporosis | Review | Article

Is calcifediol better than cholecalciferol for vitamin D supplementation?

Journal: Osteoporosis International

Authors: J. M. Quesada-Gomez, R. Bouillon

Publisher: Springer London

Abstract

Modest and even severe vitamin D deficiency is widely prevalent around the world. There is consensus that a good vitamin D status is necessary for bone and general health. Similarly, a better vitamin D status is essential for optimal efficacy of antiresorptive treatments. Supplementation of food with vitamin D or using vitamin D supplements is the most widely used strategy to improve the vitamin status. Cholecalciferol (vitamin D3) and ergocalciferol (vitamin D2) are the most widely used compounds and the relative use of both products depends on historical or practical reasons. Oral intake of calcifediol (25OHD3) rather than vitamin D itself should also be considered for oral supplementation. We reviewed all publications dealing with a comparison of oral cholecalciferol with oral calcifediol as to define the relative efficacy of both compounds for improving the vitamin D status. First, oral calcifediol results in a more rapid increase in serum 25OHD compared to oral cholecalciferol. Second, oral calcifediol is more potent than cholecalciferol, so that lower dosages are needed. Based on the results of nine RCTs comparing physiologic doses of oral cholecalciferol with oral calcifediol, calcifediol was 3.2-fold more potent than oral cholecalciferol. Indeed, when using dosages ≤ 25 μg/day, serum 25OHD increased by 1.5 ± 0.9 nmol/l for each 1 μg cholecalciferol, whereas this was 4.8 ± 1.2 nmol/l for oral calcifediol. Third, oral calcifediol has a higher rate of intestinal absorption and this may have important advantages in case of decreased intestinal absorption capacity due to a variety of diseases. A potential additional advantage of oral calcifediol is a linear dose-response curve, irrespective of baseline serum 25OHD, whereas the rise in serum 25OHD is lower after oral cholecalciferol, when baseline serum 25OHD is higher. Finally, intermittent intake of calcifediol results in fairly stable serum 25OHD compared with greater fluctuations after intermittent oral cholecalciferol.
Literature
1.
Spiro A, Buttriss JL (2014) Vitamin D: an overview of vitamin D status and intake in Europe. Nutr Bull 39:322–350. https://​doi.​org/​10.​1111/​nbu.​12108 PubMedPubMedCentralCrossRef
2.
van Schoor NM, Lips P (2011) Worldwide vitamin D status. Best Pract Res Clin Endocrinol Metab 25:671–680. https://​doi.​org/​10.​1016/​j.​beem.​2011.​06.​007 PubMedCrossRef
3.
Gilchrest BA (2007) Sun protection and vitamin D: three dimensions of obfuscation. J Steroid Biochem Mol Biol 103:655–663. https://​doi.​org/​10.​1016/​j.​jsbmb.​2006.​12.​028 PubMedCrossRef
4.
Bikle DD (2015) Vitamin D receptor, a tumor suppressor in skin. Can J Physiol Pharmacol 93:349–354. https://​doi.​org/​10.​1139/​cjpp-2014-0367 PubMedCrossRef
5.
Fuleihan GE-H, Bouillon R, Clarke B et al (2015) Serum 25-hydroxyvitamin D levels: variability, knowledge gaps, and the concept of a desirable range. J Bone Miner Res 30:1119–1133. https://​doi.​org/​10.​1002/​jbmr.​2536 CrossRef
6.
Hilger J, Friedel A, Herr R, Rausch T, Roos F, Wahl DA, Pierroz DD, Weber P, Hoffmann K (2014) A systematic review of vitamin D status in populations worldwide. Br J Nutr 111:23–45. https://​doi.​org/​10.​1017/​S000711451300184​0 PubMedCrossRef
7.
Schleicher RL, Sternberg MR, Lacher DA, Sempos CT, Looker AC, Durazo-Arvizu RA, Yetley EA, Chaudhary-Webb M, Maw KL, Pfeiffer CM, Johnson CL (2016) The vitamin D status of the US population from 1988 to 2010 using standardized serum concentrations of 25-hydroxyvitamin D shows recent modest increases. Am J Clin Nutr 104:454–461. https://​doi.​org/​10.​3945/​ajcn.​115.​127985 PubMedPubMedCentralCrossRef
8.
Seamans KM, Hill TR, Scully L, Meunier N, Andrillo-Sanchez M, Polito A, Hininger-Favier I, Ciarapica D, Simpson EEA, Stewart-Knox BJ, O’Connor JM, Coudray C, Cashman KD (2010) Vitamin D status and measures of cognitive function in healthy older European adults. Eur J Clin Nutr 64:1172–1178. https://​doi.​org/​10.​1038/​ejcn.​2010.​117 PubMedCrossRef
9.
Arabi A, El Rassi R, El-Hajj Fuleihan G (2010) Hypovitaminosis D in developing countries-prevalence, risk factors and outcomes. Nat Rev Endocrinol 6:550–561. https://​doi.​org/​10.​1038/​nrendo.​2010.​146 PubMedCrossRef
10.
Orwoll E, Nielson CM, Marshall LM, Lambert L, Holton KF, Hoffman AR, Barrett-Connor E, Shikany JM, Dam T, Cauley JA, Osteoporotic Fractures in Men (MrOS) Study Group (2009) Vitamin D deficiency in older men. J Clin Endocrinol Metab 94:1214–1222. https://​doi.​org/​10.​1210/​jc.​2008-1784 PubMedPubMedCentralCrossRef
11.
Lee DM, Tajar A, Ulubaev A, Pendleton N, O’Neill TW, O’Connor DB, Bartfai G, Boonen S, Bouillon R, Casanueva FF, Finn JD, Forti G, Giwercman A, Han TS, Huhtaniemi IT, Kula K, Lean MEJ, Punab M, Silman AJ, Vanderschueren D, Wu FCW, the EMAS study group (2009) Association between 25-hydroxyvitamin D levels and cognitive performance in middle-aged and older European men. J Neurol Neurosurg Psychiatry 80:722–729. https://​doi.​org/​10.​1136/​jnnp.​2008.​165720 PubMedCrossRef
12.
Lips P, Duong T, Oleksik A, Black D, Cummings S, Cox D, Nickelsen T (2001) A global study of vitamin D status and parathyroid function in postmenopausal women with osteoporosis: baseline data from the multiple outcomes of raloxifene evaluation clinical trial. J Clin Endocrinol Metab 86:1212–1221. https://​doi.​org/​10.​1210/​jcem.​86.​3.​7327 PubMedCrossRef
13.
van der Mei IAF, Ponsonby A-L, Engelsen O, Pasco JA, McGrath JJ, Eyles DW, Blizzard L, Dwyer T, Lucas R, Jones G (2007) The high prevalence of vitamin D insufficiency across Australian populations is only partly explained by season and latitude. Environ Health Perspect 115:1132–1139. https://​doi.​org/​10.​1289/​ehp.​9937 PubMedPubMedCentralCrossRef
14.
Durazo-Arvizu RA, Camacho P, Bovet P, Forrester T, Lambert EV, Plange-Rhule J, Hoofnagle AN, Aloia J, Tayo B, Dugas LR, Cooper RS, Luke A (2014) 25-Hydroxyvitamin D in African-origin populations at varying latitudes challenges the construct of a physiologic norm. Am J Clin Nutr 100:908–914. https://​doi.​org/​10.​3945/​ajcn.​113.​066605 PubMedPubMedCentralCrossRef
15.
Zhang W, Stoecklin E, Eggersdorfer M (2013) A glimpse of vitamin D status in Mainland China. Nutrition 29:953–957. https://​doi.​org/​10.​1016/​j.​nut.​2013.​01.​010 PubMedCrossRef
16.
Holick MF (2007) Vitamin D deficiency. N Engl J Med 357:266–281. https://​doi.​org/​10.​1056/​NEJMra070553 PubMedCrossRef
17.
Bouillon R, Carmeliet G, Verlinden L, van Etten E, Verstuyf A, Luderer HF, Lieben L, Mathieu C, Demay M (2008) Vitamin D and human health: lessons from vitamin D receptor null mice. Endocr Rev 29:726–776. https://​doi.​org/​10.​1210/​er.​2008-0004 PubMedPubMedCentralCrossRef
18.
Díez-Pérez A, Olmos JM, Nogués X, Sosa M, Díaz-Curiel M, Pérez-Castrillón JL, Pérez-Cano R, Muñoz-Torres M, Torrijos A, Jodar E, del Rio L, Caeiro-Rey JR, Farrerons J, Vila J, Arnaud C, González-Macías J (2012) Risk factors for prediction of inadequate response to antiresorptives. J Bone Miner Res 27:817–824. https://​doi.​org/​10.​1002/​jbmr.​1496 PubMedCrossRef
19.
Peris P, Martínez-Ferrer A, Monegal A, Martínez de Osaba MJ, Muxi A, Guañabens N (2012) 25 hydroxyvitamin D serum levels influence adequate response to bisphosphonate treatment in postmenopausal osteoporosis. Bone 51:54–58. https://​doi.​org/​10.​1016/​j.​bone.​2012.​03.​026 PubMedCrossRef
20.
Bouillon R (2017) Comparative analysis of nutritional guidelines for vitamin D. Nat Rev Endocrinol 13:466–479. https://​doi.​org/​10.​1038/​nrendo.​2017.​31 PubMedCrossRef
21.
Logan VF, Gray AR, Peddie MC, Harper MJ, Houghton LA (2013) Long-term vitamin D3 supplementation is more effective than vitamin D2 in maintaining serum 25-hydroxyvitamin D status over the winter months. Br J Nutr 109:1082–1088. https://​doi.​org/​10.​1017/​S000711451200285​1 PubMedCrossRef
22.
Armas LAG, Hollis BW, Heaney RP (2004) Vitamin D2 is much less effective than vitamin D3 in humans. J Clin Endocrinol Metab 89:5387–5391. https://​doi.​org/​10.​1210/​jc.​2004-0360 PubMedCrossRef
23.
Tripkovic L, Wilson LR, Hart K, Johnsen S, de Lusignan S, Smith CP, Bucca G, Penson S, Chope G, Elliott R, Hyppönen E, Berry JL, Lanham-New SA (2017) Daily supplementation with 15 μg vitamin D2 compared with vitamin D3 to increase wintertime 25-hydroxyvitamin D status in healthy South Asian and white European women: a 12-wk randomized, placebo-controlled food-fortification trial. Am J Clin Nutr 106:481–490. https://​doi.​org/​10.​3945/​ajcn.​116.​138693 PubMedCrossRef
24.
Ovesen L, Brot C, Jakobsen J (2003) Food contents and biological activity of 25-hydroxyvitamin D: a vitamin D metabolite to be reckoned with? Ann Nutr Metab 47:107–113. https://​doi.​org/​10.​1159/​000070031 PubMedCrossRef
25.
Bouillon R (2010) Vitamin D binding protein. In: Feldman D, Pike JW, Adams J (eds) Vitamin D: from photosynthesis, metabolism, and action to clinical applications
26.
Dueland S, Helgerud P, Pedersen JI et al (1983) Plasma clearance, transfer, and distribution of vitamin D3 from intestinal lymph. Am J Phys 245:E326–E331
27.
Thompson GR, Lewis B, Booth CC (1966) Absorption of vitamin D3-3H in control subjects and patients with intestinal malabsorption. J Clin Invest 45:94–102. https://​doi.​org/​10.​1172/​JCI105327 PubMedPubMedCentralCrossRef
28.
Davies M, Mawer EB, Krawitt EL (1980) Comparative absorption of vitamin D3 and 25-hydroxyvitamin D3 in intestinal disease. Gut 21:287–292PubMedPubMedCentralCrossRef
29.
Sitrin MD, Bengoa JM (1987) Intestinal absorption of cholecalciferol and 25-hydroxycholecalciferol in chronic cholestatic liver disease. Am J Clin Nutr 46:1011–1015PubMedCrossRef
30.
Maislos M, Silver J, Fainaru M (1981) Intestinal absorption of vitamin D sterols: differential absorption into lymph and portal blood in the rat. Gastroenterology 80:1528–1534PubMed
31.
Nechama H, Noff D, Edelstein S, Harell A (1978) Intestinal absorption of cholecalciferol metabolites in the rat. Harefuah 95:3–5PubMed
32.
Heber D, Greenway FL, Kaplan LM, Livingston E, Salvador J, Still C, Endocrine Society (2010) Endocrine and nutritional management of the post-bariatric surgery patient: an Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab 95:4823–4843. https://​doi.​org/​10.​1210/​jc.​2009-2128 PubMedCrossRef
33.
Demay MB, Rosenthal DI, Deshpande V (2008) Case records of the Massachusetts General Hospital. Case 16-2008. A 46-year-old woman with bone pain. N Engl J Med 358:2266–2274. https://​doi.​org/​10.​1056/​NEJMcpc0802020 PubMedCrossRef
34.
Hollander D, Muralidhara KS, Zimmerman A (1978) Vitamin D-3 intestinal absorption in vivo: influence of fatty acids, bile salts, and perfusate pH on absorption. Gut 19:267–272PubMedPubMedCentralCrossRef
35.
Reboul E, Goncalves A, Comera C, Bott R, Nowicki M, Landrier JF, Jourdheuil-Rahmani D, Dufour C, Collet X, Borel P (2011) Vitamin D intestinal absorption is not a simple passive diffusion: evidences for involvement of cholesterol transporters. Mol Nutr Food Res 55:691–702. https://​doi.​org/​10.​1002/​mnfr.​201000553 PubMedCrossRef
36.
Jetter A, Egli A, Dawson-Hughes B, Staehelin HB, Stoecklin E, Goessl R, Henschkowski J, Bischoff-Ferrari HA (2014) Pharmacokinetics of oral vitamin D(3) and calcifediol. Bone 59:14–19PubMedCrossRef
37.
Mulligan GB, Licata A (2010) Taking vitamin D with the largest meal improves absorption and results in higher serum levels of 25-hydroxyvitamin D. J Bone Miner Res 25:928–930. https://​doi.​org/​10.​1002/​jbmr.​67 PubMedCrossRef
38.
Dawson-Hughes B, Harris SS, Palermo NJ, Ceglia L, Rasmussen H (2013) Meal conditions affect the absorption of supplemental vitamin D3 but not the plasma 25-hydroxyvitamin D response to supplementation. J Bone Miner Res 28:1778–1783. https://​doi.​org/​10.​1002/​jbmr.​1896 PubMedCrossRef
39.
Hollander D (1981) Intestinal absorption of vitamins A, E, D, and K. J Lab Clin Med 97:449–462PubMed
40.
Zhu JG, Ochalek JT, Kaufmann M, Jones G, DeLuca HF (2013) CYP2R1 is a major, but not exclusive, contributor to 25-hydroxyvitamin D production in vivo. Proc Natl Acad Sci U S A 110:15650–15655. https://​doi.​org/​10.​1073/​pnas.​1315006110 PubMedPubMedCentralCrossRef
41.
Cheng JB, Motola DL, Mangelsdorf DJ, Russell DW (2003) De-orphanization of cytochrome P450 2R1: a microsomal vitamin D 25-hydroxilase. J Biol Chem 278:38084–38093. https://​doi.​org/​10.​1074/​jbc.​M307028200 PubMedPubMedCentralCrossRef
42.
Omdahl JL, Morris HA, May BK (2002) Hydroxylase enzymes of the vitamin D pathway: expression, function, and regulation. Annu Rev Nutr 22:139–166. https://​doi.​org/​10.​1146/​annurev.​nutr.​22.​120501.​150216 PubMedCrossRef
43.
Zhu J, DeLuca HF (2012) Vitamin D 25-hydroxylase—four decades of searching, are we there yet? Arch Biochem Biophys 523:30–36. https://​doi.​org/​10.​1016/​j.​abb.​2012.​01.​013 PubMedCrossRef
44.
Strushkevich N, Usanov SA, Plotnikov AN, Jones G, Park HW (2008) Structural analysis of CYP2R1 in complex with vitamin D3. J Mol Biol 380:95–106. https://​doi.​org/​10.​1016/​j.​jmb.​2008.​03.​065 PubMedCrossRef
45.
Cheng JB, Levine MA, Bell NH, Mangelsdorf DJ, Russell DW (2004) Genetic evidence that the human CYP2R1 enzyme is a key vitamin D 25-hydroxylase. Proc Natl Acad Sci U S A 101:7711–7715. https://​doi.​org/​10.​1073/​pnas.​0402490101 PubMedPubMedCentralCrossRef
46.
Thacher TD, Levine MA (2017) CYP2R1 mutations causing vitamin D-deficiency rickets. J Steroid Biochem Mol Biol 173:333–336. https://​doi.​org/​10.​1016/​j.​jsbmb.​2016.​07.​014 PubMedCrossRef
47.
Molin A, Wiedemann A, Demers N, Kaufmann M, Do Cao J, Mainard L, Dousset B, Journeau P, Abeguile G, Coudray N, Mittre H, Richard N, Weryha G, Sorlin A, Jones G, Kottler ML, Feillet F (2017) Vitamin D-dependent rickets type 1B (25-hydroxylase deficiency): a rare condition or a misdiagnosed condition? J Bone Miner Res 32:1893–1899. https://​doi.​org/​10.​1002/​jbmr.​3181 PubMedCrossRef
48.
Haussler MR, Rasmussen H (1972) The metabolism of vitamin D 3 in the chick. J Biol Chem 247:2328–2335PubMed
49.
Jakobsen J, Maribo H, Bysted A, Sommer HM, Hels O (2007) 25-hydroxyvitamin D3 affects vitamin D status similar to vitamin D3 in pigs—but the meat produced has a lower content of vitamin D. Br J Nutr 98:908–913. https://​doi.​org/​10.​1017/​S000711450775693​3 PubMedCrossRef
50.
Weber GM, Witschi A-KM, Wenk C, Martens H (2014) Triennial Growth Symposium—effects of dietary 25-hydroxycholecalciferol and cholecalciferol on blood vitamin D and mineral status, bone turnover, milk composition, and reproductive performance of sows. J Anim Sci 92:899–909. https://​doi.​org/​10.​2527/​jas.​2013-7209 PubMedCrossRef
51.
Slominski A, Janjetovic Z, Tuckey RC, Nguyen MN, Bhattacharya KG, Wang J, Li W, Jiao Y, Gu W, Brown M, Postlethwaite AE (2013) 20S-hydroxyvitamin D3, noncalcemic product of CYP11A1 action on vitamin D3, exhibits potent antifibrogenic activity in vivo. J Clin Endocrinol Metab 98:E298–E303. https://​doi.​org/​10.​1210/​jc.​2012-3074 PubMedPubMedCentralCrossRef
52.
Slominski AT, Kim T-K, Li W, Tuckey RC (2016) Classical and non-classical metabolic transformation of vitamin D in dermal fibroblasts. Exp Dermatol 25:231–232. https://​doi.​org/​10.​1111/​exd.​12872 PubMedPubMedCentralCrossRef
53.
Lensmeyer G, Poquette M, Wiebe D, Binkley N (2012) The C-3 epimer of 25-hydroxyvitamin D(3) is present in adult serum. J Clin Endocrinol Metab 97:163–168. https://​doi.​org/​10.​1210/​jc.​2011-0584 PubMedCrossRef
54.
Strathmann FG, Sadilkova K, Laha TJ, LeSourd SE, Bornhorst JA, Hoofnagle AN, Jack R (2012) 3-epi-25 hydroxyvitamin D concentrations are not correlated with age in a cohort of infants and adults. Clin Chim Acta 413:203–206. https://​doi.​org/​10.​1016/​j.​cca.​2011.​09.​028 PubMedCrossRef
55.
Carter GD, Jones JC, Shannon J, Williams EL, Jones G, Kaufmann M, Sempos C (2016) 25-Hydroxyvitamin D assays: potential interference from other circulating vitamin D metabolites. J Steroid Biochem Mol Biol 164:134–138. https://​doi.​org/​10.​1016/​j.​jsbmb.​2015.​12.​018 PubMedCrossRef
56.
Kamao M, Tatematsu S, Hatakeyama S, Sakaki T, Sawada N, Inouye K, Ozono K, Kubodera N, Reddy GS, Okano T (2004) C-3 epimerization of vitamin D3 metabolites and further metabolism of C-3 epimers: 25-hydroxyvitamin D3 is metabolized to 3-epi-25-hydroxyvitamin D3 and subsequently metabolized through C-1alpha or C-24 hydroxylation. J Biol Chem 279:15897–15907. https://​doi.​org/​10.​1074/​jbc.​M311473200 PubMedCrossRef
57.
Fu GK, Lin D, Zhang MY et al (1997) Cloning of human 25-hydroxyvitamin D-1 alpha-hydroxylase and mutations causing vitamin D-dependent rickets type 1. Mol Endocrinol 11:1961–1970. https://​doi.​org/​10.​1210/​mend.​11.​13.​0035 PubMedCrossRef
58.
Dardenne O, Prudhomme J, Hacking SA et al (2003) Rescue of the pseudo-vitamin D deficiency rickets phenotype of CYP27B1-deficient mice by treatment with 1,25-dihydroxyvitamin D3: biochemical, histomorphometric, and biomechanical analyses. J Bone Miner Res 18:637–643. https://​doi.​org/​10.​1359/​jbmr.​2003.​18.​4.​637 PubMedCrossRef
59.
Cheng Z, Tu C, Li A et al (2012) Endocrine actions of parathyroid Cyp27b1 in the Ca2+ and skeletal homeostasis: studies of parathyroid-specific knockout mice. J Bone Miner Res ASBMR 27(suppl1):1108
60.
Marzolo M-P, Farfán P (2011) New insights into the roles of megalin/LRP2 and the regulation of its functional expression. Biol Res 44:89–105. https://​doi.​org/​10.​4067/​S0716-9760201100010001​2 PubMedCrossRef
61.
St-Arnaud R (2010) CYP24A1-deficient mice as a tool to uncover a biological activity for vitamin D metabolites hydroxylated at position 24. J Steroid Biochem Mol Biol 121:254–256. https://​doi.​org/​10.​1016/​j.​jsbmb.​2010.​02.​002 PubMedCrossRef
62.
Jones G, Prosser DE, Kaufmann M (2014) Cytochrome P450-mediated metabolism of vitamin D. J Lipid Res 55:13–31. https://​doi.​org/​10.​1194/​jlr.​R031534 PubMedPubMedCentralCrossRef
63.
Schlingmann KP, Kaufmann M, Weber S, Irwin A, Goos C, John U, Misselwitz J, Klaus G, Kuwertz-Bröking E, Fehrenbach H, Wingen AM, Güran T, Hoenderop JG, Bindels RJ, Prosser DE, Jones G, Konrad M (2011) Mutations in CYP24A1 and idiopathic infantile hypercalcemia. N Engl J Med 365:410–421. https://​doi.​org/​10.​1056/​NEJMoa1103864 PubMedCrossRef
64.
St-Arnaud R, Naja RP (2011) Vitamin D metabolism, cartilage and bone fracture repair. Mol Cell Endocrinol 347:48–54. https://​doi.​org/​10.​1016/​j.​mce.​2011.​05.​018 PubMedCrossRef
65.
Wang Z, Lin YS, Dickmann LJ, Poulton EJ, Eaton DL, Lampe JW, Shen DD, Davis CL, Shuhart MC, Thummel KE (2013) Enhancement of hepatic 4-hydroxylation of 25-hydroxyvitamin D3 through CYP3A4 induction in vitro and in vivo: implications for drug-induced osteomalacia. J Bone Miner Res 28:1101–1116. https://​doi.​org/​10.​1002/​jbmr.​1839 PubMedPubMedCentralCrossRef
66.
Cheng CYS, Slominski AT, Tuckey RC (2016) Hydroxylation of 20-hydroxyvitamin D3 by human CYP3A4. J Steroid Biochem Mol Biol 159:131–141. https://​doi.​org/​10.​1016/​j.​jsbmb.​2016.​03.​014 PubMedPubMedCentralCrossRef
67.
Roizen JD, Li D, O’Lear L, Javaid MK, Shaw NJ, Ebeling PR, Nguyen HH, Rodda CP, Thummel KE, Thacher TD, Hakonarson H, Levine MA (2018) CYP3A4 mutation causes vitamin D-dependent rickets type 3. J Clin Invest
68.
Bouillon R, Okamura WH, Norman AW (1995) Structure-function relationships in the vitamin D endocrine system. Endocr Rev 16:200–257. https://​doi.​org/​10.​1210/​edrv-16-2-200 PubMedCrossRef
69.
Luxwolda MF, Kuipers RS, Kema IP, van der Veer E, Dijck-Brouwer DAJ, Muskiet FAJ (2013) Vitamin D status indicators in indigenous populations in East Africa. Eur J Nutr 52:1115–1125. https://​doi.​org/​10.​1007/​s00394-012-0421-6 PubMedCrossRef
70.
Pauwels S, Jans I, Billen J, Heijboer A, Verstuyf A, Carmeliet G, Mathieu C, Maestro M, Waelkens E, Evenepoel P, Bouillon R, Vanderschueren D, Vermeersch P (2017) 1β,25-Dihydroxyvitamin D3: a new vitamin D metabolite in human serum. J Steroid Biochem Mol Biol 173:341–348. https://​doi.​org/​10.​1016/​j.​jsbmb.​2017.​02.​004 PubMedCrossRef
71.
Norman AW, Bouillon R, Farach-Carson MC, Bishop JE, Zhou LX, Nemere I, Zhao J, Muralidharan KR, Okamura WH (1993) Demonstration that 1 beta,25-dihydroxyvitamin D3 is an antagonist of the nongenomic but not genomic biological responses and biological profile of the three A-ring diastereomers of 1 alpha,25-dihydroxyvitamin D3. J Biol Chem 268:20022–20030PubMed
72.
Ingelman-Sundberg M (2005) The human genome project and novel aspects of cytochrome P450 research. Toxicol Appl Pharmacol 207:52–56. https://​doi.​org/​10.​1016/​j.​taap.​2005.​01.​030 PubMedCrossRef
73.
Gao C, Bergagnini-Kolev MC, Liao MZ, Wang Z, Wong T, Calamia JC, Lin YS, Mao Q, Thummel KE (2017) Simultaneous quantification of 25-hydroxyvitamin D3-3-sulfate and 25-hydroxyvitamin D3-3-glucuronide in human serum and plasma using liquid chromatography-tandem mass spectrometry coupled with DAPTAD-derivatization. J Chromatogr B Analyt Technol Biomed Life Sci 1060:158–165. https://​doi.​org/​10.​1016/​j.​jchromb.​2017.​06.​017 PubMedPubMedCentralCrossRef
74.
Clements MR, Chalmers TM, Fraser DR (1984) Enterohepatic circulation of vitamin D: a reappraisal of the hypothesis. Lancet (London, England) 1:1376–1379CrossRef
75.
Makishima M, Lu TT, Xie W, Whitfield GK, Domoto H, Evans RM, Haussler MR, Mangelsdorf DJ (2002) Vitamin D receptor as an intestinal bile acid sensor. Science 296:1313–1316. https://​doi.​org/​10.​1126/​science.​1070477 PubMedCrossRef
76.
Thompson PD, Jurutka PW, Whitfield GK et al (2002) Liganded VDR induces CYP3A4 in small intestinal and colon cancer cells via DR3 and ER6 vitamin D responsive elements. Biochem Biophys Res Commun 299:730–738PubMedCrossRef
77.
Stamp TC, Haddad JG, Twigg CA (1977) Comparison of oral 25-hydroxycholecalciferol, vitamin D, and ultraviolet light as determinants of circulating 25-hydroxyvitamin D. Lancet (London, England) 1:1341–1343CrossRef
78.
Barger-Lux MJ, Heaney RP, Dowell S, Chen TC, Holick MF (1998) Vitamin D and its major metabolites: serum levels after graded oral dosing in healthy men. Osteoporos Int 8:222–230. https://​doi.​org/​10.​1007/​s001980050058 PubMedCrossRef
79.
Cashman KD, Seamans KM, Lucey AJ, Stöcklin E, Weber P, Kiely M, Hill TR (2012) Relative effectiveness of oral 25-hydroxyvitamin D3 and vitamin D3 in raising wintertime serum 25-hydroxyvitamin D in older adults. Am J Clin Nutr 95(6):1350–1356. https://​doi.​org/​10.​3945/​ajcn.​111.​031427 PubMedCrossRef
80.
Bischoff-Ferrari HA, Dawson-Hughes B, Stöcklin E, Sidelnikov E, Willett WC, Edel JO, Stähelin HB, Wolfram S, Jetter A, Schwager J, Henschkowski J, von Eckardstein A, Egli A (2012) Oral supplementation with 25(OH)D 3 versus vitamin D 3: effects on 25(OH)D levels, lower extremity function, blood pressure, and markers of innate immunity. J Bone Miner Res 27:160–169. https://​doi.​org/​10.​1002/​jbmr.​551 PubMedCrossRef
81.
Meyer O, Dawson-Hughes B, Sidelnikov E, Egli A, Grob D, Staehelin HB, Theiler G, Kressig RW, Simmen HP, Theiler R, Bischoff-Ferrari HA (2015) Calcifediol versus vitamin D3 effects on gait speed and trunk sway in young postmenopausal women: a double-blind randomized controlled trial. Osteoporos Int 26:373–381. https://​doi.​org/​10.​1007/​s00198-014-2949-1 PubMedCrossRef
82.
Vaes AMM, Tieland M, de Regt MF et al (2017) Dose-response effects of supplementation with calcifediol on serum 25-hydroxyvitamin D status and its metabolites: a randomized controlled trial in older adults. Clin Nutr. https://​doi.​org/​10.​1016/​j.​clnu.​2017.​03.​029
83.
Shieh A, Ma C, Chun RF, Witzel S, Rafison B, Contreras HTM, Wittwer-Schegg J, Swinkels L, Huijs T, Hewison M, Adams JS (2017) Effects of cholecalciferol vs calcifediol on total and free 25-hydroxyvitamin D and parathyroid hormone. J Clin Endocrinol Metab 102:1133–1140. https://​doi.​org/​10.​1210/​jc.​2016-3919 PubMedPubMedCentralCrossRef
84.
Navarro-Valverde C, Sosa-Henríquez M, Alhambra-Expósito MR, Quesada-Gómez JM (2016) Vitamin D3 and calcidiol are not equipotent. J Steroid Biochem Mol Biol 164:205–208. https://​doi.​org/​10.​1016/​j.​jsbmb.​2016.​01.​014 PubMedCrossRef
85.
Minisola S, Cianferotti L, Biondi P, Cipriani C, Fossi C, Franceschelli F, Giusti F, Leoncini G, Pepe J, Bischoff-Ferrari HA, Brandi ML (2017) Correction of vitamin D status by calcidiol: pharmacokinetic profile, safety, and biochemical effects on bone and mineral metabolism of daily and weekly dosage regimens. Osteoporos Int 28:3239–3249. https://​doi.​org/​10.​1007/​s00198-017-4180-3 PubMedCrossRef
86.
Rossini M, Viapiana O, Gatti D et al (2005) The long term correction of vitamin D deficiency: comparison between different treatments with vitamin D in clinical practice. Minerva Med 96:1–7
87.
Gallagher JC, Sai A, Templin T, Smith L (2012) Dose response to vitamin D supplementation in postmenopausal women: a randomized trial. Ann Intern Med 156:425–437. https://​doi.​org/​10.​7326/​0003-4819-156-6-201203200-00005 PubMedCrossRef
88.
Heaney RP, Armas LAG (2015) Quantifying the vitamin D economy. Nutr Rev 73:51–67. https://​doi.​org/​10.​1093/​nutrit/​nuu004 PubMedCrossRef
89.
Ross AC, Manson JE, Abrams SA et al (2011) The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: what clinicians need to know. J Clin Endocrinol Metab 96:53–58. https://​doi.​org/​10.​1210/​jc.​2010-2704 PubMedCrossRef
90.
Brouwer-Brolsma EM, Berendsen AAM, Vaes AMM, Dullemeijer C, de Groot LCPGM, Feskens EJM (2016) Collection and analysis of published scientific information as preparatory work for the setting of Dietary Reference Values for Vitamin D. EFSA Support Publ 13:171. https://​doi.​org/​10.​2903/​sp.​efsa.​2016.​EN-766 CrossRef
91.
von Rosenberg SJ, Weber GM, Erhardt A, Höller U, Wehr UA, Rambeck WA (2016) Tolerance evaluation of overdosed dietary levels of 25-hydroxyvitamin D3 in growing piglets. J Anim Physiol Anim Nutr (Berl) 100:371–380. https://​doi.​org/​10.​1111/​jpn.​12355 CrossRef
92.
Bouillon R (2017) Genetic and racial differences in the vitamin D endocrine system. Endocrinol Metab Clin N Am 46:1119–1135. https://​doi.​org/​10.​1016/​j.​ecl.​2017.​07.​014 CrossRef
93.
Wang TJ, Zhang F, Richards JB, Kestenbaum B, van Meurs JB, Berry D, Kiel DP, Streeten EA, Ohlsson C, Koller DL, Peltonen L, Cooper JD, O’Reilly PF, Houston DK, Glazer NL, Vandenput L, Peacock M, Shi J, Rivadeneira F, McCarthy MI, Anneli P, de Boer IH, Mangino M, Kato B, Smyth DJ, Booth SL, Jacques PF, Burke GL, Goodarzi M, Cheung CL, Wolf M, Rice K, Goltzman D, Hidiroglou N, Ladouceur M, Wareham NJ, Hocking LJ, Hart D, Arden NK, Cooper C, Malik S, Fraser WD, Hartikainen AL, Zhai G, Macdonald HM, Forouhi NG, Loos RJF, Reid DM, Hakim A, Dennison E, Liu Y, Power C, Stevens HE, Jaana L, Vasan RS, Soranzo N, Bojunga J, Psaty BM, Lorentzon M, Foroud T, Harris TB, Hofman A, Jansson JO, Cauley JA, Uitterlinden AG, Gibson Q, Järvelin MR, Karasik D, Siscovick DS, Econs MJ, Kritchevsky SB, Florez JC, Todd JA, Dupuis J, Hyppönen E, Spector TD (2010) Common genetic determinants of vitamin D insufficiency: a genome-wide association study. Lancet (London, England) 376:180–188. https://​doi.​org/​10.​1016/​S0140-6736(10)60588-0 CrossRef
94.
Ahn J, Yu K, Stolzenberg-Solomon R, Simon KC, McCullough ML, Gallicchio L, Jacobs EJ, Ascherio A, Helzlsouer K, Jacobs KB, Li Q, Weinstein SJ, Purdue M, Virtamo J, Horst R, Wheeler W, Chanock S, Hunter DJ, Hayes RB, Kraft P, Albanes D (2010) Genome-wide association study of circulating vitamin D levels. Hum Mol Genet 19:2739–2745. https://​doi.​org/​10.​1093/​hmg/​ddq155 PubMedPubMedCentralCrossRef
95.
Hiraki LT, Major JM, Chen C, Cornelis MC, Hunter DJ, Rimm EB, Simon KC, Weinstein SJ, Purdue MP, Yu K, Albanes D, Kraft P (2013) Exploring the genetic architecture of circulating 25-hydroxyvitamin D. Genet Epidemiol 37:92–98. https://​doi.​org/​10.​1002/​gepi.​21694 PubMedCrossRef
96.
Zhang Y, Wang X, Liu Y, Qu H, Qu S, Wang W, Ren L (2012) The GC, CYP2R1 and DHCR7 genes are associated with vitamin D levels in northeastern Han Chinese children. Swiss Med Wkly 142:w13636. https://​doi.​org/​10.​4414/​smw.​2012.​13636 PubMedCrossRef
97.
Lu L, Sheng H, Li H, Gan W, Liu C, Zhu J, Loos RJF, Lin X (2012) Associations between common variants in GC and DHCR7/NADSYN1 and vitamin D concentration in Chinese Hans. Hum Genet 131:505–512. https://​doi.​org/​10.​1007/​s00439-011-1099-1 PubMedCrossRef
98.
Elkum N, Alkayal F, Noronha F, Ali MM, Melhem M, al-Arouj M, Bennakhi A, Behbehani K, Alsmadi O, Abubaker J (2014) Vitamin D insufficiency in Arabs and South Asians positively associates with polymorphisms in GC and CYP2R1 genes. PLoS One 9:e113102. https://​doi.​org/​10.​1371/​journal.​pone.​0113102 PubMedPubMedCentralCrossRef
99.
Binkley N, Sempos CT, Vitamin D Standardization Program (VDSP) (2014) Standardizing vitamin D assays: the way forward. J Bone Miner Res 29:1709–1714. https://​doi.​org/​10.​1002/​jbmr.​2252 PubMedPubMedCentralCrossRef
100.
Binkley N, Dawson-Hughes B, Durazo-Arvizu R, Thamm M, Tian L, Merkel JM, Jones JC, Carter GD, Sempos CT (2017) Vitamin D measurement standardization: the way out of the chaos. J Steroid Biochem Mol Biol 173:117–121. https://​doi.​org/​10.​1016/​j.​jsbmb.​2016.​12.​002 PubMedCrossRef
101.
Sanders KM, Stuart AL, Williamson EJ, Simpson JA, Kotowicz MA, Young D, Nicholson GC (2010) Annual high-dose oral vitamin D and falls and fractures in older women: a randomized controlled trial. JAMA 303:1815–1822. https://​doi.​org/​10.​1001/​jama.​2010.​594 PubMedCrossRef
102.
Smith H, Anderson F, Raphael H et al (2007) Effect of annual intramuscular vitamin D on fracture risk in elderly men and women—a population-based, randomized, double-blind, placebo-controlled trial. Rheumatology (Oxford) 46:1852–1857. https://​doi.​org/​10.​1093/​rheumatology/​kem240 CrossRef
103.
Khaw KT, Stewart AW, Waayer D, Lawes CMM, Toop L, Camargo CA Jr, Scragg R (2017) Effect of monthly high-dose vitamin D supplementation on falls and non-vertebral fractures: secondary and post-hoc outcomes from the randomised, double-blind, placebo-controlled ViDA trial. Lancet Diabetes Endocrinol 5:438–447. https://​doi.​org/​10.​1016/​S2213-8587(17)30103-1 PubMedCrossRef
104.
Russo S, Carlucci L, Cipriani C, Ragno A, Piemonte S, Fiacco RD, Pepe J, Fassino V, Arima S, Romagnoli E, Minisola S (2011) Metabolic changes following 500 μg monthly administration of calcidiol: a study in normal females. Calcif Tissue Int 89:252–257. https://​doi.​org/​10.​1007/​s00223-011-9513-1 PubMedCrossRef
105.
Jones KS, Assar S, Harnpanich D, Bouillon R, Lambrechts D, Prentice A, Schoenmakers I (2014) 25(OH)D2 half-life is shorter than 25(OH)D3 half-life and is influenced by DBP concentration and genotype. J Clin Endocrinol Metab 99:3373–3381. https://​doi.​org/​10.​1210/​jc.​2014-1714 PubMedPubMedCentralCrossRef