Skip to main content
Top

24-01-2018 | Pathogenesis | Review | Article

Moving towards a molecular taxonomy of autoimmune rheumatic diseases

Journal: Nature Reviews Rheumatology

Authors: Guillermo Barturen, Lorenzo Beretta, Ricard Cervera, Ronald Van Vollenhoven, Marta E. Alarcón-Riquelme

Publisher: Nature Publishing Group UK

Abstract

Autoimmune rheumatic diseases pose many problems that have, in general, already been solved in the field of cancer. The heterogeneity of each disease, the clinical similarities and differences between different autoimmune rheumatic diseases and the large number of patients that remain without a diagnosis underline the need to reclassify these diseases via new approaches. Knowledge about the molecular basis of systemic autoimmune diseases, along with the availability of bioinformatics tools capable of handling and integrating large volumes of various types of molecular data at once, offer the possibility of reclassifying these diseases. A new taxonomy could lead to the discovery of new biomarkers for patient stratification and prognosis. Most importantly, this taxonomy might enable important changes in clinical trial design to reach the expected outcomes or the design of molecularly targeted therapies. In this Review, we discuss the basis for a new molecular taxonomy for autoimmune rheumatic diseases. We highlight the evidence surrounding the idea that these diseases share molecular features related to their pathogenesis and development and discuss previous attempts to classify these diseases. We evaluate the tools available to analyse and combine different types of molecular data. Finally, we introduce PRECISESADS, a project aimed at reclassifying the systemic autoimmune diseases.

Barturen G et al. Nat Rev Rheumatol 2018; 14: 75–93. doi: 10.1038/nrrheum.2017.220

Glossary
Next-generation sequencing
A group of massive parallel technologies that enable the sequencing of millions of DNA or RNA fragments in a short period of time. Also known as high-throughput sequencing.
Type I interferon signature
An increased expression of type I interferon regulated or inducible genes, which have a major role in the activation of both the innate and adaptive immune systems.
Gene expression modules
Sets of genes with highly correlated expressed patterns (co-expressed).
Umbrella trial
A trial intended to study multiple targeted therapies in the context of a single disease or multiple diseases.
Quantitative trait loci
Loci whose allelic variation is associated with the variation of a quantitative feature, such as gene expression (expression quantitative trait loci (eQTL)) or methylation (methylation QTL (mQTL)).
Integrative clustering
A statistical method in which heterogeneous datasets are combined (data integration) and samples are grouped by similarity (clusters).
Supervised analysis
Comparative analysis where prior biological and/or classification knowledge is required.
Unsupervised analysis
In contrast to supervised analysis, no prior biological information and/or classification is required; the goal is to obtain new information based only on molecular information.
Concatenation algorithms
A type of data integration algorithm where the different layers of information are analysed together before any data modelling or transformation is performed.
Feature selection
A type of dimensionality reduction technique, which consists of selecting a subset of the most relevant features (for example, genes).
Overfitting
When a statistical model fits random error or noise, instead of the real features of the datasets; overfitting can occur if the number of variables in the model is much higher than the number of observations.
Dimensionality reduction
The process of reducing the number of variables (features) of a dataset; it can be divided in feature selection and feature extraction.
Model-based algorithms
A type of data integration algorithm that fits data to a statistical model in order to infer or predict some features from the general population.
Bayesian statistics
A mathematical method for calculating posterior probabilities (Bayesian probability) based on prior and current information.
Parametric methods
A group of statistical techniques that assume that the datasets come from populations that follow a probability distribution defined by fixed parameters.
Longitudinal datasets
Sets of repeated observations of the same variables at multiple points in time.
Transformation-based algorithms
A type of data integration algorithm, which applies a mathematical function to each point of the datasets, transforming all the different types of data into a common feature space.
Feature space
A set of values which summarize any kind of information (for example gene expression values for transcriptomic information); different data types can share a common feature space if transformed to have the same dimensions and the same range of values
Network theory
The study of graphs as the representation of the relationship between the features of multiple observations; for example, networks could be defined as graphs with the nodes representing individuals and the lines between nodes (the edges) representing connections in gene expression profiles.
Literature
1.
Cancer Genome Atlas Research Network et al. The Cancer Genome Atlas pan-cancer analysis project. Nat. Genet. 45, 1113–1120 (2013).
2.
Hoadley, K. A. et al. Multiplatform analysis of 12 cancer types reveals molecular classification within and across tissues of origin. Cell 158, 929–944 (2014).CrossRefPubMedPubMedCentral
3.
Curtis, C. et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 486, 346–352 (2012).CrossRefPubMedPubMedCentral
4.
Cohen, A. S. et al. Preliminary criteria for the classification of systemic lupus erythematosus. Bull. Rheum. Dis. 21, 643–648 (1971).
5.
Tan, E. M. et al. The 1982 revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum. 25, 1271–1277 (1982).CrossRefPubMed
6.
Hochberg, M. C. Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus [letter]. Arthritis Rheum. 40, 1725 (1997).CrossRefPubMed
7.
Petri, M. et al. Derivation and validation of the Systemic Lupus International Collaborating Clinics classification criteria for systemic lupus erythematosus. Arthritis Rheum. 64, 2677–2686 (2012).CrossRefPubMedPubMedCentral
8.
Wilson, W. A. et al. International consensus statement on preliminary classification criteria for definite antiphospholipid syndrome: report of an international workshop. Arthritis Rheum. 42, 1309–1311 (1999).CrossRefPubMed
9.
Miyakis, S. et al. International consensus statement on an update of the classification criteria for definite antiphospholipid syndrome (APS). J. Thromb. Haemost. 4, 295–306 (2006).CrossRefPubMed
10.
Asherson, R. A. et al. Catastrophic antiphospholipid syndrome: international consensus statement on classification criteria and treatment guidelines. Lupus 12, 530–534 (2003).CrossRefPubMed
11.
Cervera, R. et al. Validation of the preliminary criteria for the classification of catastrophic antiphospholipid syndrome. Ann. Rheum. Dis. 64, 1205–1209 (2005).CrossRefPubMedPubMedCentral
12.
[No authors listed] DIAGNOSTIC criteria for rheumatoid arthritis: 1958 revision by a committee of the American Rheumatism Association. Ann. Rheum. Dis. 18, 49–51 (1959).
13.
Arnett, F. C. et al. The American Rheumatism Association 1987 revised criteria for the classification of rheumatoid arthritis. Arthritis Rheum. 31, 315–324 (1988).CrossRefPubMed
14.
Aletaha, D. et al. 2010 rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Ann. Rheum. Dis. 69, 1580–1588 (2010).CrossRefPubMed
15.
McDuffie, F. C. Nature and possible significance of rheumatoid factor. South. Med. J. 58, 1126–1130 (1965).CrossRefPubMed
16.
Sharp, G. C., Irvin, W. S., Tan, E. M., Gould, R. G. & Holman, H. R. Mixed connective tissue disease — an apparently distinct rheumatic disease syndrome associated with a specific antibody to an extractable nuclear antigen (ENA). Am. J. Med. 52, 148–159 (1972).CrossRefPubMed
17.
Alarcon-Segovia, D. & Cardiel, M. H. Comparison between 3 diagnostic criteria for mixed connective tissue disease. Study of 593 patients. J. Rheumatol. 16, 328–334 (1989).PubMed
18.
Gunnarsson, R., Molberg, O., Gilboe, I. M., Gran, J. T. & Group, P. S. The prevalence and incidence of mixed connective tissue disease: a national multicentre survey of Norwegian patients. Ann. Rheum. Dis. 70, 1047–1051 (2011).CrossRefPubMed
19.
Swanton, J. & Isenberg, D. Mixed connective tissue disease: still crazy after all these years. Rheum. Dis. Clin. North Amer. 31, 421–436 (2005).CrossRef
20.
Subcommittee for Scleroderma Criteria of the American Rheumatism Association Diagnostic and Therapeutic Criteria Committee. Preliminary criteria for the classification of systemic sclerosis (scleroderma). Arthritis Rheum. 23, 581–590 (1980).
21.
Maricq, H. R., Harper, F. E., Khan, M. M., Tan, E. M. & LeRoy, E. C. Microvascular abnormalities as possible predictors of disease subsets in Raynaud phenomenon and early connective tissue disease. Clin. Exp. Rheumatol. 1, 195–205 (1983).PubMed
22.
Weiner, E. S. et al. Prognostic significance of anticentromere antibodies and anti-topoisomerase I antibodies in Raynaud's disease. A prospective study. Arthritis Rheum. 34, 68–77 (1991).CrossRefPubMed
23.
LeRoy, E. C. & Medsger, T. A. Jr. Criteria for the classification of early systemic sclerosis. J. Rheumatol. 28, 1573–1576 (2001).PubMed
24.
Koenig, M. et al. Autoantibodies and microvascular damage are independent predictive factors for the progression of Raynaud's phenomenon to systemic sclerosis: a twenty-year prospective study of 586 patients, with validation of proposed criteria for early systemic sclerosis. Arthritis Rheum. 58, 3902–3912 (2008).CrossRefPubMed
25.
Lonzetti, L. S. et al. Updating the American College of Rheumatology preliminary classification criteria for systemic sclerosis: addition of severe nailfold capillaroscopy abnormalities markedly increases the sensitivity for limited scleroderma. Arthritis Rheum. 44, 735–736 (2001).CrossRefPubMed
26.
van den Hoogen, F. et al. 2013 classification criteria for systemic sclerosis: an American College of Rheumatology/European League against Rheumatism collaborative initiative. Arthritis Rheum. 65, 2737–2747 (2013).CrossRefPubMedPubMedCentral
27.
LeRoy, E. C. et al. Scleroderma (systemic sclerosis): classification, subsets and pathogenesis. J. Rheumatol 15, 202–205 (1988).PubMed
28.
Steen, V. D. & Medsger, T. A. Jr. Epidemiology and natural history of systemic sclerosis. Rheum. Dis. Clin. North Am. 16, 1–10 (1990).PubMed
29.
Hao, Y. et al. Early mortality in a multinational systemic sclerosis inception cohort. Arthritis Rheumatol 69, 1067–1077 (2017).CrossRefPubMed
30.
Simeon-Aznar, C. P. et al. Registry of the Spanish network for systemic sclerosis: survival, prognostic factors, and causes of death. Medicine 94, e1728 (2015).CrossRefPubMedPubMedCentral
31.
Fransen, J. et al. Clinical prediction of 5-year survival in systemic sclerosis: validation of a simple prognostic model in EUSTAR centres. Ann. Rheum. Dis. 70, 1788–1792 (2011).CrossRefPubMed
32.
Ho, K. T. & Reveille, J. D. The clinical relevance of autoantibodies in scleroderma. Arthritis Res. Ther. 5, 80–93 (2003).PubMedPubMedCentral
33.
Beretta, L. & Santaniello, A. Models for prediction of death in systemic sclerosis: current perspectives and future directions. Expert Rev. Clin. Immunol. 7, 391–393 (2011).CrossRefPubMed
34.
Assassi, S. et al. Skin gene expression correlates of severity of interstitial lung disease in systemic sclerosis. Arthritis Rheum. 65, 2917–2927 (2013).CrossRefPubMedPubMedCentral
35.
Lofgren, S. et al. Integrated, multicohort analysis of systemic sclerosis identifies robust transcriptional signature of disease severity. JCI Insight 1, e89073 (2016).CrossRefPubMedPubMedCentral
36.
Vigone, B. et al. Role of class II human leucocyte antigens in the progression from early to definite systemic sclerosis. Rheumatology (Oxford) 54, 707–711 (2015).CrossRef
37.
Vitali, C. et al. Classification criteria for Sjögren's syndrome: a revised version of the European criteria proposed by the American-European Consensus Group. Ann. Rheum. Dis. 61, 554–558 (2002).CrossRefPubMedPubMedCentral
38.
Skopouli, F. N., Drosos, A. A., Papaioannou, T. & Moutsopoulos, H. M. Preliminary diagnostic criteria for Sjögren's syndrome. Scand. J. Rheumatol. Suppl. 61, 22–25 (1986).PubMed
39.
Rasmussen, A. et al. Comparison of the American-European Consensus Group Sjögren's syndrome classification criteria to newly proposed American College of Rheumatology criteria in a large, carefully characterised sicca cohort. Ann. Rheumat. Dis. 73, 31–38 (2014).CrossRefPubMed
40.
Shiboski, S. C. et al. American College of Rheumatology classification criteria for Sjögren's syndrome: a data-driven, expert consensus approach in the Sjögren's International Collaborative Clinical Alliance cohort. Arthritis Care Res. 64, 475–487 (2012).CrossRef
41.
Shiboski, C. H. et al. 2016 American College of Rheumatology/European League Against Rheumatism classification criteria for primary Sjögren's syndrome: a consensus and data-driven methodology involving three international patient cohorts. Arthritis Rheumatol. 69, 35–45 (2017).CrossRefPubMed
42.
Miceli-Richard, C. & Criswell, L. A. Genetic, genomic and epigenetic studies as tools for elucidating disease pathogenesis in primary Sjögren's syndrome. Expert Rev. Clin. Immunol. 10, 437–444 (2014).CrossRefPubMed
43.
Li, Y. R. et al. Genetic sharing and heritability of paediatric age of onset autoimmune diseases. Nat. Commun. 6, 8442 (2015).CrossRefPubMed
44.
Alarcon-Segovia, D. et al. Familial aggregation of systemic lupus erythematosus, rheumatoid arthritis, and other autoimmune diseases in 1,177 lupus patients from the GLADEL cohort. Arthritis Rheum. 52, 1138–1147 (2005).CrossRefPubMed
45.
Jarvinen, P. & Aho, K. Twin studies in rheumatic diseases. Semin. Arthritis Rheum. 24, 19–28 (1994).CrossRefPubMed
46.
Aho, K., Koskenvuo, M., Tuominen, J. & Kaprio, J. Occurrence of rheumatoid arthritis in a nationwide series of twins. J. Rheumatol 13, 899–902 (1986).PubMed
47.
Feghali-Bostwick, C., Medsger, T. A. Jr & Wright, T. M. Analysis of systemic sclerosis in twins reveals low concordance for disease and high concordance for the presence of antinuclear antibodies. Arthritis Rheum. 48, 1956–1963 (2003).CrossRefPubMed
48.
MacArthur, J. et al. The new NHGRI-EBI Catalog of published genome-wide association studies (GWAS Catalog). Nucleic Acids Res. 45, D896–D901 (2017).CrossRefPubMed
49.
Grumet, F. C., Coukell, A., Bodmer, J. G., Bodmer, W. F. & McDevitt, H. O. Histocompatibility (HL-A) antigens associated with systemic lupus erythematosus. A possible genetic predisposition to disease. N. Engl. J. Med. 285, 193–196 (1971).CrossRefPubMed
50.
Stastny, P. Association of the B-cell alloantigen DRw4 with rheumatoid arthritis. N. Engl. J. Med. 298, 869–871 (1978).CrossRefPubMed
51.
Cortes, A. & Brown, M. A. Promise and pitfalls of the Immunochip. Arthritis Res. Ther. 13, 101 (2011).CrossRefPubMedPubMedCentral
52.
McCarthy, S. et al. A reference panel of 64,976 haplotypes for genotype imputation. Nat. Genet. 48, 1279–1283 (2016).CrossRefPubMedPubMedCentral
53.
Jia, X. et al. Imputing amino acid polymorphisms in human leukocyte antigens. PLoS ONE 8, e64683 (2013).CrossRefPubMedPubMedCentral
54.
Zheng, X. et al. HIBAG—HLA genotype imputation with attribute bagging. Pharmacogenom. J. 14, 192–200 (2014).CrossRef
55.
Raychaudhuri, S. et al. Five amino acids in three HLA proteins explain most of the association between MHC and seropositive rheumatoid arthritis. Nat. Genet. 44, 291–296 (2012).CrossRefPubMedPubMedCentral
56.
Okada, Y. et al. Contribution of a non-classical HLA gene, HLA-DOA, to the risk of rheumatoid arthritis. Am. J. Hum. Genet. 99, 366–374 (2016).CrossRefPubMedPubMedCentral
57.
Fernando, M. M. et al. Identification of two independent risk factors for lupus within the MHC in United Kingdom families. PLoS Genet. 3, e192 (2007).CrossRefPubMedPubMedCentral
58.
Morris, D. L. et al. Unraveling multiple MHC gene associations with systemic lupus erythematosus: model choice indicates a role for HLA alleles and non-HLA genes in Europeans. Am. J. Hum. Genet. 91, 778–793 (2012).CrossRefPubMedPubMedCentral
59.
Kim, K. et al. The HLA-DRβ1 amino acid positions 11-13-26 explain the majority of SLE-MHC associations. Nat. Commun. 5, 5902 (2014).CrossRefPubMed
60.
Sun, C. et al. High-density genotyping of immune-related loci identifies new SLE risk variants in individuals with Asian ancestry. Nat. Genet. 48, 323–330 (2016).CrossRefPubMedPubMedCentral
61.
Mayes, M. D. et al. Immunochip analysis identifies multiple susceptibility loci for systemic sclerosis. Am. J. Hum. Genet. 94, 47–61 (2014).CrossRefPubMedPubMedCentral
62.
Arnett, F. C. et al. Major histocompatibility complex (MHC) class II alleles, haplotypes and epitopes which confer susceptibility or protection in systemic sclerosis: analyses in 1300 Caucasian, African-American and Hispanic cases and 1000 controls. Ann. Rheum. Dis. 69, 822–827 (2010).CrossRefPubMed
63.
Gladman, D. D. et al. HLA markers for susceptibility and expression in scleroderma. J. Rheumatol. 32, 1481–1487 (2005).PubMed
64.
Lessard, C. J. et al. Variants at multiple loci implicated in both innate and adaptive immune responses are associated with Sjögren's syndrome. Nat. Genet. 45, 1284–1292 (2013).CrossRefPubMed
65.
Cobb, B. L., Lessard, C. J., Harley, J. B. & Moser, K. L. Genes and Sjogren's syndrome. Rheum. Dis. Clin. North Am. 34, 847–868 (2008).CrossRefPubMedPubMedCentral
66.
Nakano, M. et al. Clinical significance of anticentromere antibodies in patients with systemic lupus erythematosus. J. Rheumatol. 27, 1403–1407 (2000).PubMed
67.
Gussin, H. A., Ignat, G. P., Varga, J. & Teodorescu, M. Anti-topoisomerase I (anti-Scl-70) antibodies in patients with systemic lupus erythematosus. Arthritis Rheum. 44, 376–383 (2001).CrossRefPubMed
68.
Ohta, A., Nagai, M., Nishina, M., Tomimitsu, H. & Kohsaka, H. Age at onset and gender distribution of systemic lupus erythematosus, polymyositis/dermatomyositis, and systemic sclerosis in Japan. Mod. Rheumatol. 23, 759–764 (2013).CrossRefPubMed
69.
Farh, K. K. et al. Genetic and epigenetic fine mapping of causal autoimmune disease variants. Nature 518, 337–343 (2015).CrossRefPubMed
70.
Sugiura-Ogasawara, M. et al. The first genome-wide association study identifying new susceptibility loci for obstetric antiphospholipid syndrome. J. Hum. Genet. 62, 831–838 (2017).CrossRefPubMed
71.
Marquez, A. et al. A combined large-scale meta-analysis identifies COG6 as a novel shared risk locus for rheumatoid arthritis and systemic lupus erythematosus. Ann. Rheum. Dis. 76, 286–294 (2017).CrossRefPubMed
72.
Lopez-Isac, E. et al. Brief report: IRF4 newly identified as a common susceptibility locus for systemic sclerosis and rheumatoid arthritis in a cross-disease meta-analysis of genome-wide association studies. Arthritis Rheumatol. 68, 2338–2344 (2016).CrossRefPubMedPubMedCentral
73.
Martin, J. E. et al. A systemic sclerosis and systemic lupus erythematosus pan-meta-GWAS reveals new shared susceptibility loci. Hum. Mol. Genet. 22, 4021–4029 (2013).CrossRefPubMedPubMedCentral
74.
Li, Y. R. et al. Meta-analysis of shared genetic architecture across ten pediatric autoimmune diseases. Nat. Med. 21, 1018–1027 (2015).CrossRefPubMedPubMedCentral
75.
Milano, A. et al. Molecular subsets in the gene expression signatures of scleroderma skin. PLoS ONE 3, e2696 (2008).CrossRefPubMedPubMedCentral
76.
Assassi, S. et al. Dissecting the heterogeneity of skin gene expression patterns in systemic sclerosis. Arthritis Rheumatol. 67, 3016–3026 (2015).CrossRefPubMedPubMedCentral
77.
van Baarsen, L. G. et al. Synovial tissue heterogeneity in rheumatoid arthritis in relation to disease activity and biomarkers in peripheral blood. Arthritis Rheum. 62, 1602–1607 (2010).CrossRefPubMed
78.
van der Pouw Kraan, T. C. et al. Discovery of distinctive gene expression profiles in rheumatoid synovium using cDNA microarray technology: evidence for the existence of multiple pathways of tissue destruction and repair. Genes Immun. 4, 187–196 (2003).CrossRefPubMed
79.
Hall, J. C. et al. Molecular subsetting of interferon pathways in Sjögren's syndrome. Arthritis Rheumatol. 67, 2437–2446 (2015).CrossRefPubMedPubMedCentral
80.
Peterson, K. S. et al. Characterization of heterogeneity in the molecular pathogenesis of lupus nephritis from transcriptional profiles of laser-captured glomeruli. J. Clin. Invest. 113, 1722–1733 (2004).CrossRefPubMedPubMedCentral
81.
Nzeusseu Toukap, A. et al. Identification of distinct gene expression profiles in the synovium of patients with systemic lupus erythematosus. Arthritis Rheum. 56, 1579–1588 (2007).CrossRefPubMed
82.
Dey-Rao, R., Smith, J. R., Chow, S. & Sinha, A. A. Differential gene expression analysis in CCLE lesions provides new insights regarding the genetics basis of skin versus systemic disease. Genomics 104, 144–155 (2014).CrossRefPubMed
83.
Nakou, M. et al. Gene expression in systemic lupus erythematosus: bone marrow analysis differentiates active from inactive disease and reveals apoptosis and granulopoiesis signatures. Arthritis Rheum. 58, 3541–3549 (2008).CrossRefPubMedPubMedCentral
84.
Gardner, H. et al. Gene profiling of scleroderma skin reveals robust signatures of disease that are imperfectly reflected in the transcript profiles of explanted fibroblasts. Arthritis Rheum. 54, 1961–1973 (2006).CrossRefPubMed
85.
Brkic, Z. et al. Prevalence of interferon type I signature in CD14 monocytes of patients with Sjögren's syndrome and association with disease activity and BAFF gene expression. Ann. Rheum. Dis. 72, 728–735 (2013).CrossRefPubMed
86.
Brkic, Z. et al. The interferon type I signature is present in systemic sclerosis before overt fibrosis and might contribute to its pathogenesis through high BAFF gene expression and high collagen synthesis. Ann. Rheum. Dis. 75, 1567–1573 (2016).CrossRefPubMed
87.
Liu, X. et al. Correlation of interferon-inducible chemokine plasma levels with disease severity in systemic sclerosis. Arthritis Rheum. 65, 226–235 (2013).CrossRefPubMedPubMedCentral
88.
Rose, T. et al. SIGLEC1 is a biomarker of disease activity and indicates extraglandular manifestation in primary Sjögren's syndrome. RMD Open 2, e000292 (2016).CrossRefPubMedPubMedCentral
89.
Chen, W., Cao, H., Lin, J., Olsen, N. & Zheng, S. G. Biomarkers for primary Sjögren's syndrome. Genom. Proteom. Bioinformat. 13, 219–223 (2015).CrossRef
90.
Bradley, S. J., Suarez-Fueyo, A., Moss, D. R., Kyttaris, V. C. & Tsokos, G. C. T. Cell transcriptomes describe patient subtypes in systemic lupus erythematosus. PLoS ONE 10, e0141171 (2015).CrossRefPubMedPubMedCentral
91.
Banchereau, R. et al. Personalized immunomonitoring uncovers molecular networks that stratify lupus patients. Cell 165, 1548–1550 (2016).CrossRefPubMed
92.
Bennett, L. et al. Interferon and granulopoiesis signatures in systemic lupus erythematosus blood. J. Exp. Med. 197, 711–723 (2003).CrossRefPubMedPubMedCentral
93.
Maas, K. et al. Cutting edge: molecular portrait of human autoimmune disease. J. Immunol. 169, 5–9 (2002).CrossRefPubMed
94.
Maas, K., Chen, H., Shyr, Y., Olsen, N. J. & Aune, T. Shared gene expression profiles in individuals with autoimmune disease and unaffected first-degree relatives of individuals with autoimmune disease. Hum. Mol. Genet. 14, 1305–1314 (2005).CrossRefPubMed
95.
Liu, Z., Maas, K. & Aune, T. M. Identification of gene expression signatures in autoimmune disease without the influence of familial resemblance. Hum. Mol. Genet. 15, 501–509 (2006).CrossRefPubMed
96.
Olsen, N. et al. A gene expression signature for recent onset rheumatoid arthritis in peripheral blood mono-nuclear cells. Ann. Rheum. Dis. 63, 1387–1392 (2004).CrossRefPubMedPubMedCentral
97.
Assassi, S. et al. Systemic sclerosis and lupus: points in an interferon-mediated continuum. Arthritis Rheum. 62, 589–598 (2010).CrossRefPubMedPubMedCentral
98.
Higgs, B. W. et al. Patients with systemic lupus erythematosus, myositis, rheumatoid arthritis and scleroderma share activation of a common type I interferon pathway. Ann. Rheum. Dis. 70, 2029–2036 (2011).CrossRefPubMed
99.
Toro-Dominguez, D., Carmona-Saez, P. & Alarcon-Riquelme, M. E. Shared signatures between rheumatoid arthritis, systemic lupus erythematosus and Sjögren's syndrome uncovered through gene expression meta-analysis. Arthritis Res. Ther. 16, 489 (2014).CrossRefPubMedPubMedCentral
100.
Tuller, T., Atar, S., Ruppin, E., Gurevich, M. & Achiron, A. Common and specific signatures of gene expression and protein-protein interactions in autoimmune diseases. Genes Immun. 14, 67–82 (2013).CrossRefPubMed
101.
Bonasio, R., Tu, S. & Reinberg, D. Molecular signals of epigenetic states. Science 330, 612–616 (2010).CrossRefPubMedPubMedCentral
102.
Jones, P. A. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat. Rev. Genet. 13, 484–492 (2012).CrossRefPubMed
103.
Urdinguio, R. G., Sanchez-Mut, J. V. & Esteller, M. Epigenetic mechanisms in neurological diseases: genes, syndromes, and therapies. Lancet Neurol. 8, 1056–1072 (2009).CrossRefPubMed
104.
Vidal, E. et al. A DNA methylation map of human cancer at single base-pair resolution. Oncogene 36, 5648–5657 (2017).CrossRefPubMedPubMedCentral
105.
Aslani, S. et al. Epigenetic alterations underlying auto-immune diseases. Autoimmunity 49, 69–83 (2016).CrossRefPubMed
106.
Coit, P. et al. Genome-wide DNA methylation study suggests epigenetic accessibility and transcriptional poising of interferon-regulated genes in naive CD4+ T cells from lupus patients. J. Autoimmun. 43, 78–84 (2013).CrossRefPubMedPubMedCentral
107.
Richardson, B. et al. Evidence for impaired T cell DNA methylation in systemic lupus erythematosus and rheumatoid arthritis. Arthritis Rheum. 33, 1665–1673 (1990).CrossRefPubMed
108.
Corvetta, A., Della Bitta, R., Luchetti, M. M. & Pomponio, G. 5-Methylcytosine content of DNA in blood, synovial mononuclear cells and synovial tissue from patients affected by autoimmune rheumatic diseases. J. Chromatogr. 566, 481–491 (1991).CrossRefPubMed
109.
Altorok, N. et al. Genome-wide DNA methylation patterns in naive CD4+ T cells from patients with primary Sjogren's syndrome. Arthritis Rheumatol. 66, 731–739 (2014).CrossRefPubMedPubMedCentral
110.
Lei, W. et al. Abnormal DNA methylation in CD4+ T cells from patients with systemic lupus erythematosus, systemic sclerosis, and dermatomyositis. Scand. J. Rheumatol 38, 369–374 (2009).CrossRefPubMed
111.
Absher, D. M. et al. Genome-wide DNA methylation analysis of systemic lupus erythematosus reveals persistent hypomethylation of interferon genes and compositional changes to CD4+ T-cell populations. PLoS Genet. 9, e1003678 (2013).CrossRefPubMedPubMedCentral
112.
Altorok, N., Tsou, P. S., Coit, P., Khanna, D. & Sawalha, A. H. Genome-wide DNA methylation analysis in dermal fibroblasts from patients with diffuse and limited systemic sclerosis reveals common and subset-specific DNA methylation aberrancies. Ann. Rheum. Dis. 74, 1612–1620 (2015).CrossRefPubMed
113.
Javierre, B. M. et al. Changes in the pattern of DNA methylation associate with twin discordance in systemic lupus erythematosus. Genome Res. 20, 170–179 (2010).CrossRefPubMedPubMedCentral
114.
Yeung, K. S. et al. Genome-wide DNA methylation analysis of Chinese patients with systemic lupus erythematosus identified hypomethylation in genes related to the type I interferon pathway. PoS ONE 12, e0169553 (2017).CrossRef
115.
Attig, L., Gabory, A. & Junien, C. Nutritional developmental epigenomics: immediate and long-lasting effects. Proc. Nutr. Soc. 69, 221–231.
116.
Minami, Y. et al. Intakes of vitamin B6 and dietary fiber and clinical course of systemic lupus erythematosus: a prospective study of Japanese female patients. J. Epidemiol. 21, 246–254 (2011).CrossRefPubMedPubMedCentral
117.
Lian, X. et al. DNA demethylation of CD40L in CD4+ T cells from women with systemic sclerosis: a possible explanation for female susceptibility. Arthritis Rheum. 64, 2338–2345 (2012).CrossRefPubMed
118.
Liao, J. et al. CD40L demethylation in CD4+ T cells from women with rheumatoid arthritis. Clin. Immunol. 145, 13–18 (2012).CrossRefPubMed
119.
Lu, Q. et al. Demethylation of CD40LG on the inactive X in T cells from women with lupus. J. Immunol. 179, 6352–6358 (2007).CrossRefPubMed
120.
Zhao, M. et al. IFI44L promoter methylation as a blood biomarker for systemic lupus erythematosus. Ann. Rheum. Dis. 75, 1998–2006 (2016).CrossRefPubMed
121.
Barrett, T. et al. NCBI GEO: archive for functional genomics data sets — update. Nucleic Acids Res. 41, D991–995 (2013).CrossRefPubMed
122.
Lappalainen, I. et al. The European Genome-phenome Archive of human data consented for biomedical research. Nat. Genet. 47, 692–695 (2015).CrossRefPubMedPubMedCentral
123.
Woodcock, J. & LaVange, L. M. Master protocols to study multiple therapies, multiple diseases, or both. N. Engl. J. Med. 377, 62–70 (2017).CrossRefPubMed
124.
Ricano-Ponce, I. et al. Refined mapping of autoimmune disease associated genetic variants with gene expression suggests an important role for non-coding RNAs. J. Autoimmun. 68, 62–74 (2016).CrossRefPubMedPubMedCentral
125.
Odhams, C. A. et al. Mapping eQTLs with RNA-seq reveals novel susceptibility genes, non-coding RNAs and alternative-splicing events in systemic lupus erythematosus. Hum. Mol. Genet. 26, 1003–1017 (2017).PubMedPubMedCentral
126.
Kasela, S. et al. Pathogenic implications for autoimmune mechanisms derived by comparative eQTL analysis of CD4+ versus CD8+ T cells. PLoS Genet. 13, e1006643 (2017).CrossRefPubMedPubMedCentral
127.
Westra, H. J. et al. Systematic identification of trans eQTLs as putative drivers of known disease associations. Nat. Genet. 45, 1238–1243 (2013).CrossRefPubMedPubMedCentral
128.
Walsh, A. M. et al. Integrative genomic deconvolution of rheumatoid arthritis GWAS loci into gene and cell type associations. Genome Biol. 17, 79 (2016).CrossRefPubMedPubMedCentral
129.
Ai, R. et al. Joint-specific DNA methylation and transcriptome signatures in rheumatoid arthritis identify distinct pathogenic processes. Nat. Commun. 7, 11849 (2016).CrossRefPubMedPubMedCentral
130.
Zhu, H. et al. Whole-genome transcription and DNA methylation analysis of peripheral blood mononuclear cells identified aberrant gene regulation pathways in systemic lupus erythematosus. Arthritis Res. Ther. 18, 162 (2016).CrossRefPubMedPubMedCentral
131.
Kim-Howard, X. et al. ITGAM coding variant (rs1143679) influences the risk of renal disease, discoid rash and immunological manifestations in patients with systemic lupus erythematosus with European ancestry. Ann. Rheum. Dis. 69, 1329–1332 (2010).CrossRefPubMed
132.
Tasaki, S. et al. Multiomic disease signatures converge to cytotoxic CD8 T cells in primary Sjögren's syndrome. Ann. Rheum. Dis. 76, 1458–1466 (2017).CrossRefPubMed
133.
Hudson, M. et al. Novel insights into systemic autoimmune rheumatic diseases using shared molecular signatures and an integrative analysis. Epigenetics 12, 433–440 (2017).CrossRefPubMedPubMedCentral
134.
Bailey, P. et al. Genomic analyses identify molecular subtypes of pancreatic cancer. Nature 531, 47–52 (2016).CrossRefPubMed
135.
Lombardo, M. V. et al. Unsupervised data-driven stratification of mentalizing heterogeneity in autism. Sci. Rep. 6, 35333 (2016).CrossRefPubMedPubMedCentral
136.
Wang, B. et al. Similarity network fusion for aggregating data types on a genomic scale. Nat. Methods 11, 333–337 (2014).CrossRefPubMed
137.
Mo, Q. et al. Pattern discovery and cancer gene identification in integrated cancer genomic data. Proc. Natl Acad. Sci. USA 110, 4245–4250 (2013).CrossRefPubMedPubMedCentral
138.
Kirk, P., Griffin, J. E., Savage, R. S., Ghahramani, Z. & Wild, D. L. Bayesian correlated clustering to integrate multiple datasets. Bioinformatics 28, 3290–3297 (2012).CrossRefPubMedPubMedCentral
139.
Lock, E. F. & Dunson, D. B. Bayesian consensus clustering. Bioinformatics 29, 2610–2616 (2013).CrossRefPubMedPubMedCentral
140.
Cho, D. Y. & Przytycka, T. M. Dissecting cancer heterogeneity with a probabilistic genotype-phenotype model. Nucleic Acids Res. 41, 8011–8020 (2013).CrossRefPubMedPubMedCentral
141.
Yuan, Y., Savage, R. S. & Markowetz, F. Patient-specific data fusion defines prognostic cancer subtypes. PLoS Comput. Biol. 7, e1002227 (2011).CrossRefPubMedPubMedCentral
142.
Menichetti, G., Remondini, D., Panzarasa, P., Mondragon, R. J. & Bianconi, G. Weighted multiplex networks. PLoS ONE 9, e97857 (2014).CrossRefPubMedPubMedCentral
143.
Meng, C., Kuster, B., Culhane, A. C. & Gholami, A. M. A multivariate approach to the integration of multi-omics datasets. BMC Bioinformatics 15, 162 (2014).CrossRefPubMedPubMedCentral
144.
Kim, S. et al. Integrative phenotyping framework (iPF): integrative clustering of multiple omics data identifies novel lung disease subphenotypes. BMC Genomics 16, 924 (2015).CrossRefPubMedPubMedCentral
145.
He, S. et al. ICM: a web server for integrated clustering of multi-dimensional biomedical data. Nucleic Acids Res. 44, W154–159 (2016).CrossRefPubMedPubMedCentral
146.
Speicher, N. K. & Pfeifer, N. Integrating different data types by regularized unsupervised multiple kernel learning with application to cancer subtype discovery. Bioinformatics 31, i268–275 (2015).CrossRefPubMedPubMedCentral
147.
Jamin, C. et al. Multi-center harmonization of flow cytometers in the context of the European “PRECISESADS” project. Autoimmun. Rev. 15, 1038–1045 (2016).CrossRefPubMed
148.
Bennett, G. A. et al. Proposed diagnostic criteria for rheumatoid arthritis. Bull. Rheum. Dis. 7, 121–124 (1956).PubMed
149.
Ropes, M. W. et al. 1958 Revision of diagnostic criteria for rheumatoid arthritis. Bull. Rheum. Dis. 9, 175–176 (1958).PubMed