Skip to main content
Top

10-04-2018 | Pediatric | Article

Amendment of the OMERACT ultrasound definitions of joints’ features in healthy children when using the DOPPLER technique

Journal: Pediatric Rheumatology

Authors: P. Collado, D. Windschall, J. Vojinovic, S. Magni-Manzoni, P. Balint, G. A. W. Bruyn, C. Hernandez-Diaz, J. C. Nieto, V. Ravagnani, N. Tzaribachev, A. Iagnocco, M. A. D’Agostino, E. Naredo, on behalf of the OMERACT ultrasound subtask force on pediatric

Publisher: BioMed Central

Abstract

Background

Recently preliminary ultrasonography (US) definitions, in B mode, for normal components of pediatric joints have been developed by the OMERACT US group. The aim of the current study was to include Doppler findings in the evaluation and definition of normal joint features that can be visualized in healthy children at different age groups.

Methods

A multistep approach was used. Firstly, new additional definitions of joint components were proposed during an expert meeting. In the second step, these definitions, along with the preliminary B-mode-US definitions, were tested for feasibility in an exercise in healthy children at different age groups. In the last step, a larger panel of US experts were invited to join a web-based consensus process in order to approve the developed definitions using the Delphi methodology. A Likert scale of 1–5 was used to assess agreement.

Results

Physiological vascularity and fat pad tissue were identified and tested as two additional joint components in healthy children. Since physiological vascularity changes over the time in the growing skeleton, the final definition of Doppler findings comprised separate statements instead of a single full definition. A total of seven statements was developed and included in a written Delphi questionnaire to define and validate the new components. The final definitions for fat pad and physiological vascularity agreed by the group of experts reached 92.9% and 100% agreement respectively in a web survey.

Conclusion

The inclusion of these two additional joints components which are linked to detection of Doppler signal in pediatric healthy joints will improve the identification of abnormalities in children with joint pathologies.
Literature
1.
Laurell L, Court-Payen M, Nielsen S, Zak M, Boesen M, Fasth A. Ultrasonography and color Doppler in juvenile idiopathic arthritis: diagnosis and follow-up of ultrasound- guided steroid injection in the ankle region. A descriptive interventional study. Pediatr Rheumatol Online J. 2011;9:4.CrossRefPubMedPubMedCentral
2.
Laurell L, Court-Payen M, Nielsen S, Zak M, Fasth A. Ultrasonography and color Doppler in juvenile idiopathic arthritis: diagnosis and follow-up of ultrasound-guided steroid injection in the wrist region. A descriptive interventional study. Pediatr Rheumatol Online J. 2012;10:11.CrossRefPubMedPubMedCentral
3.
Jousse-Joulin S, Breton S, Cangemi C, Fenoll B, Bressolette L, de Parscau L, et al. Ultrasonography for detecting enthesitis in juvenile idiopathic arthritis. Arthritis Care Res. 2011;63:849–5.CrossRef
4.
Breton S, Jousse-Joulin S, Cangemi C, de Parscau L, Colin D, Bressolette L, et al. Comparison of clinical and ultrasonographic evaluations for peripheral synovitis in juvenile idiopathic arthritis. Semin Arthritis Rheum. 2011;41:272–8.CrossRefPubMed
5.
Filippou G, Cantarini L, Bertoldi I, Picerno V, Frediani B, Galeazzi M. Ultrasonography vs. clinical examination in children with suspected arthritis. Does it make sense to use poliarticular ultrasonographic screening? Clin Exp Rheumatol. 2011;29:345–50.PubMed
6.
Naredo E, Collado P, Cruz A, et al. Longitudinal power Doppler ultrasonographic assessment of joint inflammatory activity in early rheumatoid arthritis: predictive value in disease activity and radiologic progression. Arthritis Rheum. 2007;57:116–24.CrossRefPubMed
7.
Collado P, Jousse-Joulin S, Alcalde M, Naredo E, D’Agostino MA. Is ultrasound a validated imaging tool for the diagnosis and management of synovitis in juvenile idiopathic arthritis? A systematic literature review. Arthritis Care Res. 2012;64:1011–9.
8.
Bearcroft P, Berman L, Robinson A, Butler G. Vascularity of the neonatal femoral head: in vivo demonstration with power Doppler US. Radiology. 1996;200:209–11.CrossRefPubMed
9.
Collado P, Vojinovic J, Nieto JC, Windschall D, Magni-Manzoni S, Bruyn GAW, et al. Toward standardized musculoskeletal ultrasound in pediatric rheumatology: normal age-related ultrasound findings. Arthritis Care Res. 2016;68:348–56.CrossRef
10.
McCarthy EF, Frassica FJ. Anatomy and Physiology of bone. In: Pathology of bone and joint disorders. Philadelphia: WB Saunders; 1998. p. 25–50.
11.
Floyd WE, Zaleske DJ, Schiller AL, Trahan C, Mankin HJ. Vascular events associated with the appearance of the secondary center of ossification in the murine distal femoral epiphysis. J Bone Joint Surg Am. 1987;69:185–90.CrossRefPubMed
12.
Shapiro F. Epiphyseal and Physeal cartilage vascularization: a light microscopic and Tritiated thymidine autoradiographic study of cartilage canals in newborn and young postnatal rabbit bone. Anat Rec. 1998;252:140–8.CrossRefPubMed
13.
Varich LJ, Laor T, Jaramillo D. Normal maturation of the distal femoralepiphyseal cartilage: age-related changes at MR imaging. Radiology. 2000;214:705–9.CrossRefPubMed
14.
Ho-Fung VM, Jaramillo D. Cartilage imaging in children: current indications,magnetic resonance imaging techniques, and imaging findings. Radiol Clin North Am. 2013;51:689–702.CrossRefPubMed
15.
Roth J, Jousse-Joulin S, Magni-Manzoni S, Rodriguez A, Tzaribachev N, Iagnocco A, et al. Definitions for the sonographic features of joints in healthy children. Arthritis Care Res. 2015;67:136–42.CrossRef
16.
Caspar-Bauguil S, Cousin B, Galinier A, Segafredo C, Nibbelink M, Andre M, et al. Adipose tissues as an ancestral immune organ: site-specific change in obesity. FEBS Lett. 2005;579:3487–92.CrossRefPubMed
17.
Šenolt L. Adipokines: role in local and systemic inflammation of rheumatic diseases. Expert Rev Clin Immunol. 2017;13(1):1–3. https://​doi.​org/​10.​1080/​1744666X.​2017.​1249850.CrossRefPubMed
18.
Jacobson JA, Lenchic L, Ruboy MK, Schweizert ME, Resnick D. MR imaging of the infrapatellar fat pad of Hoffa. Radiographics. 1997;17:675–91.CrossRefPubMed
19.
Ng JM, Rosenberg ZS, Bencardino JT, Restrepo-Velez Z, Ciavarra GA, Adler RS. US and MR imaging of the extensor compartment of the ankle. Radiographics. 2013;33:2047–64.CrossRefPubMed
20.
Collado P, Naredo E, Calvo C, Ml G, Calvo I, Ml G-V, et al. Reduced joint assessment versus comprehensive assessment for ultrasound detection of synovitis in juvenile idiopathic arthritis. Rheumatology. 2013;52:1477–84.CrossRefPubMed
21.
Selvaag AM, Flato B, Dale K. Radiographic and Clinical outcome in early juvenile rheumatoid arthritis and juvenile spondylarthropathy: a 3-year prospective study. J Rheumatol. 2006;33:1382–91.PubMed
22.
Roth J, Ravagnani V, Backhaus M, Balint P, Bruns A, Bruyn GA, et al. Preliminary definitions for the Sonographic features of Synovitis in children. Arthritis Care Res. 2017;69:1217–23.CrossRef
23.
Colebatch-Bourn AN, Edwards CJ, Collado P, D’Agostino M-A, Hemke R, Jousse-Joulin S, et al. EULAR-PReS points to consider for the use of imaging in the diagnosis and management of juvenile idiopathic arthritis in clinical practice. Ann Rheum Dis. 2015;74:1946–57.CrossRefPubMed
24.
Magni-Manzoni S, Scirè CA, Ravelli A, Klersy C, Rossi S, Muratore V, et al. Ultrasound-detected synovial abnormalities are frequent in clinically inactive juvenile idiopathic arthritis, but do not predict a flare of synovitis. Ann Rheum Dis. 2013;72:223–8.CrossRefPubMed
25.
Collado P, Gamir ML, López-Robledillo JC, Merino R, Modesto C, Monteagudo I. Detection of synovitis by ultrasonography in clinically inactive juvenile idiopathic arthritis on and off medication. Clin Experimental. 2014;32:597–603.
26.
Barnewolt CE, Shapiro F, Jaramillo D. Normal gadolinium-enhanced MR images in the developing appendicular skeleton. Part 1: cartilaginous epiphysis and physis. AJR. 1997;169:183–9.CrossRefPubMed
27.
Mandl P, Benis S, Patonay L, Balint PV. The normal joint. In: Wakefield RJ, D'Agostino MA, editors. Essential applications of ultrasound in rheumatology. 1st ed. Philadelphia: SAUNDERS. Elsevier; 2010. p. 51–64.CrossRef
28.
Henke R, Tzaribachev N, Nusman CM, van Rossum MAJ, Maas M, Doria AS. Magnetic resonance imaging (MRI) of the knee as at outcome mesure in juvenile idiopathic arthritis: an OMERACT reliability study on MRI scales. J Rheumatol. 2017;44:1224–30.CrossRef
29.
Torp-Pedersen S, Christensen R, Szkudlarek M, et al. Power and color Doppler ultrasound settings for inflammatory flow: impact on scoring of disease activity in patients with rheumatoid arthritis. Arthritis Rheumatol. 2015;67:386–95.CrossRefPubMed
30.
Karmazyn B, Bowyer SL, Schmidt KM, et al. US findings of metacarpophalangeal joints in children with idiopathic juvenile arthritis. Pediatr Radiol. 2007;37:475–82.CrossRefPubMed
31.
Collado P, Naredo E, Calvo C, Crespo M. Role of power Doppler sonography in early diagnosis of osteomyelitis in children. J Clin Ultrasound. 2008;36:251–3.CrossRefPubMed