Skip to main content
Top

31-05-2018 | Rheumatoid arthritis | Review | Article

Microvascular endothelial dysfunction in rheumatoid arthritis

Journal: Nature Reviews Rheumatology

Authors: Romain Bordy, Perle Totoson, Clément Prati, Christine Marie, Daniel Wendling, Céline Demougeot

Publisher: Nature Publishing Group UK

Abstract

The systemic autoimmune disease rheumatoid arthritis (RA) is characterized by increased cardiovascular mortality and morbidity and is an independent cardiovascular risk factor. Cardiovascular diseases (CVDs) result from accelerated atherogenesis, which is a consequence of endothelial dysfunction in the early stages of the disease. Endothelial dysfunction is a functional and reversible alteration of endothelial cells and leads to a shift in the properties of the endothelium towards reduced vasodilation, a pro-inflammatory state, and proliferative and prothrombotic properties. In RA, endothelial dysfunction can occur in the large vessels (such as the conduit arteries) and in the small vessels of the microvasculature, which supply oxygen and nutrients to the tissue and control inflammation, repair and fluid exchange with the surrounding tissues. Growing evidence suggests that microvascular endothelial dysfunction contributes to CVD development, as it precedes and predicts the development of conduit artery atherosclerosis and associated risk factors. As such, numerous studies have investigated microvascular endothelial dysfunction in RA, including its link with disease activity, disease duration and inflammation, the effect of treatments on endothelial function, and possible circulating biomarkers of microvascular endothelial dysfunction. Such findings could have important implications in the cardiovascular risk management of patients with RA.
Glossary
Dyslipidaemia
A disorder of lipoprotein metabolism characterized by a spectrum of quantitative and qualitative changes in lipids and lipoproteins.
Framingham risk score
An algorithm used to estimate the 10-year risk of developing coronary heart disease on the basis of age, sex, cholesterol levels, blood pressure (and whether the individual is being treated for hypertension), diabetes and smoking status.
Pulsatile pressure
The difference between the systolic and diastolic blood pressure (also called pulse pressure), which is governed by the relationship between ventricular ejection and the viscoelastic properties of the large arteries (arterial stiffness).
Reactive hyperaemia
A transient increase in blood flow that occurs following a brief period of ischaemia (for example, arterial occlusion).
Myocardial ischaemia
A restriction in blood supply to the myocardium resulting from reduced blood flow in the coronary arteries. This restriction leads to an imbalance between myocardial oxygen supply and demand, causing cardiac dysfunction, myocardial infarction, arrhythmias and sudden death.
Literature
1.
Giles, J. T. Cardiovascular disease in rheumatoid arthritis: current perspectives on assessing and mitigating risk in clinical practice. Best Pract. Res. Clin. Rheumatol. 29, 597–613 (2015).PubMedCrossRef
2.
López-Mejías, R. et al. Cardiovascular risk assessment in patients with rheumatoid arthritis: The relevance of clinical, genetic and serological markers. Autoimmun. Rev. 15, 1013–1030 (2016).PubMedCrossRef
3.
Avina-Zubieta, J. A., Thomas, J., Sadatsafavi, M., Lehman, A. J. & Lacaille, D. Risk of incident cardiovascular events in patients with rheumatoid arthritis: a meta-analysis of observational studies. Ann. Rheum. Dis. 71, 1524–1529 (2012).PubMedCrossRef
4.
van Halm, V. P. et al. Rheumatoid arthritis versus diabetes as a risk factor for cardiovascular disease: a cross-sectional study, the CARRE Investigation. Ann. Rheum. Dis. 68, 1395–1400 (2009).PubMedCrossRef
5.
del Rincón, I. D., Williams, K., Stern, M. P., Freeman, G. L. & Escalante, A. High incidence of cardiovascular events in a rheumatoid arthritis cohort not explained by traditional cardiac risk factors. Arthritis Rheum. 44, 2737–2745 (2001).PubMedCrossRef
6.
Holmqvist, M. E. et al. Rapid increase in myocardial infarction risk following diagnosis of rheumatoid arthritis amongst patients diagnosed between 1995 and 2006. J. Intern. Med. 268, 578–585 (2010).PubMedCrossRef
7.
Kaplan, M. J. Cardiovascular complications of rheumatoid arthritis: assessment, prevention, and treatment. Rheum. Dis. Clin. North Am. 36, 405–426 (2010).PubMedPubMedCentralCrossRef
8.
van den Hoek, J. et al. Mortality in patients with rheumatoid arthritis: a 15-year prospective cohort study. Rheumatol. Int. 37, 487–493 (2017).PubMedCrossRef
9.
Prati, C., Demougeot, C., Guillot, X., Godfrin-Valnet, M. & Wendling, D. Endothelial dysfunction in joint disease. Joint Bone Spine 81, 386–391 (2014).PubMedCrossRef
10.
Daiber, A. et al. Targeting vascular (endothelial) dysfunction. Br. J. Pharmacol. 174, 1591–1619 (2016).PubMedPubMedCentralCrossRef
11.
Gutterman, D. D. et al. The human microcirculation: regulation of flow and beyond. Circ. Res. 118, 157–172 (2016).PubMedPubMedCentralCrossRef
12.
Moroni, L., Selmi, C., Angelini, C. & Meroni, P. L. Evaluation of endothelial function by flow-mediated dilation: a comprehensive review in rheumatic disease. Arch. Immunol. Ther. Exp. 65, 463–475 (2017).CrossRef
13.
Kotani, K., Miyamoto, M. & Ando, H. The effect of treatments for rheumatoid arthritis on endothelial dysfunction evaluated by flow-mediated vasodilation in patients with rheumatoid arthritis. Curr. Vasc. Pharmacol. 15, 10–18 (2017).PubMedCrossRef
14.
Gonzalez-Gay, M. A., Gonzalez-Juanatey, C., Vazquez-Rodriguez, T. R., Martin, J. & Llorca, J. Endothelial dysfunction, carotid intima-media thickness, and accelerated atherosclerosis in rheumatoid arthritis. Semin. Arthritis Rheum. 38, 67–70 (2008).PubMedCrossRef
15.
Haller, H. Endothelial function. General considerations. Drugs 53 (Suppl. 1), 1–10 (1997).PubMedCrossRef
16.
Kimura, K. et al. Diversity and variability of smooth muscle phenotypes of renal arterioles as revealed by myosin isoform expression. Kidney Int. 48, 372–382 (1995).PubMedCrossRef
17.
Napoli, C. et al. Efficacy and age-related effects of nitric oxide-releasing aspirin on experimental restenosis. Proc. Natl Acad. Sci. USA 99, 1689–1694 (2002).PubMedPubMedCentralCrossRef
18.
Takahashi, M., Ishida, T., Traub, O., Corson, M. A. & Berk, B. C. Mechanotransduction in endothelial cells: temporal signaling events in response to shear stress. J. Vasc. Res. 34, 212–219 (1997).PubMedCrossRef
19.
Triggle, C. R. & Ding, H. The endothelium in compliance and resistance vessels. Front. Biosci. Sch. Ed. 3, 730–744 (2011).CrossRef
20.
Matsuzawa, Y. & Lerman, A. Endothelial dysfunction and coronary artery disease: assessment, prognosis, and treatment. Coron. Artery Dis. 25, 713–724 (2014).PubMedPubMedCentralCrossRef
21.
Liao, J. K. Linking endothelial dysfunction with endothelial cell activation. J. Clin. Invest. 123, 540–541 (2013).PubMedPubMedCentralCrossRef
22.
Linder, L., Kiowski, W., Bühler, F. R. & Lüscher, T. F. Indirect evidence for release of endothelium-derived relaxing factor in human forearm circulation in vivo. Blunted response in essential hypertension. Circulation 81, 1762–1767 (1990).PubMedCrossRef
23.
Panza, J. A., Quyyumi, A. A., Brush, J. E. & Epstein, S. E. Abnormal endothelium-dependent vascular relaxation in patients with essential hypertension. N. Engl. J. Med. 323, 22–27 (1990).PubMedCrossRef
24.
Treasure, C. B. et al. Epicardial coronary artery responses to acetylcholine are impaired in hypertensive patients. Circ. Res. 71, 776–781 (1992).PubMedCrossRef
25.
Calver, A., Collier, J. & Vallance, P. Inhibition and stimulation of nitric oxide synthesis in the human forearm arterial bed of patients with insulin-ependent diabetes. J. Clin. Invest. 90, 2548–2554 (1992).PubMedPubMedCentralCrossRef
26.
Cosentino, F. et al. High glucose causes upregulation of cyclooxygenase-2 and alters prostanoid profile in human endothelial cells: role of protein kinase C and reactive oxygen species. Circulation 107, 1017–1023 (2003).PubMedCrossRef
27.
Mäkimattila, S. et al. Chronic hyperglycemia impairs endothelial function and insulin sensitivity via different mechanisms in insulin-dependent diabetes mellitus. Circulation 94, 1276–1282 (1996).PubMedCrossRef
28.
Steinberg, H. O. et al. Obesity/insulin resistance is associated with endothelial dysfunction. Implications for the syndrome of insulin resistance. J. Clin. Invest. 97, 2601–2610 (1996).PubMedPubMedCentralCrossRef
29.
Casino, P. R., Kilcoyne, C. M., Quyyumi, A. A., Hoeg, J. M. & Panza, J. A. The role of nitric oxide in endothelium-dependent vasodilation of hypercholesterolemic patients. Circulation 88, 2541–2547 (1993).PubMedCrossRef
30.
Spieker, L. E. et al. High-density lipoprotein restores endothelial function in hypercholesterolemic men. Circulation 105, 1399–1402 (2002).PubMedCrossRef
31.
Hamburg, N. M. et al. Relation of brachial and digital measures of vascular function in the community: the Framingham heart study. Hypertension 57, 390–396 (2011).PubMedPubMedCentralCrossRef
32.
Sitia, S. et al. From endothelial dysfunction to atherosclerosis. Autoimmun. Rev. 9, 830–834 (2010).PubMedCrossRef
33.
Kieda, C. Heterogeneity of endothelial cells — role in vessel specialization and cooperation in vasculogenic mimicry. Postepy Biochem. 59, 372–378 (2013).PubMed
34.
Geiger, M., Stone, A., Mason, S. N., Oldham, K. T. & Guice, K. S. Differential nitric oxide production by microvascular and macrovascular endothelial cells. Am. J. Physiol. 273, L275–L281 (1997).PubMed
35.
Gerritsen, M. E., Niedbala, M. J., Szczepanski, A. & Carley, W. W. Cytokine activation of human macro- and microvessel-derived endothelial cells. Blood Cells 19, 325–339 (1993).PubMed
36.
Sumagin, R. & Sarelius, I. H. Emerging understanding of roles for arterioles in inflammation. Microcirculation 20, 679–692 (2013).PubMedPubMedCentral
37.
Aird, W. C. Phenotypic heterogeneity of the endothelium. I. Structure, function, and mechanisms. Circ. Res. 100, 158–173 (2007).PubMedCrossRef
38.
Stokes, K. Y. & Granger, D. N. The microcirculation: a motor for the systemic inflammatory response and large vessel disease induced by hypercholesterolaemia? J. Physiol. 562, 647–653 (2005).PubMedCrossRef
39.
Anderson, T. J. et al. Microvascular function predicts cardiovascular events in primary prevention: long-term results from the Firefighters and Their Endothelium (FATE) study. Circulation 123, 163–169 (2011).PubMedCrossRef
40.
Lind, L., Berglund, L., Larsson, A. & Sundström, J. Endothelial function in resistance and conduit arteries and 5-year risk of cardiovascular disease. Circulation 123, 1545–1551 (2011).PubMedCrossRef
41.
Reis, S. E. et al. Coronary microvascular dysfunction is highly prevalent in women with chest pain in the absence of coronary artery disease: results from the NHLBI WISE study. Am. Heart J. 141, 735–741 (2001).PubMedCrossRef
42.
von Mering, G. O. et al. Abnormal coronary vasomotion as a prognostic indicator of cardiovascular events in women: results from the National Heart, Lung, and Blood Institute-Sponsored Women’s Ischemia Syndrome Evaluation (WISE). Circulation 109, 722–725 (2004).CrossRef
43.
Flammer, A. J. et al. The assessment of endothelial function: from research into clinical practice. Circulation 126, 753–767 (2012).PubMedPubMedCentralCrossRef
44.
Vizzardi, E. et al. Noninvasive assessment of endothelial function: the classic methods and the new peripheral arterial tonometry. J. Investig. Med. 62, 856–864 (2014).PubMedCrossRef
45.
Lockhart, C. J., Hamilton, P. K., Quinn, C. E. & McVeigh, G. E. End-organ dysfunction and cardiovascular outcomes: the role of the microcirculation. Clin. Sci. 116, 175–190 (2009).PubMedCrossRef
46.
Chantler, P. D. & Frisbee, J. C. Arterial function in cardio-metabolic diseases: from the microcirculation to the large conduits. Prog. Cardiovasc. Dis. 57, 489–496 (2015).PubMedCrossRef
47.
Anderson, T. J. & Phillips, S. A. Assessment and prognosis of peripheral artery measures of vascular function. Prog. Cardiovasc. Dis. 57, 497–509 (2015).PubMedCrossRef
48.
Lekakis, J. et al. Methods for evaluating endothelial function: a position statement from the European Society of Cardiology Working Group on Peripheral Circulation. Eur. J. Cardiovasc. Prev. Rehabil. 18, 775–789 (2011).PubMedCrossRef
49.
Bourdarias, J. P. Coronary reserve: concept and physiological variations. Eur. Heart J. 16 (Suppl. 1), 2–6 (1995).PubMedCrossRef
50.
Al Mheid, I. et al. Vitamin D status is associated with arterial stiffness and vascular dysfunction in healthy humans. J. Am. Coll. Cardiol. 58, 186–192 (2011).PubMedPubMedCentralCrossRef
51.
Rammos, C. et al. Macrophage migration inhibitory factor is associated with vascular dysfunction in patients with end-stage renal disease. Int. J. Cardiol. 168, 5249–5256 (2013).PubMedCrossRef
52.
Secrest, A. M., Prince, C. T., Costacou, T., Miller, R. G. & Orchard, T. J. Predictors of and survival after incident stroke in type 1 diabetes. Diab. Vasc. Dis. Res. 10, 3–10 (2013).PubMedCrossRef
53.
Gonzalez-Juanatey, C. et al. HLA-DRB1 status affects endothelial function in treated patients with rheumatoid arthritis. Am. J. Med. 114, 647–652 (2003).PubMedCrossRef
54.
Bergholm, R. et al. Impaired responsiveness to NO in newly diagnosed patients with rheumatoid arthritis. Arterioscler. Thromb. Vasc. Biol. 22, 1637–1641 (2002).PubMedCrossRef
55.
Palomino-Morales, R. et al. A1298C polymorphism in the MTHFR gene predisposes to cardiovascular risk in rheumatoid arthritis. Arthritis Res. Ther. 12, R71 (2010).PubMedPubMedCentralCrossRef
56.
Palomino-Morales, R. et al. Interleukin-6 gene -174 promoter polymorphism is associated with endothelial dysfunction but not with disease susceptibility in patients with rheumatoid arthritis. Clin. Exp. Rheumatol. 27, 964–970 (2009).PubMed
57.
Liang, K. P. et al. Autoantibodies and the risk of cardiovascular events. J. Rheumatol. 36, 2462–2469 (2009).PubMedPubMedCentralCrossRef
58.
Marder, W. et al. Interleukin 17 as a novel predictor of vascular function in rheumatoid arthritis. Ann. Rheum. Dis. 70, 1550–1555 (2011).PubMedPubMedCentralCrossRef
59.
Amaya-Amaya, J. et al. Novel risk factors for cardiovascular disease in rheumatoid arthritis. Immunol. Res. 56, 267–286 (2013).PubMedCrossRef
60.
Fenton, S. A. M. et al. Sitting time is negatively related to microvascular endothelium-dependent function in rheumatoid arthritis. Microvasc. Res. 117, 57–60 (2018).PubMedCrossRef
61.
Roubille, C. et al. The effects of tumour necrosis factor inhibitors, methotrexate, non-steroidal anti-inflammatory drugs and corticosteroids on cardiovascular events in rheumatoid arthritis, psoriasis and psoriatic arthritis: a systematic review and meta-analysis. Ann. Rheum. Dis. 74, 480–489 (2015).PubMedPubMedCentralCrossRef
62.
Arosio, E. et al. Forearm haemodynamics, arterial stiffness and microcirculatory reactivity in rheumatoid arthritis. J. Hypertens. 25, 1273–1278 (2007).PubMedCrossRef
63.
Sandoo, A. et al. Lack of association between asymmetric dimethylarginine and in vivo microvascular and macrovascular endothelial function in patients with rheumatoid arthritis. Clin. Exp. Rheumatol. 30, 388–396 (2012).PubMed
64.
Sandoo, A., Kitas, G. D., Carroll, D. & Veldhuijzen van Zanten, J. J. C. S. The role of inflammation and cardiovascular disease risk on microvascular and macrovascular endothelial function in patients with rheumatoid arthritis: a cross-sectional and longitudinal study. Arthritis Res. Ther. 14, R117 (2012).PubMedPubMedCentralCrossRef
65.
Sandoo, A. et al. Classical cardiovascular disease risk factors associate with vascular function and morphology in rheumatoid arthritis: a six-year prospective study. Arthritis Res. Ther. 15, R203 (2013).PubMedPubMedCentralCrossRef
66.
Sandoo, A., Carroll, D., Metsios, G. S., Kitas, G. D. & Veldhuijzen van Zanten, J. J. The association between microvascular and macrovascular endothelial function in patients with rheumatoid arthritis: a cross-sectional study. Arthritis Res. Ther. 13, R99 (2011).PubMedPubMedCentralCrossRef
67.
Faccini, A., Kaski, J. C. & Camici, P. G. Coronary microvascular dysfunction in chronic inflammatory rheumatoid diseases. Eur. Heart J. 37, 1799–1806 (2016).PubMedCrossRef
68.
Klimek, E. et al. Alterations in skin microvascular function in patients with rheumatoid arthritis and ankylosing spondylitis. Clin. Hemorheol. Microcirc. 65, 77–91 (2017).PubMedCrossRef
69.
Turiel, M. et al. Non-invasive assessment of coronary flow reserve and ADMA levels: a case-control study of early rheumatoid arthritis patients. Rheumatology 48, 834–839 (2009).PubMedCrossRef
70.
Foster, W., Lip, G. Y. H., Raza, K., Carruthers, D. & Blann, A. D. An observational study of endothelial function in early arthritis. Eur. J. Clin. Invest. 42, 510–516 (2012).PubMedCrossRef
71.
van Eijk, I. C., Serné, E. H., Dijkmans, B. A. C., Smulders, Y. & Nurmohamed, M. Microvascular function is preserved in newly diagnosed rheumatoid arthritis and low systemic inflammatory activity. Clin. Rheumatol. 30, 1113–1118 (2011).PubMedPubMedCentralCrossRef
72.
Verhoeven, F. et al. Glucocorticoids improve endothelial function in rheumatoid arthritis: a study in rats with adjuvant-induced arthritis. Clin. Exp. Immunol. 188, 208–218 (2017).PubMedPubMedCentralCrossRef
73.
Verhoeven, F. et al. Diclofenac but not celecoxib improves endothelial function in rheumatoid arthritis: a study in adjuvant-induced arthritis. Atherosclerosis 266, 136–144 (2017).PubMedCrossRef
74.
Yki-Jarvinen, H., Bergholm, R. & Leirisalo-Repo, M. Increased inflammatory activity parallels increased basal nitric oxide production and blunted response to nitric oxide in vivo in rheumatoid arthritis. Ann. Rheum. Dis. 62, 630–634 (2003).PubMedPubMedCentralCrossRef
75.
Hänsel, S., Lässig, G., Pistrosch, F. & Passauer, J. Endothelial dysfunction in young patients with long-term rheumatoid arthritis and low disease activity. Atherosclerosis 170, 177–180 (2003).PubMedCrossRef
76.
Mäki-Petäjä, K. M. et al. Inducible nitric oxide synthase activity is increased in patients with rheumatoid arthritis and contributes to endothelial dysfunction. Int. J. Cardiol. 129, 399–405 (2008).PubMedCrossRef
77.
Alomari, M. A. et al. Vascular function and handgrip strength in rheumatoid arthritis patients. ScientificWorldJournal 2012, 580863 (2012).PubMedPubMedCentral
78.
Ciftci, O. et al. Impaired coronary microvascular function and increased intima-media thickness in rheumatoid arthritis. Atherosclerosis 198, 332–337 (2008).PubMedCrossRef
79.
Recio-Mayoral, A. et al. Chronic inflammation and coronary microvascular dysfunction in patients without risk factors for coronary artery disease. Eur. Heart J. 30, 1837–1843 (2009).PubMedCrossRef
80.
Kakuta, K. et al. Chronic inflammatory disease is an independent risk factor for coronary flow velocity reserve impairment unrelated to the processes of coronary artery calcium deposition. J. Am. Soc. Echocardiogr. 29, 173–180 (2016).PubMedCrossRef
81.
Ikonomidis, I. et al. Increased benefit of interleukin 1 inhibition on vascular function, myocardial deformation, and twisting in patients with coronary artery disease and coexisting rheumatoid arthritis. Circ. Cardiovasc. Imag. 7, 619–628 (2014).CrossRef
82.
Anyfanti, P. et al. Subendocardial viability ratio in patients with rheumatoid arthritis: comparison with healthy controls and identification of prognostic factors. Clin. Rheumatol. 36, 1229–1236 (2017).PubMedCrossRef
83.
Foster, W., Carruthers, D., Lip, G. Y. H. & Blann, A. D. Inflammation and microvascular and macrovascular endothelial dysfunction in rheumatoid arthritis: effect of treatment. J. Rheumatol. 37, 711–716 (2010).PubMedCrossRef
84.
Provan, S. A. et al. Remission is the goal for cardiovascular risk management in patients with rheumatoid arthritis: a cross-sectional comparative study. Ann. Rheum. Dis. 70, 812–817 (2011).PubMedCrossRef
85.
Santos, M. J. et al. Early vascular alterations in SLE and RA patients — a step towards understanding the associated cardiovascular risk. PLoS ONE 7, e44668 (2012).PubMedPubMedCentralCrossRef
86.
Pieringer, H., Stuby, U., Pohanka, E. & Biesenbach, G. Augmentation index in patients with rheumatoid arthritis and ankylosing spondylitis treated with infliximab. Clin. Rheumatol. 29, 723–727 (2010).PubMedCrossRef
87.
Pieringer, H. et al. Heart rate, ejection duration and subendocardial viability ratio in patients with rheumatoid arthritis as compared to controls. Int. J. Rheum. Dis. 17, 39–43 (2014).PubMedCrossRef
88.
Heffernan, K. S., Karas, R. H., Patvardhan, E. A., Jafri, H. & Kuvin, J. T. Peripheral arterial tonometry for risk stratification in men with coronary artery disease. Clin. Cardiol. 33, 94–98 (2010).PubMedPubMedCentralCrossRef
89.
Dimitroulas, T., Sandoo, A., Hodson, J., Smith, J. P. & Kitas, G. D. In vivo microvascular and macrovascular endothelial function is not associated with circulating dimethylarginines in patients with rheumatoid arthritis: a prospective analysis of the DRACCO cohort. Scand. J. Clin. Lab. Invest. 76, 331–337 (2016).PubMedCrossRef
90.
Galarraga, B., Khan, F., Kumar, P., Pullar, T. & Belch, J. J. F. C-reactive protein: the underlying cause of microvascular dysfunction in rheumatoid arthritis. Rheumatology 47, 1780–1784 (2008).PubMedCrossRef
91.
Galarraga, B., Belch, J. J. F., Pullar, T., Ogston, S. & Khan, F. Clinical improvement in rheumatoid arthritis is associated with healthier microvascular function in patients who respond to antirheumatic therapy. J. Rheumatol. 37, 521–528 (2010).PubMedCrossRef
92.
Shrivastava, A. K., Singh, H. V., Raizada, A. & Singh, S. K. C-Reactive protein, inflammation and coronary heart disease. Egypt. Heart J. 67, 89–97 (2015).CrossRef
93.
Datta, D., Ferrell, W. R., Sturrock, R. D., Jadhav, S. T. & Sattar, N. Inflammatory suppression rapidly attenuates microvascular dysfunction in rheumatoid arthritis. Atherosclerosis 192, 391–395 (2007).PubMedCrossRef
94.
Sandoo, A. et al. Anti-TNFα therapy may lead to blood pressure reductions through improved endothelium-dependent microvascular function in patients with rheumatoid arthritis. J. Hum. Hypertens. 25, 699–702 (2011).PubMedCrossRef
95.
Toutouzas, K. et al. Myocardial ischaemia without obstructive coronary artery disease in rheumatoid arthritis: hypothesis-generating insights from a cross-sectional study. Rheumatology 52, 76–80 (2013).PubMedCrossRef
96.
Dimitroulas, T., Hodson, J., Sandoo, A., Smith, J. & Kitas, G. D. Endothelial injury in rheumatoid arthritis: a crosstalk between dimethylarginines and systemic inflammation. Arthritis Res. Ther. 19, 32 (2017).PubMedPubMedCentralCrossRef
97.
Komai, N., Morita, Y., Sakuta, T., Kuwabara, A. & Kashihara, N. Anti-tumor necrosis factor therapy increases serum adiponectin levels with the improvement of endothelial dysfunction in patients with rheumatoid arthritis. Mod. Rheumatol. 17, 385–390 (2007).PubMedCrossRef
98.
Rongen, G. A. et al. Vasodilator function worsens after cessation of tumour necrosis factor inhibitor therapy in patients with rheumatoid arthritis only if a flare occurs. Clin. Rheumatol. 37, 909–916 (2018).PubMedCrossRef
99.
Hjeltnes, G. et al. Relations of serum COMP to cardiovascular risk factors and endothelial function in patients with rheumatoid arthritis treated with methotrexate and TNF-α inhibitors. J. Rheumatol. 39, 1341–1347 (2012).PubMedCrossRef
100.
Hjeltnes, G. et al. Serum levels of lipoprotein(a) and E-selectin are reduced in rheumatoid arthritis patients treated with methotrexate or methotrexate in combination with TNF-α-inhibitor. Clin. Exp. Rheumatol. 31, 415–421 (2013).PubMed
101.
Sandoo, A. & Kitas, G. D. The impact of abatacept treatment on the vasculature in patients with rheumatoid arthritis. Clin. Exp. Rheumatol. 33, 589 (2015).PubMed
102.
Ruiz-Limón, P. et al. Tocilizumab improves the proatherothrombotic profile of rheumatoid arthritis patients modulating endothelial dysfunction, NETosis, and inflammation. Transl Res. 183, 87–103 (2017).PubMedCrossRef
103.
Petersons, C. J. et al. Low dose prednisolone and insulin sensitivity differentially affect arterial stiffness and endothelial function: An open interventional and cross-sectional study. Atherosclerosis 258, 34–39 (2017).PubMedCrossRef
104.
Radhakutty, A. et al. Effect of acute and chronic glucocorticoid therapy on insulin sensitivity and postprandial vascular function. Clin. Endocrinol. 84, 501–508 (2016).CrossRef
105.
Verhoeven, F., Prati, C., Maguin-Gaté, K., Wendling, D. & Demougeot, C. Glucocorticoids and endothelial function in inflammatory diseases: focus on rheumatoid arthritis. Arthritis Res. Ther. 18, 258 (2016).PubMedPubMedCentralCrossRef
106.
Marder, W. et al. The peroxisome proliferator activated receptor-γ pioglitazone improves vascular function and decreases disease activity in patients with rheumatoid arthritis. J. Am. Heart Assoc. 2, e000441 (2013).PubMedPubMedCentralCrossRef
107.
Ormseth, M. J. et al. Reversing vascular dysfunction in rheumatoid arthritis: improved augmentation index but not endothelial function with peroxisome proliferator–activated receptor γ agonist therapy. Arthritis Rheumatol. 66, 2331–2338 (2014).PubMedPubMedCentralCrossRef
108.
Tam, L.-S. et al. Effects of rosuvastatin on subclinical atherosclerosis and arterial stiffness in rheumatoid arthritis: a randomized controlled pilot trial. Scand. J. Rheumatol. 40, 411–421 (2011).PubMedCrossRef
109.
Arts, E. E. A. et al. Statins inhibit the antirheumatic effects of rituximab in rheumatoid arthritis: results from the Dutch Rheumatoid Arthritis Monitoring (DREAM) registry. Ann. Rheum. Dis. 70, 877–878 (2011).PubMedCrossRef
110.
Crowson, C. S. et al. Rheumatoid arthritis and cardiovascular disease. Am. Heart J. 166, 622–628.e1 (2013).PubMedPubMedCentralCrossRef
111.
Metsios, G. S. et al. Individualised exercise improves endothelial function in patients with rheumatoid arthritis. Ann. Rheum. Dis. 73, 748–751 (2014).PubMedCrossRef
112.
Sandoo, A., van Zanten, J. J., Toms, T. E., Carroll, D. & Kitas, G. D. Anti-TNFα therapy transiently improves high density lipoprotein cholesterol levels and microvascular endothelial function in patients with rheumatoid arthritis: a pilot study. BMC Musculoskelet. Disord. 13, 127 (2012).PubMedPubMedCentralCrossRef
113.
Gonzalez-Juanatey, C. et al. Active but transient improvement of endothelial function in rheumatoid arthritis patients undergoing long-term treatment with anti-tumor necrosis factor alpha antibody. Arthritis Rheum. 51, 447–450 (2004).PubMedCrossRef
114.
Bernelot Moens, S. J. et al. Unexpected arterial wall and cellular inflammation in patients with rheumatoid arthritis in remission using biological therapy: a cross-sectional study. Arthritis Res. Ther. 18, 115 (2016).PubMedPubMedCentralCrossRef
115.
Turiel, M. et al. Effects of long-term disease-modifying antirheumatic drugs on endothelial function in patients with early rheumatoid arthritis. Cardiovasc. Ther. 28, e53–64 (2010).PubMedCrossRef
116.
Ranganathan, P. et al. Vitamin D deficiency, interleukin 17, and vascular function in rheumatoid arthritis. J. Rheumatol. 40, 1529–1534 (2013).PubMedPubMedCentralCrossRef
117.
Nordestgaard, B. G. et al. Lipoprotein(a) as a cardiovascular risk factor: current status. Eur. Heart J. 31, 2844–2853 (2010).PubMedPubMedCentralCrossRef
118.
Fleck, C., Schweitzer, F., Karge, E., Busch, M. & Stein, G. Serum concentrations of asymmetric (ADMA) and symmetric (SDMA) dimethylarginine in patients with chronic kidney diseases. Clin. Chim. Acta 336, 1–12 (2003).PubMedCrossRef
119.
Zsuga, J. et al. Dimethylarginines at the crossroad of insulin resistance and atherosclerosis. Metabolism 56, 394–399 (2007).PubMedCrossRef
120.
Kiechl, S. et al. Asymmetric and symmetric dimethylarginines are of similar predictive value for cardiovascular risk in the general population. Atherosclerosis 205, 261–265 (2009).PubMedCrossRef
121.
Mangiacapra, F. et al. Relationship of asymmetric dimethylarginine (ADMA) with extent and functional severity of coronary atherosclerosis. Int. J. Cardiol. 220, 629–633 (2016).PubMedCrossRef
122.
Vitiello, L. et al. Microvascular inflammation in atherosclerosis. IJC Metab. Endocr. 3, 1–7 (2014).CrossRef
123.
Hjeltnes, G. et al. Anti-CCP and RF IgM: predictors of impaired endothelial function in rheumatoid arthritis patients. Scand. J. Rheumatol. 40, 422–427 (2011).PubMedCrossRef
124.
Totoson, P., Maguin-Gaté, K., Prati, C., Wendling, D. & Demougeot, C. Mechanisms of endothelial dysfunction in rheumatoid arthritis: lessons from animal studies. Arthritis Res. Ther. 16, 202 (2014).PubMedPubMedCentralCrossRef
125.
Dooley, L. M. et al. Endothelial dysfunction in an ovine model of collagen-induced arthritis. J. Vasc. Res. 51, 90–101 (2014).PubMedCrossRef
126.
Dooley, L. M. et al. Effect of mesenchymal precursor cells on the systemic inflammatory response and endothelial dysfunction in an ovine model of collagen-induced arthritis. PLoS ONE 10, e0124144 (2015).PubMedPubMedCentralCrossRef
127.
Totoson, P. et al. Microvascular abnormalities in adjuvant-induced arthritis: relationship to macrovascular endothelial function and markers of endothelial activation. Arthritis Rheumatol. 67, 1203–1213 (2015).PubMedCrossRef
128.
Agca, R. et al. EULAR recommendations for cardiovascular disease risk management in patients with rheumatoid arthritis and other forms of inflammatory joint disorders: 2015/2016 update. Ann. Rheum. Dis. 76, 17–28 (2017).PubMedCrossRef
129.
Gómez-Vaquero, C. et al. SCORE and REGICOR function charts underestimate the cardiovascular risk in Spanish patients with rheumatoid arthritis. Arthritis Res. Ther. 15, R91 (2013).PubMedPubMedCentralCrossRef
130.
Arts, E. E. A. et al. Prediction of cardiovascular risk in rheumatoid arthritis: performance of original and adapted SCORE algorithms. Ann. Rheum. Dis. 75, 674–680 (2016).PubMedCrossRef
131.
Kalaria, R. N. Cerebrovascular disease and mechanisms of cognitive impairment: evidence from clinicopathological studies in humans. Stroke 43, 2526–2534 (2012).PubMedCrossRef
132.
Oláh, C. et al. Assessment of intracranial vessels in association with carotid atherosclerosis and brain vascular lesions in rheumatoid arthritis. Arthritis Res. Ther. 19, 213 (2017).PubMedPubMedCentralCrossRef
133.
Rodriguez-Rodriguez, L. et al. Rheumatoid arthritis: genetic variants as biomarkers of cardiovascular disease. Curr. Pharm. Des. 21, 182–201 (2015).PubMedCrossRef