Skip to main content
Top

15-12-2016 | Rheumatoid arthritis | Review | Article

Mechanisms leading from systemic autoimmunity to joint-specific disease in rheumatoid arthritis

Journal: Nature Reviews Rheumatology

Authors: Anca I. Catrina, Camilla I. Svensson, Vivianne Malmström, Georg Schett, Lars Klareskog

Authors: Anca I. Catrina, Camilla I. Svensson, Vivianne Malmström, Georg Schett, Lars Klareskog

Publisher: Nature Publishing Group UK

Abstract

autoimmunity progresses to joint-specific inflammation. In patients with seropositive RA (that is, characterized by the presence of autoantibodies) evidence is accumulating that immunity against post-translationally modified (such as citrullinated) autoantigens might be triggered in mucosal organs, such as the lung, long before the first signs of inflammation are seen in the joints. However, the mechanism by which systemic autoimmunity specifically homes to the joint and bone compartment, thereby triggering inflammation, remains elusive. This Review summarizes potential pathways involved in this joint-homing mechanism, focusing particularly on osteoclasts as the primary targets of anti-citrullinated protein antibodies (ACPAs) in the bone and joint compartment. Osteoclasts are dependent on citrullinating enzymes for their normal differentiation and are unique in displaying citrullinated antigens on their cell surface in a non-inflamed state. The binding of ACPAs to osteoclasts releases the chemokine IL-8, leading to bone erosion and pain. This process initiates a chain of events that could lead to attraction and activation of neutrophils, resulting in a complex series of proinflammatory processes in the synovium, eventually leading to RA.

Nat Rev Rheumatol 2017;13:79–86. doi:10.1038/nrrheum.2016.200

Literature
1.
Klareskog, L., Catrina, A. I. & Paget, S. Rheumatoid arthritis. Lancet 373, 659–672 (2009).PubMedCrossRef
2.
Nielen, M. M. et al. Specific autoantibodies precede the symptoms of rheumatoid arthritis: a study of serial measurements in blood donors. Arthritis Rheum. 50, 380–386 (2004).CrossRefPubMed
3.
Rantapaa-Dahlqvist, S. et al. Antibodies against cyclic citrullinated peptide and IgA rheumatoid factor predict the development of rheumatoid arthritis. Arthritis Rheum. 48, 2741–2749 (2003).CrossRefPubMed
4.
Brink, M. et al. Multiplex analyses of antibodies against citrullinated peptides in individuals prior to development of rheumatoid arthritis. Arthritis Rheum. 65, 899–910 (2013).CrossRefPubMed
5.
Chibnik, L. B., Mandl, L. A., Costenbader, K. H., Schur, P. H. & Karlson, E. W. Comparison of threshold cutpoints and continuous measures of anti-cyclic citrullinated peptide antibodies in predicting future rheumatoid arthritis. J. Rheumatol. 36, 706–711 (2009).PubMedPubMedCentralCrossRef
6.
Koppejan, H. et al. Anti-carbamylated protein antibodies in rheumatoid arthritis, first-degree relatives and controls: comparison to anti-citrullinated protein antibodies. Arthritis Rheumatol. 68, 2090–2098 (2016).PubMedPubMedCentralCrossRef
7.
Brink, M. et al. Anti-carbamylated protein antibodies in the pre-symptomatic phase of rheumatoid arthritis, their relationship with multiple anti-citrulline peptide antibodies and association with radiological damage. Arthritis Res. Ther. 17, 25 (2015).PubMedPubMedCentralCrossRef
8.
Shi, J. et al. Anti-carbamylated protein (anti-CarP) antibodies precede the onset of rheumatoid arthritis. Ann. Rheum. Dis. 73, 780–783 (2014).CrossRefPubMed
9.
Sokolove, J. et al. Autoantibody epitope spreading in the pre-clinical phase predicts progression to rheumatoid arthritis. PLoS ONE 7, e35296 (2012).PubMedPubMedCentralCrossRef
10.
Catrina, A. I., Ytterberg, A. J., Reynisdottir, G., Malmstrom, V. & Klareskog, L. Lungs, joints and immunity against citrullinated proteins in rheumatoid arthritis. Nat. Rev. Rheumatol. 10, 645–653 (2014).PubMedCrossRef
11.
Chatzidionisyou, A. & Catrina, A. I. The lung in rheumatoid arthritis, cause or consequence? Curr. Opin. Rheumatol. 28, 76–82 (2016).PubMedCrossRef
12.
Catrina, A. I., Deane, K. D. & Scher, J. U. Gene, environment, microbiome and mucosal immune tolerance in rheumatoid arthritis. Rheumatology (Oxford) 55, 391–402 (2016).
13.
Leech, M. T. & Bartold, P. M. The association between rheumatoid arthritis and periodontitis. Best Pract. Res. Clin. Rheumatol. 29, 189–201 (2015).PubMedCrossRef
14.
Koziel, J., Mydel, P. & Potempa, J. The link between periodontal disease and rheumatoid arthritis: an updated review. Curr. Rheumatol. Rep. 16, 408 (2014).PubMedPubMedCentralCrossRef
15.
Payne, J. B., Golub, L. M., Thiele, G. M. & Mikuls, T. R. The Link Between Periodontitis and Rheumatoid Arthritis: A Periodontist's Perspective. Curr. Oral Health Rep. 2, 20–29 (2015).PubMedCrossRef
16.
Aho, K., Heliovaara, M., Maatela, J., Tuomi, T. & Palosuo, T. Rheumatoid factors antedating clinical rheumatoid arthritis. J. Rheumatol. 18, 1282–1284 (1991).PubMed
17.
Kurki, P., Aho, K., Palosuo, T. & Heliovaara, M. Immunopathology of rheumatoid arthritis. Antikeratin antibodies precede the clinical disease. Arthritis Rheum. 35, 914–917 (1992).CrossRefPubMed
18.
Haj Hensvold, A. et al. Environmental and genetic factors in the development of anticitrullinated protein antibodies (ACPAs) and ACPA-positive rheumatoid arthritis: an epidemiological investigation in twins. Ann. Rheum. Dis. 74, 375–380 (2013).CrossRef
19.
van der Woude, D. et al. Epitope spreading of the anti-citrullinated protein antibody response occurs before disease onset and is associated with the disease course of early arthritis. Ann. Rheum. Dis. 69, 1554–1561 (2010).PubMedCrossRef
20.
van de Stadt, L. A. et al. Development of the anti-citrullinated protein antibody repertoire prior to the onset of rheumatoid arthritis. Arthritis Rheum. 63, 3226–3233 (2011).CrossRefPubMed
21.
Juarez, M. et al. Identification of novel antiacetylated vimentin antibodies in patients with early inflammatory arthritis. Ann. Rheum. Dis. 75, 1099–1107 (2016).CrossRefPubMed
22.
Mathsson, L. et al. Antibodies against citrullinated vimentin in rheumatoid arthritis: higher sensitivity and extended prognostic value concerning future radiographic progression as compared with antibodies against cyclic citrullinated peptides. Arthritis Rheum. 58, 36–45 (2008).PubMedCrossRef
23.
Kastbom, A. et al. Changes in the anticitrullinated peptide antibody response in relation to therapeutic outcome in early rheumatoid arthritis: results from the SWEFOT trial. Ann. Rheum. Dis. 75, 356–361 (2016).PubMedCrossRef
24.
Hensvold, A. H. et al. Serum RANKL levels associate with anti- citrullinated protein antibodies in early untreated rheumatoid arthritis and are modulated following methotrexate. Arthritis Res. Ther. 17, 239 (2015).PubMedPubMedCentralCrossRef
25.
Bos, W. H. et al. Arthritis development in patients with arthralgia is strongly associated with anti-citrullinated protein antibody status: a prospective cohort study. Ann. Rheum. Dis. 69, 490–494 (2010).PubMedCrossRef
26.
Stack, R. J. et al. Symptom complexes in patients with seropositive arthralgia and in patients newly diagnosed with rheumatoid arthritis: a qualitative exploration of symptom development. Rheumatology (Oxford) 53, 1646–1653 (2014).CrossRef
27.
Neovius, M., Simard, J. F., Askling, J. & Group, A. S. How large are the productivity losses in contemporary patients with RA, and how soon in relation to diagnosis do they develop? Ann. Rheum. Dis. 70, 1010–1015 (2011).PubMedCrossRef
28.
Innala, L. et al. Antibodies against mutated citrullinated vimentin are a better predictor of disease activity at 24 months in early rheumatoid arthritis than antibodies against cyclic citrullinated peptides. J. Rheumatol. 35, 1002–1008 (2008).PubMed
29.
Mustila, A. et al. Anti-citrullinated peptide antibodies and the progression of radiographic joint erosions in patients with early rheumatoid arthritis treated with FIN-RACo combination and single disease-modifying antirheumatic drug strategies. Clin. Exp. Rheumatol. 29, 500–505 (2011).PubMed
30.
Syversen, S. W. et al. Prediction of radiographic progression in rheumatoid arthritis and the role of antibodies against mutated citrullinated vimentin: results from a 10-year prospective study. Ann. Rheum. Dis. 69, 345–351 (2010).PubMedCrossRef
31.
van Steenbergen, H. W., Ajeganova, S., Forslind, K., Svensson, B. & van der Helm-van Mil, A. H. The effects of rheumatoid factor and anticitrullinated peptide antibodies on bone erosions in rheumatoid arthritis. Ann. Rheum. Dis. 74, e3 (2015).PubMedCrossRef
32.
Hecht, C. et al. Additive effect of anti-citrullinated protein antibodies and rheumatoid factor on bone erosions in patients with RA. Ann. Rheum. Dis. 74, 2151–2156 (2015).PubMedCrossRef
33.
Shi, J. et al. Autoantibodies recognizing carbamylated proteins are present in sera of patients with rheumatoid arthritis and predict joint damage. Proc. Natl Acad. Sci. USA 108, 17372–17377 (2011).CrossRefPubMedPubMedCentral
34.
Kleyer, A. et al. Bone loss before the clinical onset of rheumatoid arthritis in subjects with anticitrullinated protein antibodies. Ann. Rheum. Dis. 75, 854–860 (2013).
35.
van Schaardenburg, D. et al. Bone metabolism is altered in preclinical rheumatoid arthritis. Ann. Rheum. Dis. 70, 1173–1174 (2011).PubMedCrossRef
36.
Harre, U. et al. Induction of osteoclastogenesis and bone loss by human autoantibodies against citrullinated vimentin. J. Clin. Invest. 122, 1791–1802 (2012).PubMedPubMedCentralCrossRef
37.
Ossipova, E. et al. Affinity purified anti-citrullinated protein/peptide antibodies target antigens expressed in the rheumatoid joint. Arthritis Res. Ther. 16, R167 (2014).PubMedPubMedCentralCrossRef
38.
Krishnamurthy, A. et al. Identification of a novel chemokine-dependent molecular mechanism underlying rheumatoid arthritis-associated autoantibody-mediated bone loss. Ann. Rheum. Dis. 75, 721–729 (2016).PubMedCrossRef
39.
Du, N. et al. Cell surface vimentin is an attachment receptor for enterovirus 71. J. Virol. 88, 5816–5833 (2014).PubMedPubMedCentralCrossRef
40.
Amara, K. et al. Monoclonal IgG antibodies generated from joint-derived B cells of RA patients have a strong bias toward citrullinated autoantigen recognition. J. Exp. Med. 210, 445–455 (2013).PubMedPubMedCentralCrossRef
41.
Negishi-Koga, T. et al. Immune complexes regulate bone metabolism through FcRgamma signalling. Nat. Commun. 6, 6637 (2015).PubMedCrossRef
42.
Harre, U. et al. Glycosylation of immunoglobulin G determines osteoclast differentiation and bone loss. Nat. Commun. 6, 6651 (2015).PubMedCrossRef
43.
Rombouts, Y. et al. Extensive glycosylation of ACPA-IgG variable domains modulates binding to citrullinated antigens in rheumatoid arthritis. Ann. Rheum. Dis. 75, 578–585 (2016).CrossRefPubMed
44.
Wigerblad, G. et al. Autoantibodies to citrullinated proteins induce joint pain independent of inflammation via a chemokine-dependent mechanism. Ann. Rheum. Dis. 75, 730–738 (2016).PubMedCrossRef
45.
Moscarello, M. A., Wood, D. D., Ackerley, C. & Boulias, C. Myelin in multiple sclerosis is developmentally immature. J. Clin. Invest. 94, 146–154 (1994).PubMedPubMedCentralCrossRef
46.
Beniac, D. R. et al. Cryoelectron microscopy of protein-lipid complexes of human myelin basic protein charge isomers differing in degree of citrullination. J. Struct. Biol. 129, 80–95 (2000).PubMedCrossRef
47.
Senshu, T., Kan, S., Ogawa, H., Manabe, M. & Asaga, H. Preferential deimination of keratin K1 and filaggrin during the terminal differentiation of human epidermis. Biochem. Biophys. Res. Commun. 225, 712–719 (1996).PubMedCrossRef
48.
Senshu, T., Akiyama, K. & Nomura, K. Identification of citrulline residues in the V subdomains of keratin K1 derived from the cornified layer of newborn mouse epidermis. Exp. Dermatol. 8, 392–401 (1999).PubMedCrossRef
49.
Harding, C. R. & Scott, I. R. Histidine-rich proteins (filaggrins): structural and functional heterogeneity during epidermal differentiation. J. Mol. Biol. 170, 651–673 (1983).PubMedCrossRef
50.
Pearton, D. J., Dale, B. A. & Presland, R. B. Functional analysis of the profilaggrin N-terminal peptide: identification of domains that regulate nuclear and cytoplasmic distribution. J. Invest. Dermatol. 119, 661–669 (2002).PubMedCrossRef
51.
Scott, I. R., Harding, C. R. & Barrett, J. G. Histidine-rich protein of the keratohyalin granules. Source of the free amino acids, urocanic acid and pyrrolidone carboxylic acid in the stratum corneum. Biochim. Biophys. Acta 719, 110–117 (1982).PubMedCrossRef
52.
Makrygiannakis, D. et al. Citrullination is an inflammation-dependent process. Ann. Rheum. Dis. 65, 1219–1222 (2006).PubMedPubMedCentralCrossRef
53.
Rothe, L. et al. Human osteoclasts and osteoclast-like cells synthesize and release high basal and inflammatory stimulated levels of the potent chemokine interleukin-8. Endocrinology 139, 4353–4363 (1998).PubMedCrossRef
54.
Kopesky, P. et al. Autocrine signaling is a key regulatory element during osteoclastogenesis. Biol. Open 3, 767–776 (2014).PubMedPubMedCentralCrossRef
55.
van Steenbergen, H. W., Mangnus, L., Reijnierse, M., Huizinga, T. W. & van der Helm-van Mil, A. H. Clinical factors, anticitrullinated peptide antibodies and MRI-detected subclinical inflammation in relation to progression from clinically suspect arthralgia to arthritis. Ann. Rheum. Dis. 75, 1824–1830 (2016).CrossRefPubMed
56.
van de Stadt, L. A. et al. The extent of the anti-citrullinated protein antibody repertoire is associated with arthritis development in patients with seropositive arthralgia. Ann. Rheum. Dis. 70, 128–133 (2011).PubMedCrossRef
57.
Nam, J. L., Hunt, L., Hensor, E. M. & Emery, P. Enriching case selection for imminent RA: the use of anti-CCP antibodies in individuals with new non-specific musculoskeletal symptoms - a cohort study. Ann. Rheum. Dis. 75, 1452–1456 (2016).PubMedCrossRef
58.
Rakieh, C. et al. Predicting the development of clinical arthritis in anti-CCP positive individuals with non-specific musculoskeletal symptoms: a prospective observational cohort study. Ann. Rheum. Dis. 74, 1659–1666 (2015).CrossRefPubMed
59.
Andoh, T. & Kuraishi, Y. Direct action of immunoglobulin G on primary sensory neurons through Fc gamma receptor I. FASEB J. 18, 182–184 (2004).PubMedCrossRef
60.
Qu, L., Zhang, P., LaMotte, R. H. & Ma, C. Neuronal Fc-gamma receptor I mediated excitatory effects of IgG immune complex on rat dorsal root ganglion neurons. Brain Behav. Immun. 25, 1399–1407 (2011).PubMedPubMedCentralCrossRef
61.
Cunha, T. M. et al. A cascade of cytokines mediates mechanical inflammatory hypernociception in mice. Proc. Natl Acad. Sci. USA 102, 1755–1760 (2005).PubMedCrossRefPubMedCentral
62.
Guerrero, A. T. et al. Toll-like receptor 2/MyD88 signaling mediates zymosan-induced joint hypernociception in mice: participation of TNF-alpha, IL-1beta and CXCL1/KC. Eur. J. Pharmacol. 674, 51–57 (2012).PubMedCrossRef
63.
Qin, X., Wan, Y. & Wang, X. CCL2 and CXCL1 trigger calcitonin gene-related peptide release by exciting primary nociceptive neurons. J. Neurosci. Res. 82, 51–62 (2005).PubMedCrossRef
64.
Zhang, Z. J., Cao, D. L., Zhang, X., Ji, R. R. & Gao, Y. J. Chemokine contribution to neuropathic pain: respective induction of CXCL1 and CXCR2 in spinal cord astrocytes and neurons. Pain 154, 2185–2197 (2013).PubMedPubMedCentralCrossRef
65.
Wang, J. G. et al. The chemokine CXCL1/growth related oncogene increases sodium currents and neuronal excitability in small diameter sensory neurons. Mol. Pain 4, 38 (2008).PubMedPubMedCentral
66.
Kuhn, K. A. et al. Antibodies against citrullinated proteins enhance tissue injury in experimental autoimmune arthritis. J. Clin. Invest. 116, 961–973 (2006).PubMedPubMedCentralCrossRef
67.
Sohn, D. H. et al. Local Joint inflammation and histone citrullination in a murine model of the transition from preclinical autoimmunity to inflammatory arthritis. Arthritis Rheumatol. 67, 2877–2887 (2015).PubMedPubMedCentralCrossRef
68.
Marinova-Mutafchieva, L., Williams, R. O., Funa, K., Maini, R. N. & Zvaifler, N. J. Inflammation is preceded by tumor necrosis factor-dependent infiltration of mesenchymal cells in experimental arthritis. Arthritis Rheum. 46, 507–513 (2002).PubMedCrossRef
69.
Hetland, M. L. et al. MRI bone oedema is the strongest predictor of subsequent radiographic progression in early rheumatoid arthritis. Results from a 2-year randomised controlled trial (CIMESTRA). Ann. Rheum. Dis. 68, 384–390 (2009).PubMedCrossRef
70.
Haavardsholm, E. A., Boyesen, P., Ostergaard, M., Schildvold, A. & Kvien, T. K. Magnetic resonance imaging findings in 84 patients with early rheumatoid arthritis: bone marrow oedema predicts erosive progression. Ann. Rheum. Dis. 67, 794–800 (2008).PubMedCrossRef
71.
Boyesen, P. et al. Prediction of MRI erosive progression: a comparison of modern imaging modalities in early rheumatoid arthritis patients. Ann. Rheum. Dis. 70, 176–179 (2011).PubMedCrossRef
72.
McQueen, F. M. et al. Bone edema scored on magnetic resonance imaging scans of the dominant carpus at presentation predicts radiographic joint damage of the hands and feet six years later in patients with rheumatoid arthritis. Arthritis Rheum. 48, 1814–1827 (2003).CrossRefPubMed
73.
Sokolove, J., Zhao, X., Chandra, P. E. & Robinson, W. H. Immune complexes containing citrullinated fibrinogen costimulate macrophages via Toll-like receptor 4 and Fcgamma receptor. Arthritis Rheum. 63, 53–62 (2011).PubMedPubMedCentralCrossRef
74.
Trouw, L. A. et al. Anti-cyclic citrullinated peptide antibodies from rheumatoid arthritis patients activate complement via both the classical and alternative pathways. Arthritis Rheum. 60, 1923–1931 (2009).CrossRefPubMed
75.
Khandpur, R. et al. NETs are a source of citrullinated autoantigens and stimulate inflammatory responses in rheumatoid arthritis. Sci. Transl. Med. 5, 178ra40 (2013).PubMedPubMedCentralCrossRef
76.
Suurmond, J. et al. Toll-like receptor triggering augments activation of human mast cells by anti-citrullinated protein antibodies. Ann. Rheum. Dis. 74, 1915–1923 (2015).PubMedCrossRef
77.
Habets, K. L. et al. Anti-citrullinated protein antibodies contribute to platelet activation in rheumatoid arthritis. Arthritis Res. Ther. 17, 209 (2015).PubMedPubMedCentralCrossRef
78.
Lu, M. C. et al. Anti-citrullinated protein antibodies promote apoptosis of mature human Saos-2 osteoblasts via cell-surface binding to citrullinated heat shock protein 60. Immunobiology 221, 76–83 (2016).PubMedCrossRef
79.
Barbarroja, N. et al. Anticyclic citrullinated protein antibodies are implicated in the development of cardiovascular disease in rheumatoid arthritis. Arterioscler, Thromb. Vasc. Biol. 34, 2706–2716 (2014).CrossRef
80.
Makrygiannakis, D. et al. Local administration of glucocorticoids decreases synovial citrullination in rheumatoid arthritis. Arthritis Res. Ther. 14, R20 (2012).PubMedPubMedCentralCrossRef
81.
Makrygiannakis, D. et al. Smoking increases peptidylarginine deiminase 2 enzyme expression in human lungs and increases citrullination in BAL cells. Ann. Rheum. Dis. 67, 1488–1492 (2008).CrossRefPubMed
82.
Lugli, E. B. et al. Expression of citrulline and homocitrulline residues in the lungs of non-smokers and smokers: implications for autoimmunity in rheumatoid arthritis. Arthritis Res. Ther. 17, 9 (2015).PubMedPubMedCentralCrossRef
83.
Nesse, W. et al. The periodontium of periodontitis patients contains citrullinated proteins which may play a role in ACPA (anti-citrullinated protein antibody) formation. J. Clin. Periodontol 39, 599–607 (2012).PubMedCrossRef
84.
Bongartz, T. et al. Citrullination in extra-articular manifestations of rheumatoid arthritis. Rheumatology (Oxford) 46, 70–75 (2007).CrossRef
85.
McInnes, I. B., Buckley, C. D. & Isaacs, J. D. Cytokines in rheumatoid arthritis - shaping the immunological landscape. Nat. Rev. Rheumatol. 12, 63–68 (2016).CrossRefPubMed
86.
Feldmann, M. & Maini, S. R. Role of cytokines in rheumatoid arthritis: an education in pathophysiology and therapeutics. Immunol. Rev. 223, 7–19 (2008).PubMedCrossRef
87.
Patel, R., Filer, A., Barone, F. & Buckley, C. D. Stroma: fertile soil for inflammation. Best Pract. Res. Clin. Rheumatol. 28, 565–576 (2014).PubMedCrossRef
88.
Bartok, B. & Firestein, G. S. Fibroblast-like synoviocytes: key effector cells in rheumatoid arthritis. Immunol. Rev. 233, 233–255 (2010).PubMedPubMedCentralCrossRef
89.
Chemin, K., Klareskog, L. & Malmstrom, V. Is rheumatoid arthritis an autoimmune disease? Curr. Opin. Rheumatol. 28, 181–188 (2016).PubMedCrossRef
90.
James, E. A. et al. Citrulline-specific Th1 cells are increased in rheumatoid arthritis and their frequency is influenced by disease duration and therapy. Arthritis Rheumatol. 66, 1712–1722 (2014).PubMedPubMedCentralCrossRef
91.
Reparon-Schuijt, C. C. et al. Secretion of anti-citrulline-containing peptide antibody by B lymphocytes in rheumatoid arthritis. Arthritis Rheum. 44, 41–47 (2001).PubMedCrossRef
92.
Nandakumar, K. S. Pathogenic antibody recognition of cartilage. Cell Tissue Res. 339, 213–220 (2010).PubMedCrossRef
93.
Cook, A. D., Rowley, M. J., Mackay, I. R., Gough, A. & Emery, P. Antibodies to type II collagen in early rheumatoid arthritis. Correlation with disease progression. Arthritis Rheum. 39, 1720–1727 (1996).PubMedCrossRef
94.
Lindh, I. et al. Type II collagen antibody response is enriched in the synovial fluid of rheumatoid joints and directed to the same major epitopes as in collagen induced arthritis in primates and mice. Arthritis Res. Ther. 16, R143 (2014).PubMedPubMedCentralCrossRef
95.
Ronnelid, J., Lysholm, J., Engstrom-Laurent, A., Klareskog, L. & Heyman, B. Local anti-type II collagen antibody production in rheumatoid arthritis synovial fluid. Evidence for an HLA-DR4-restricted IgG response. Arthritis Rheum. 37, 1023–1029 (1994).PubMedCrossRef
96.
Haag, S. et al. Identification of new citrulline-specific autoantibodies, which bind to human arthritic cartilage, by mass spectrometric analysis of citrullinated type II collagen. Arthritis Rheumatol. 66, 1440–1449 (2014).PubMedCrossRef
97.
Turunen, S., Hannonen, P., Koivula, M. K., Risteli, L. & Risteli, J. Separate and overlapping specificities in rheumatoid arthritis antibodies binding to citrulline- and homocitrulline-containing peptides related to type I and II collagen telopeptides. Arthritis Res. Ther. 17, 2 (2015).PubMedPubMedCentralCrossRef
98.
Lundberg, K. et al. Genetic and environmental determinants for disease risk in subsets of rheumatoid arthritis defined by the anticitrullinated protein/peptide antibody fine specificity profile. Ann. Rheum. Dis. 72, 652–658 (2013).CrossRefPubMed
99.
Ditzel, H. J. The K/BxN mouse: a model of human inflammatory arthritis. Trends Mol. Med. 10, 40–45 (2004).PubMedCrossRef
100.
Reynisdottir, G. et al. Signs of immune activation and local inflammation are present in the bronchial tissue of patients with untreated early rheumatoid arthritis. Ann. Rheum. Dis. 75, 1722–1727 (2016).PubMedCrossRef
101.
Nesse, W. et al. The periodontium of periodontitis patients contains citrullinated proteins which may play a role in ACPA (anti-citrullinated protein antibody) formation. J. Clin. Periodontol. 39, 599–607 (2012).CrossRefPubMed