Skip to main content
Top

04-11-2016 | Rheumatoid arthritis | Review | Article

Update on the genetic architecture of rheumatoid arthritis

Journal: Nature Reviews Rheumatology

Authors: Kwangwoo Kim, So-Young Bang, Hye-Soon Lee, Sang-Cheol Bae

Authors: Kwangwoo Kim, So-Young Bang, Hye-Soon Lee, Sang-Cheol Bae

Publisher: Nature Publishing Group UK

Abstract

Human genetic studies into rheumatoid arthritis (RA) have uncovered more than 100 genetic loci associated with susceptibility to RA and have refined the RA-association model for HLA variants. The majority of RA-risk variants are highly shared across multiple ancestral populations and are located in noncoding elements that might have allele-specific regulatory effects in relevant tissues. Emerging multi-omics data, high-density genotype data and bioinformatic approaches are enabling researchers to use RA-risk variants to identify functionally relevant cell types and biological pathways that are involved in impaired immune processes and disease phenotypes. This Review summarizes reported RA-risk loci and the latest insights from human genetic studies into RA pathogenesis, including how genetic data has helped to identify currently available drugs that could be repurposed for patients with RA and the role of genetics in guiding the development of new drugs.

Nat Rev Rheumatol 2017;13:13–24. doi:10.1038/nrrheum.2016.176

Literature
1.
Aho, K., Koskenvuo, M., Tuominen, J. & Kaprio, J. Occurrence of rheumatoid arthritis in a nationwide series of twins. J. Rheumatol. 13, 899–902 (1986).PubMed
2.
Silman, A. J. et al. Twin concordance rates for rheumatoid arthritis: results from a nationwide study. Br. J. Rheumatol. 32, 903–907 (1993).PubMed
3.
MacGregor, A. J. et al. Characterizing the quantitative genetic contribution to rheumatoid arthritis using data from twins. Arthritis Rheum. 43, 30–37 (2000).PubMed
4.
van der Woude, D. et al. Quantitative heritability of anti-citrullinated protein antibody-positive and anti-citrullinated protein antibody-negative rheumatoid arthritis. Arthritis Rheum. 60, 916–923 (2009).PubMed
5.
Terao, C. et al. A twin study of rheumatoid arthritis in the Japanese population. Mod. Rheumatol. 26, 685–689 (2016).PubMed
6.
Okada, Y. et al. Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature 506, 376–381 (2014).PubMed
7.
Lenz, T. L. et al. Widespread non-additive and interaction effects within HLA loci modulate the risk of autoimmune diseases. Nat. Genet. 47, 1085–1090 (2015).PubMedPubMedCentral
8.
Stahl, E. A. et al. Bayesian inference analyses of the polygenic architecture of rheumatoid arthritis. Nat. Genet. 44, 483–489 (2012).PubMedPubMedCentral
9.
Horton, R. et al. Gene map of the extended human MHC. Nat. Rev. Genet. 5, 889–899 (2004).PubMed
10.
Gregersen, P. K., Silver, J. & Winchester, R. J. The shared epitope hypothesis. An approach to understanding the molecular genetics of susceptibility to rheumatoid arthritis. Arthritis Rheum. 30, 1205–1213 (1987).PubMed
11.
Bang, S. Y., Lee, H. S., Lee, K. W. & Bae, S. C. Interaction of HLA-DRB1*09:01 and *04:05 with smoking suggests distinctive mechanisms of rheumatoid arthritis susceptibility beyond the shared epitope. J. Rheumatol. 40, 1054–1062 (2013).PubMed
12.
Shimane, K. et al. An association analysis of HLA-DRB1 with systemic lupus erythematosus and rheumatoid arthritis in a Japanese population: effects of *09:01 allele on disease phenotypes. Rheumatology (Oxford) 52, 1172–1182 (2013).
13.
Reynolds, R. J. et al. HLA-DRB1-associated rheumatoid arthritis risk at multiple levels in African Americans: hierarchical classification systems, amino acid positions, and residues. Arthritis Rheumatol. 66, 3274–3282 (2014).PubMedPubMedCentral
14.
Lee, H. S. et al. Increased susceptibility to rheumatoid arthritis in Koreans heterozygous for HLA-DRB1*0405 and *0901. Arthritis Rheum. 50, 3468–3475 (2004).PubMed
15.
Jia, X. et al. Imputing amino acid polymorphisms in human leukocyte antigens. PLoS ONE 8, e64683 (2013).PubMedPubMedCentral
16.
Raychaudhuri, S. et al. Five amino acids in three HLA proteins explain most of the association between MHC and seropositive rheumatoid arthritis. Nat. Genet. 44, 291–296 (2012).PubMedPubMedCentral
17.
Kim, K. et al. Imputing variants in HLA-DR beta genes reveals that HLA-DRB1 is solely associated with rheumatoid arthritis and systemic lupus erythematosus. PLoS ONE 11, e0150283 (2016).PubMedPubMedCentral
18.
Okada, Y. et al. Risk for ACPA-positive rheumatoid arthritis is driven by shared HLA amino acid polymorphisms in Asian and European populations. Hum. Mol. Genet. 23, 6916–6926 (2014).PubMedPubMedCentral
19.
Han, B. et al. Fine mapping seronegative and seropositive rheumatoid arthritis to shared and distinct HLA alleles by adjusting for the effects of heterogeneity. Am. J. Hum. Genet. 94, 522–532 (2014).PubMedPubMedCentral
20.
Anderson, K. M. et al. A molecular analysis of the shared epitope hypothesis binding of arthritogenic peptides to DRB1*04 alleles. Arthritis Rheumatol. 68, 1627–1636 (2016).PubMed
21.
Hu, X. et al. Additive and interaction effects at three amino acid positions in HLA-DQ and HLA-DR molecules drive type 1 diabetes risk. Nat. Genet. 47, 898–905 (2015).PubMedPubMedCentral
22.
Kim, K. et al. Interactions between amino acid-defined major histocompatibility complex class II variants and smoking in seropositive rheumatoid arthritis. Arthritis Rheumatol. 67, 2611–2623 (2015).PubMedPubMedCentral
23.
Kurreeman, F. et al. Genetic basis of autoantibody positive and negative rheumatoid arthritis risk in a multi-ethnic cohort derived from electronic health records. Am. J. Hum. Genet. 88, 57–69 (2011).PubMedPubMedCentral
24.
Terao, C. et al. A large-scale association study identified multiple HLA-DRB1 alleles associated with ACPA-negative rheumatoid arthritis in Japanese subjects. Ann. Rheum. Dis. 70, 2134–2139 (2011).PubMed
25.
Viatte, S. et al. Genetic markers of rheumatoid arthritis susceptibility in anti-citrullinated peptide antibody negative patients. Ann. Rheum. Dis. 71, 1984–1990 (2012).PubMed
26.
Bossini-Castillo, L. et al. A genome-wide association study of rheumatoid arthritis without antibodies against citrullinated peptides. Ann. Rheum. Dis. 74, e15 (2015).PubMed
27.
Wagner, C. A. et al. Identification of anticitrullinated protein antibody reactivities in a subset of anti-CCP-negative rheumatoid arthritis: association with cigarette smoking and HLA-DRB1 'shared epitope' alleles. Ann. Rheum. Dis. 74, 579–586 (2015).PubMed
28.
Kim, K. et al. High-density genotyping of immune loci in Koreans and Europeans identifies eight new rheumatoid arthritis risk loci. Ann. Rheum. Dis. 74, e13 (2015).PubMed
29.
Cobb, J. E. et al. Identification of the tyrosine-protein phosphatase non-receptor type 2 as a rheumatoid arthritis susceptibility locus in Europeans. PLoS ONE 8, e66456 (2013).PubMedPubMedCentral
30.
McAllister, K. et al. Identification of BACH2 and RAD51B as rheumatoid arthritis susceptibility loci in a meta-analysis of genome-wide data. Arthritis Rheum. 65, 3058–3062 (2013).PubMedPubMedCentral
31.
Orozco, G. et al. Novel rheumatoid arthritis susceptibility locus at 22q12 identified in an extended UK genome-wide association study. Arthritis Rheumatol. 66, 24–30 (2014).PubMed
32.
Okada, Y. et al. Significant impact of miRNA-target gene networks on genetics of human complex traits. Sci. Rep. 6, 22223 (2016).PubMedPubMedCentral
33.
Kim, K. et al. Association-heterogeneity mapping identifies and Asian-spcific association of the GTF2I locus with rheumatoid arthritis. Sci. Rep. 6, 27563 (2016).PubMedPubMedCentral
34.
Fortune, M. D. et al. Statistical colocalization of genetic risk variants for related autoimmune diseases in the context of common controls. Nat. Genet. 47, 839–846 (2015).PubMedPubMedCentral
35.
Gusev, A. et al. Quantifying missing heritability at known GWAS loci. PLoS Genet. 9, e1003993 (2013).PubMedPubMedCentral
36.
Okada, Y. et al. Meta-analysis identifies nine new loci associated with rheumatoid arthritis in the Japanese population. Nat. Genet. 44, 511–516 (2012).PubMed
37.
Kurreeman, F. A. et al. Use of a multiethnic approach to identify rheumatoid- arthritis-susceptibility loci, 1p36 and 17q12. Am. J. Hum. Genet. 90, 524–532 (2012).PubMedPubMedCentral
38.
Farh, K. K. et al. Genetic and epigenetic fine mapping of causal autoimmune disease variants. Nature 518, 337–343 (2015).PubMed
39.
Kichaev, G. & Pasaniuc, B. Leveraging functional-annotation data in trans-ethnic fine-mapping studies. Am. J. Hum. Genet. 97, 260–271 (2015).PubMedPubMedCentral
40.
Trynka, G. et al. Chromatin marks identify critical cell types for fine mapping complex trait variants. Nat. Genet. 45, 124–130 (2013).PubMed
41.
Heintzman, N. D. et al. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat. Genet. 39, 311–318 (2007).PubMed
42.
Trynka, G. et al. Disentangling the effects of colocalizing genomic annotations to functionally prioritize non-coding variants within complex-trait loci. Am. J. Hum. Genet. 97, 139–152 (2015).PubMedPubMedCentral
43.
Andersson, R. et al. An atlas of active enhancers across human cell types and tissues. Nature 507, 455–461 (2014).PubMedPubMedCentral
44.
Freudenberg, J., Gregersen, P. & Li, W. Enrichment of genetic variants for rheumatoid arthritis within T-cell and NK-cell enhancer regions. Mol. Med. 21, 180–184 (2015).PubMedPubMedCentral
45.
Vahedi, G. et al. Super-enhancers delineate disease-associated regulatory nodes in T cells. Nature 520, 558–562 (2015).PubMedPubMedCentral
46.
Hrdlickova, B. et al. Expression profiles of long non-coding RNAs located in autoimmune disease-associated regions reveal immune cell-type specificity. Genome Med. 6, 88 (2014).PubMedPubMedCentral
47.
Derrien, T. et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res. 22, 1775–1789 (2012).PubMedPubMedCentral
48.
Carpenter, S. et al. A long noncoding RNA mediates both activation and repression of immune response genes. Science 341, 789–792 (2013).PubMedPubMedCentral
49.
Hyatt, G. et al. Gene expression microarrays: glimpses of the immunological genome. Nat. Immunol. 7, 686–691 (2006).PubMed
50.
Hu, X. et al. Integrating autoimmune risk loci with gene-expression data identifies specific pathogenic immune cell subsets. Am. J. Hum. Genet. 89, 496–506 (2011).PubMedPubMedCentral
51.
Sallusto, F., Lenig, D., Forster, R., Lipp, M. & Lanzavecchia, A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401, 708–712 (1999).PubMed
52.
Raj, T. et al. Polarization of the effects of autoimmune and neurodegenerative risk alleles in leukocytes. Science 344, 519–523 (2014).PubMedPubMedCentral
53.
Hu, X. et al. Regulation of gene expression in autoimmune disease loci and the genetic basis of proliferation in CD4+ effector memory T cells. PLoS Genet. 10, e1004404 (2014).PubMedPubMedCentral
54.
Smemo, S. et al. Obesity-associated variants within FTO form long-range functional connections with IRX3. Nature 507, 371–375 (2014).PubMedPubMedCentral
55.
Stratigopoulos, G., LeDuc, C. A., Cremona, M. L., Chung, W. K. & Leibel, R. L. Cut-like homeobox 1 (CUX1) regulates expression of the fat mass and obesity-associated and retinitis pigmentosa GTPase regulator-interacting protein-1-like (RPGRIP1L) genes and coordinates leptin receptor signaling. J. Biol. Chem. 286, 2155–2170 (2011).PubMed
56.
Stratigopoulos, G. et al. Hypomorphism for RPGRIP1L, a ciliary gene vicinal to the FTO locus, causes increased adiposity in mice. Cell Metab. 19, 767–779 (2014).PubMedPubMedCentral
57.
Martin, P. et al. Capture Hi-C reveals novel candidate genes and complex long-range interactions with related autoimmune risk loci. Nat. Commun. 6, 10069 (2015).PubMed
58.
Segre, A. V. et al. Common inherited variation in mitochondrial genes is not enriched for associations with type 2 diabetes or related glycemic traits. PLoS Genet. 6, e1001058 (2010).PubMedPubMedCentral
59.
Eppig, J. T. et al. The Mouse Genome Database (MGD): comprehensive resource for genetics and genomics of the laboratory mouse. Nucleic Acids Res. 40, D881–D886 (2012).PubMed
60.
de Rooy, D. P. et al. Genetic studies on components of the Wnt signalling pathway and the severity of joint destruction in rheumatoid arthritis. Ann. Rheum. Dis. 72, 769–775 (2013).PubMed
61.
Yarwood, A. et al. Enrichment of vitamin D response elements in RA-associated loci supports a role for vitamin D in the pathogenesis of RA. Genes Immun. 14, 325–329 (2013).PubMedPubMedCentral
62.
Liu, G. et al. Measles contributes to rheumatoid arthritis: evidence from pathway and network analyses of genome-wide association studies. PLoS ONE 8, e75951 (2013).PubMedPubMedCentral
63.
Andreassen, O. A. et al. Abundant genetic overlap between blood lipids and immune-mediated diseases indicates shared molecular genetic mechanisms. PLoS ONE 10, e0123057 (2015).PubMedPubMedCentral
64.
Buchel, F. et al. Integrative pathway-based approach for genome-wide association studies: identification of new pathways for rheumatoid arthritis and type 1 diabetes. PLoS ONE 8, e78577 (2013).PubMedPubMedCentral
65.
Maggadottir, S. M. & Sullivan, K. E. The intersection of immune deficiency and autoimmunity. Curr. Opin. Rheumatol. 26, 570–578 (2014).PubMed
66.
Timmons, J. A., Szkop, K. J. & Gallagher, I. J. Multiple sources of bias confound functional enrichment analysis of global-omics data. Genome Biol. 16, 186 (2015).PubMedPubMedCentral
67.
Atzeni, F. et al. Different effects of biological drugs in rheumatoid arthritis. Autoimmun. Rev. 12, 575–579 (2013).PubMed
68.
Grover, M. P. et al. Identification of novel therapeutics for complex diseases from genome-wide association data. BMC Med. Genomics 7 (Suppl. 1), S8 (2014).PubMedPubMedCentral
69.
Maloney, D. G. et al. IDEC-C2B8 (rituximab) anti-CD20 monoclonal antibody therapy in patients with relapsed low-grade non-Hodgkin's lymphoma. Blood 90, 2188–2195 (1997).PubMed
70.
Edwards, J. C. et al. Efficacy of B-cell-targeted therapy with rituximab in patients with rheumatoid arthritis. N. Engl. J. Med. 350, 2572–2581 (2004).PubMed
71.
Plenge, R. M., Scolnick, E. M. & Altshuler, D. Validating therapeutic targets through human genetics. Nat. Rev. Drug Discov. 12, 581–594 (2013).PubMed
72.
Li, G. et al. Human genetics in rheumatoid arthritis guides a high-throughput drug screen of the CD40 signaling pathway. PLoS Genet. 9, e1003487 (2013).PubMedPubMedCentral
73.
Ekwall, A. K. et al. The rheumatoid arthritis risk gene LBH regulates growth in fibroblast-like synoviocytes. Arthritis Rheumatol. 67, 1193–1202 (2015).PubMedPubMedCentral
74.
Giles, J. L., Choy, E., van den Berg, C., Morgan, B. P. & Harris, C. L. Functional analysis of a complement polymorphism (rs17611) associated with rheumatoid arthritis. J. Immunol. 194, 3029–3034 (2015).PubMedPubMedCentral
75.
Schuster, C. et al. The autoimmunity-associated gene CLEC16A modulates thymic epithelial cell autophagy and alters T cell selection. Immunity 42, 942–952 (2015).PubMedPubMedCentral
76.
Chang, H. H., Dwivedi, N., Nicholas, A. P. & Ho, I. C. The W620 polymorphism in PTPN22 disrupts its interaction with peptidylarginine deiminase type 4 and enhances citrullination and NETosis. Arthritis Rheumatol. 67, 2323–2334 (2015).PubMed
77.
Spurlock, C. F. III, Tossberg, J. T., Olsen, N. J. & Aune, T. M. Cutting edge: chronic NF-κB activation in CD4+ T Cells in rheumatoid arthritis is genetically determined by HLA risk alleles. J. Immunol. 195, 791–795 (2015).PubMed
78.
Muthana, M. et al. C5orf30 is a negative regulator of tissue damage in rheumatoid arthritis. Proc. Natl Acad. Sci. USA 112, 11618–11623 (2015).PubMedPubMedCentral
79.
Messemaker, T. C. et al. A novel long non-coding RNA in the rheumatoid arthritis risk locus TRAF1-C5 influences C5 mRNA levels. Genes Immun. 17, 85–92 (2015).PubMed
80.
de la Puerta, M. L. et al. The autoimmunity risk variant LYP-W620 cooperates with CSK in the regulation of TCR signaling. PLoS ONE 8, e54569 (2013).PubMedPubMedCentral
81.
Han, T. U. et al. Association of an activity-enhancing variant of IRAK1 and an MECP2-IRAK1 haplotype with increased susceptibility to rheumatoid arthritis. Arthritis Rheum. 65, 590–598 (2013).PubMed
82.
Ferreira, R. C. et al. Functional IL6R 358Ala allele impairs classical IL-6 receptor signaling and influences risk of diverse inflammatory diseases. PLoS Genet. 9, e1003444 (2013).PubMedPubMedCentral
83.
Lewis, M. J. et al. UBE2L3 polymorphism amplifies NF-κB activation and promotes plasma cell development, linking linear ubiquitination to multiple autoimmune diseases. Am. J. Hum. Genet. 96, 221–234 (2015).PubMedPubMedCentral
84.
Suzuki, A. & Yamamoto, K. From genetics to functional insights into rheumatoid arthritis. Clin. Exp. Rheumatol. 33 (4 Suppl. 92), S40–S43 (2015).PubMed
85.
Viatte, S. et al. Association of HLA-DRB1 haplotypes with rheumatoid arthritis severity, mortality, and treatment response. JAMA 313, 1645–1656 (2015).PubMedPubMedCentral
86.
Visscher, P. M., Hill, W. G. & Wray, N. R. Heritability in the genomics era — concepts and misconceptions. Nat. Rev. Genet. 9, 255–266 (2008).PubMed
87.
Svendsen, A. J. et al. On the origin of rheumatoid arthritis: the impact of environment and genes — a population based twin study. PLoS ONE 8, e57304 (2013).PubMedPubMedCentral
88.
Diogo, D. et al. Rare, low-frequency, and common variants in the protein-coding sequence of biological candidate genes from GWASs contribute to risk of rheumatoid arthritis. Am. J. Hum. Genet. 92, 15–27 (2013).PubMedPubMedCentral
89.
Diogo, D. et al. TYK2 protein-coding variants protect against rheumatoid arthritis and autoimmunity, with no evidence of major pleiotropic effects on non-autoimmune complex traits. PLoS ONE 10, e0122271 (2015).PubMedPubMedCentral
90.
Bang, S. Y. et al. Targeted exon sequencing fails to identify rare coding variants with large effect in rheumatoid arthritis. Arthritis Res. Ther. 16, 447 (2014).PubMedPubMedCentral
91.
Okada, Y. et al. Integration of sequence data from a consanguineous family with genetic data from an outbred population identifies PLB1 as a candidate rheumatoid arthritis risk gene. PLoS ONE 9, e87645 (2014).PubMedPubMedCentral
92.
Veal, C. D. et al. A 129-kb deletion on chromosome 12 confers substantial protection against rheumatoid arthritis, implicating the gene SLC2A3. Hum. Mutat. 35, 248–256 (2014).PubMed
93.
Du, Y. et al. Contribution of functional LILRA3, but not nonfunctional LILRA3, to sex bias in susceptibility and severity of anti-citrullinated protein antibody-positive rheumatoid arthritis. Arthritis Rheumatol. 66, 822–830 (2014).PubMed
94.
Chen, J. Y. et al. Association of FCGR3A and FCGR3B copy number variations with systemic lupus erythematosus and rheumatoid arthritis in Taiwanese patients. Arthritis Rheumatol. 66, 3113–3121 (2014).PubMedPubMedCentral
95.
Franke, L. et al. Association analysis of copy numbers of FC-gamma receptor genes for rheumatoid arthritis and other immune-mediated phenotypes. Eur. J. Hum. Genet. 24, 263–270 (2016).PubMed
96.
Wu, C. C. et al. Whole-genome detection of disease-associated deletions or excess homozygosity in a case–control study of rheumatoid arthritis. Hum. Mol. Genet. 22, 1249–1261 (2013).PubMed
97.
Teslovich, T. M. et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature 466, 707–713 (2010).PubMedPubMedCentral