Skip to main content
Top

22-04-2016 | Rheumatoid arthritis | Article

Anti-IL-17 therapy in treatment of rheumatoid arthritis: a systematic literature review and meta-analysis of randomized controlled trials

Journal: Rheumatology International

Authors: Sumit Kunwar, Khagendra Dahal, Sharan Sharma

Publisher: Springer Berlin Heidelberg

Abstract

IL-17 has a role in inflammation in RA, and its levels in joints correlate with disease severity. Multiple RCTs have been performed to study effects of anti-IL-17 agents. The objective of this study was to perform a systematic review and meta-analysis to analyze the efficacy and safety of anti-IL-17 agents in the management of RA. This work is based on a systematic review of studies retrieved by a sensitive search strategy in PubMed, EMBASE and Cochrane CENTRAL from inception through 9/7/15. Study selection criteria were the following: adult patients (age ≥ 18 years) with RAs, random selection of patients for anti-IL-17 therapy and treatment response compared to placebo. We performed systematic literature review per PRISMA guideline and two investigators independently selected seven randomized clinical trials (RCTs) for meta-analysis. We used random effect model calculating odds ratio (OR) and 95 % confidence interval (CI) to measure the efficacy with ACR20/50/70 responses and the safety with adverse events. Seven studies with total of 1226 patients including 905 in anti-IL-17 group and 321 in placebo were included in the meta-analysis. Anti-IL-17 was effective in achieving ACR20 and ACR50 compared to placebo (OR 2.47, 95 % CI 1.29–4.72, P = 0.006, I 2 77 % and OR 2.94, 95 % CI 1.37–6.28, P = 0.005, I 2 64 %, respectively). Data analysis for ACR70 showed a favorable trend toward anti-IL-17 (OR 2.62, 95 % CI 1–6.89, P = 0.05, I 2 15 %). Subgroup analysis of ACR20 for individual anti-IL-17 agents showed that ixekizumab was more effective than placebo, while secukinumab showed a trend toward achieving the ACR20 response. However, brodalumab was not effective compared to placebo. Safety analysis did not show increased risk of any or serious adverse effects by anti-IL-17 compared to placebo (OR 1.23, 95 % CI 0.94–1.61, P = 0.13, I 2 = 0 % and OR 1.28, 95 % CI 0.57–2.88, P = 0.55, I 2 = 0 %, respectively). This meta-analysis concludes that anti-IL-17 is effective in the treatment of RA without increased risk of any or serious adverse effects; however, the results are limited by significant heterogeneity and small duration of studies.
Literature
1.
Martin DA, Churchill M, Flores-Suarez L et al (2013) A phase Ib multiple ascending dose study evaluating safety, pharmacokinetics, and early clinical response of brodalumab, a human anti-IL-17R antibody, in methotrexate-resistant rheumatoid arthritis. Arthritis Res Ther 15:R164. doi:10.​1186/​ar4347 CrossRefPubMedPubMedCentral
2.
Korn T, Bettelli E, Oukka M, Kuchroo VK (2009) IL-17 and Th17 Cells. Annu Rev Immunol 27:485–517. doi:10.​1146/​annurev.​immunol.​021908.​132710 CrossRefPubMed
3.
Ely LK, Fischer S, Garcia KC (2009) Structural basis of receptor sharing by interleukin 17 cytokines. Nat Immunol 10:1245–1251. doi:10.​1038/​ni.​1813 CrossRefPubMedPubMedCentral
4.
Miossec P, Korn T, Kuchroo VK (2009) Interleukin-17 and type 17 helper T cells. N Engl J Med 361:888–898. doi:10.​1056/​NEJMra0707449 CrossRefPubMed
5.
Furst DE, Emery P (2014) Rheumatoid arthritis pathophysiology: update on emerging cytokine and cytokine-associated cell targets. Rheumatol Oxf Engl 53:1560–1569. doi:10.​1093/​rheumatology/​ket414 CrossRef
6.
Moseley TA, Haudenschild DR, Rose L, Reddi AH (2003) Interleukin-17 family and IL-17 receptors. Cytokine Growth Factor Rev 14:155–174CrossRefPubMed
7.
Miossec P (2000) Are T cells in rheumatoid synovium aggressors or bystanders? Curr Opin Rheumatol 12:181–185CrossRefPubMed
8.
Cai L, Yin JP, Starovasnik MA et al (2001) Pathways by which interleukin 17 induces articular cartilage breakdown in vitro and in vivo. Cytokine 16:10–21. doi:10.​1006/​cyto.​2001.​0939 CrossRefPubMed
9.
Nakae S, Nambu A, Sudo K, Iwakura Y (2003) Suppression of immune induction of collagen-induced arthritis in IL-17-deficient mice. J Immunol Baltim Md 1950 171:6173–6177
10.
Lubberts E (2008) IL-17/Th17 targeting: on the road to prevent chronic destructive arthritis? Cytokine 41:84–91. doi:10.​1016/​j.​cyto.​2007.​09.​014 CrossRefPubMed
11.
Alzabin S, Abraham SM, Taher TE et al (2012) Incomplete response of inflammatory arthritis to TNFα blockade is associated with the Th17 pathway. Ann Rheum Dis 71:1741–1748. doi:10.​1136/​annrheumdis-2011-201024 CrossRefPubMed
12.
Chabaud M, Durand JM, Buchs N et al (1999) Human interleukin-17: a T cell-derived proinflammatory cytokine produced by the rheumatoid synovium. Arthritis Rheum 42:963–970. doi:10.​1002/​1529-0131(199905)42:​5<963:​AID-ANR15>3.​0.​CO;2-E CrossRefPubMed
13.
Ziolkowska M, Koc A, Luszczykiewicz G et al (2000) High levels of IL-17 in rheumatoid arthritis patients: IL-15 triggers in vitro IL-17 production via cyclosporin A-sensitive mechanism. J Immunol Baltim Md 1950 164:2832–2838
14.
Tang C, Chen S, Qian H, Huang W (2012) Interleukin-23: as a drug target for autoimmune inflammatory diseases. Immunology 135:112–124. doi:10.​1111/​j.​1365-2567.​2011.​03522.​x CrossRefPubMedPubMedCentral
15.
van den Berg WB, Miossec P (2009) IL-17 as a future therapeutic target for rheumatoid arthritis. Nat Rev Rheumatol 5:549–553. doi:10.​1038/​nrrheum.​2009.​179 CrossRefPubMed
16.
Leipe J, Grunke M, Dechant C et al (2010) Role of Th17 cells in human autoimmune arthritis. Arthritis Rheum 62:2876–2885. doi:10.​1002/​art.​27622 CrossRefPubMed
17.
Singh JA, Furst DE, Bharat A et al (2012) 2012 update of the 2008 American College of Rheumatology recommendations for the use of disease-modifying antirheumatic drugs and biologic agents in the treatment of rheumatoid arthritis. Arthritis Care Res 64:625–639. doi:10.​1002/​acr.​21641 CrossRef
18.
Storage SS, Agrawal H, Furst DE (2010) Description of the efficacy and safety of three new biologics in the treatment of rheumatoid arthritis. Korean J Intern Med 25:1–17. doi:10.​3904/​kjim.​2010.​25.​1.​1 CrossRefPubMedPubMedCentral
19.
Mewar D, Wilson AG (2011) Treatment of rheumatoid arthritis with tumour necrosis factor inhibitors. Br J Pharmacol 162:785–791. doi:10.​1111/​j.​1476-5381.​2010.​01099.​x CrossRefPubMedPubMedCentral
20.
Gordon KB, Leonardi CL, Lebwohl M et al (2014) A 52-week, open-label study of the efficacy and safety of ixekizumab, an anti-interleukin-17A monoclonal antibody, in patients with chronic plaque psoriasis. J Am Acad Dermatol 71:1176–1182. doi:10.​1016/​j.​jaad.​2014.​07.​048 CrossRefPubMed
21.
Xiong H-Z, Gu J-Y, He Z-G et al (2015) Efficacy and safety of secukinumab in the treatment of moderate to severe plaque psoriasis: a meta-analysis of randomized controlled trials. Int J Clin Exp Med 8:3156–3172PubMedPubMedCentral
22.
Genovese MC, Durez P, Richards HB et al (2014) One-year efficacy and safety results of secukinumab in patients with rheumatoid arthritis: phase II, dose-finding, double-blind, randomized, placebo-controlled study. J Rheumatol 41:414–421. doi:10.​3899/​jrheum.​130637 CrossRefPubMed
23.
Strand V, Kosinski M, Gnanasakthy A et al (2014) Secukinumab treatment in rheumatoid arthritis is associated with incremental benefit in the clinical outcomes and HRQoL improvements that exceed minimally important thresholds. Health Qual Life Outcomes 12:31. doi:10.​1186/​1477-7525-12-31 CrossRefPubMedPubMedCentral
24.
Genovese MC, Greenwald M, Cho C-S et al (2014) A phase II randomized study of subcutaneous ixekizumab, an anti-interleukin-17 monoclonal antibody, in rheumatoid arthritis patients who were naive to biologic agents or had an inadequate response to tumor necrosis factor inhibitors. Arthritis Rheumatol Hoboken NJ 66:1693–1704. doi:10.​1002/​art.​38617 CrossRef
25.
Burmester GR, Durez P, Shestakova G et al (2015) Association of HLA-DRB1 alleles with clinical responses to the anti-interleukin-17A monoclonal antibody secukinumab in active rheumatoid arthritis. Rheumatol Oxf Engl. doi:10.​1093/​rheumatology/​kev258
26.
Pavelka K, Chon Y, Newmark R et al (2015) A study to evaluate the safety, tolerability, and efficacy of brodalumab in subjects with rheumatoid arthritis and an inadequate response to methotrexate. J Rheumatol 42:912–919. doi:10.​3899/​jrheum.​141271 CrossRefPubMed
27.
Hueber W, Patel DD, Dryja T et al (2010) Effects of AIN457, a fully human antibody to interleukin-17A, on psoriasis, rheumatoid arthritis, and uveitis. Sci Transl Med 2:52ra72. doi:10.​1126/​scitranslmed.​3001107 CrossRefPubMed
28.
Genovese MC, Durez P, Richards HB et al (2013) Efficacy and safety of secukinumab in patients with rheumatoid arthritis: a phase II, dose-finding, double-blind, randomised, placebo controlled study. Ann Rheum Dis 72:863–869. doi:10.​1136/​annrheumdis-2012-201601 CrossRefPubMed
29.
Genovese MC, Van den Bosch F, Roberson SA et al (2010) LY2439821, a humanized anti-interleukin-17 monoclonal antibody, in the treatment of patients with rheumatoid arthritis: a phase I randomized, double-blind, placebo-controlled, proof-of-concept study. Arthritis Rheum 62:929–939. doi:10.​1002/​art.​27334 CrossRefPubMed
30.
Maringwa J, Kågedal M, Hamrén UW et al (2014) Pharmacokinetic-pharmacodynamic modeling of fostamatinib efficacy on ACR20 to support dose selection in patients with rheumatoid arthritis (RA). J Clin Pharmacol. doi:10.​1002/​jcph.​406 PubMed
31.
Lee YH, Bae S-C, Song GG (2015) Comparative efficacy and safety of tofacitinib, with or without methotrexate, in patients with active rheumatoid arthritis: a Bayesian network meta-analysis of randomized controlled trials. Rheumatol Int. doi:10.​1007/​s00296-015-3291-4
32.
Mease PJ, Genovese MC, Greenwald MW et al (2014) Brodalumab, an anti-IL17RA monoclonal antibody, in psoriatic arthritis. N Engl J Med 370:2295–2306. doi:10.​1056/​NEJMoa1315231 CrossRefPubMed
33.
Baeten D, Baraliakos X, Braun J et al (2013) Anti-interleukin-17A monoclonal antibody secukinumab in treatment of ankylosing spondylitis: a randomised, double-blind, placebo-controlled trial. Lancet Lond Engl 382:1705–1713. doi:10.​1016/​S0140-6736(13)61134-4 CrossRef
34.
Koenders MI, Marijnissen RJ, Joosten LAB et al (2012) T cell lessons from the rheumatoid arthritis synovium SCID mouse model: CD3-rich synovium lacks response to CTLA-4Ig but is successfully treated by interleukin-17 neutralization. Arthritis Rheum 64:1762–1770. doi:10.​1002/​art.​34352 CrossRefPubMed
35.
van Baarsen LGM, Lebre MC, van der Coelen D et al (2014) Heterogeneous expression pattern of interleukin 17A (IL-17A), IL-17F and their receptors in synovium of rheumatoid arthritis, psoriatic arthritis and osteoarthritis: possible explanation for nonresponse to anti-IL-17 therapy? Arthritis Res Ther 16:426. doi:10.​1186/​s13075-014-0426-z CrossRefPubMedPubMedCentral