Skip to main content
Top

22-04-2016 | Spondyloarthropathies | Review | Article

The Bench-to-Bedside Story of IL-17 and the Therapeutic Efficacy of its Targeting in Spondyloarthritis

Journal: Current Rheumatology Reports

Author: Judith A. Smith

Publisher: Springer US

Abstract

TNF-blocking biologics have revolutionized the care of patients with spondyloarthritis, a group of clinically overlapping conditions that includes ankylosing spondylitis and psoriatic arthritis. However, incomplete response rates speak to the need for alternative therapeutic approaches. Over the last decade, animal models, genetics, and translational studies have implicated the excessive production of a pro-inflammatory cytokine interleukin-17 (IL-17) along with another IL-17-promoting cytokine IL-23 in the pathogenesis of spondyloarthritis. Genome-wide studies identified disease associations with multiple genes regulating IL-23/IL-17 immune pathway activity. Direct examination of the patient blood and tissues revealed excessive IL-17 and IL-23 production by diverse cell types. Murine models both underscored the sufficiency of excess IL-23 in driving disease phenotype and predicted utility in IL-23/IL-17 pathway blockade. However, the clinical efficacy of agents such as secukinumab and ustekinumab, which block IL-17 and IL-23/IL-12 respectively, provided exciting proof of concept.
Literature
1.
Dougados M, Baeten D. Spondyloarthritis. Lancet. 2011;377:2127–37.CrossRefPubMed
2.
van der Heijde D, Dijkmans B, Geusens P, Sieper J, DeWoody K, et al. Efficacy and safety of infliximab in patients with ankylosing spondylitis: results of a randomized, placebo-controlled trial (ASSERT). Arthritis Rheum. 2005;52:582–91.CrossRefPubMed
3.
van der Heijde D, Kivitz A, Schiff MH, Sieper J, Dijkmans BA, et al. Efficacy and safety of adalimumab in patients with ankylosing spondylitis: results of a multicenter, randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 2006;54:2136–46.CrossRefPubMed
4.
Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol. 1986;136:2348–57.PubMed
5.
Seder RA, Paul WE. Acquisition of lymphokine-producing phenotype by CD4+ T cells. Annu Rev Immunol. 1994;12:635–73.CrossRefPubMed
6.
Leonard JP, Waldburger KE, Goldman SJ. Prevention of experimental autoimmune encephalomyelitis by antibodies against interleukin 12. J Exp Med. 1995;181:381–6.CrossRefPubMed
7.
Gran B, Zhang GX, Yu S, Li J, Chen XH, et al. IL-12p35-deficient mice are susceptible to experimental autoimmune encephalomyelitis: evidence for redundancy in the IL-12 system in the induction of central nervous system autoimmune demyelination. J Immunol. 2002;169:7104–10.CrossRefPubMed
8.
Krakowski M, Owens T. Interferon-gamma confers resistance to experimental allergic encephalomyelitis. Eur J Immunol. 1996;26:1641–6.CrossRefPubMed
9.
Murphy CA, Langrish CL, Chen Y, Blumenschein W, McClanahan T, et al. Divergent pro- and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J Exp Med. 2003;198:1951–7.CrossRefPubMedPubMedCentral
10.
Cua DJ, Sherlock J, Chen Y, Murphy CA, Joyce B, et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature. 2003;421:744–8.CrossRefPubMed
11.
Dallenbach K, Maurer P, Rohn T, Zabel F, Kopf M, et al. Protective effect of a germline, IL-17-neutralizing antibody in murine models of autoimmune inflammatory disease. Eur J Immunol. 2015;45:1238–47.CrossRefPubMed
12.••
Patel DD, Kuchroo VK. Th17 cell pathway in human immunity: lessons from genetics and therapeutic interventions. Immunity. 2015;43:1040–51. An excellent recent review of Th17 in human disease.CrossRefPubMed
13.
McGeachy MJ, Chen Y, Tato CM, Laurence A, Joyce-Shaikh B, et al. The interleukin 23 receptor is essential for the terminal differentiation of interleukin 17-producing effector T helper cells in vivo. Nat Immunol. 2009;10:314–24.CrossRefPubMedPubMedCentral
14.
Ouyang W, Kolls JK, Zheng Y. The biological functions of T helper 17 cell effector cytokines in inflammation. Immunity. 2008;28:454–67.CrossRefPubMedPubMedCentral
15.
Awasthi A, Riol-Blanco L, Jager A, Korn T, Pot C, et al. Cutting edge: IL-23 receptor GFP reporter mice reveal distinct populations of IL-17-producing cells. J Immunol. 2009;182:5904–8.CrossRefPubMedPubMedCentral
16.
Adamopoulos IE, Chao CC, Geissler R, Laface D, Blumenschein W, et al. Interleukin-17A upregulates receptor activator of NF-kappaB on osteoclast precursors. Arthritis Res Ther. 2010;12:R29. doi:10.​1186/​ar2936.CrossRefPubMedPubMedCentral
17.
Chen L, Wei XQ, Evans B, Jiang W, Aeschlimann D. IL-23 promotes osteoclast formation by up-regulation of receptor activator of NF-kappaB (RANK) expression in myeloid precursor cells. Eur J Immunol. 2008;38:2845–54.CrossRefPubMed
18.
Yago T, Nanke Y, Ichikawa N, Kobashigawa T, Mogi M, et al. IL-17 induces osteoclastogenesis from human monocytes alone in the absence of osteoblasts, which is potently inhibited by anti-TNF-alpha antibody: a novel mechanism of osteoclastogenesis by IL-17. J Cell Biochem. 2009;108:947–55.CrossRefPubMed
19.
Kotake S, Udagawa N, Takahashi N, Matsuzaki K, Itoh K, et al. IL-17 in synovial fluids from patients with rheumatoid arthritis is a potent stimulator of osteoclastogenesis. J Clin Invest. 1999;103:1345–52.CrossRefPubMedPubMedCentral
20.
Huang H, Kim HJ, Chang EJ, Lee ZH, Hwang SJ, et al. IL-17 stimulates the proliferation and differentiation of human mesenchymal stem cells: implications for bone remodeling. Cell Death Differ. 2009;16:1332–43.CrossRefPubMed
21.
Burton PR, Clayton DG, Cardon LR, Craddock N, Deloukas P, et al. Association scan of 14,500 nonsynonymous SNPs in four diseases identifies autoimmunity variants. Nat Genet. 2007;39:1329–37.CrossRefPubMed
22.
Di Meglio P, Di Cesare A, Laggner U, Chu CC, Napolitano L, et al. The IL23R R381Q gene variant protects against immune-mediated diseases by impairing IL-23-induced Th17 effector response in humans. PLoS ONE. 2011;6, e17160.CrossRefPubMedPubMedCentral
23.
Davidson SI, Liu Y, Danoy PA, Wu X, Thomas GP, et al. Association of STAT3 and TNFRSF1A with ankylosing spondylitis in Han Chinese. Ann Rheum Dis. 2011;70:289–92.CrossRefPubMed
24.
Davidson SI, Jiang L, Cortes A, Wu X, Glazov EA, et al. Brief report: high-throughput sequencing of IL23R reveals a low-frequency, nonsynonymous single-nucleotide polymorphism that is associated with ankylosing spondylitis in a Han Chinese population. Arthritis Rheum. 2013;65:1747–52.CrossRefPubMed
25.
Reveille JD, Sims AM, Danoy P, Evans DM, Leo P, et al. Genome-wide association study of ankylosing spondylitis identifies non-MHC susceptibility loci. Nat Genet. 2010;42:123–7.CrossRefPubMedPubMedCentral
26.
Evans DM, Spencer CC, Pointon JJ, Su Z, Harvey D, et al. Interaction between ERAP1 and HLA-B27 in ankylosing spondylitis implicates peptide handling in the mechanism for HLA-B27 in disease susceptibility. Nat Genet. 2011;43:761–7.CrossRefPubMedPubMedCentral
27.
Cortes A, Hadler J, Pointon JP, Robinson PC, Karaderi T, et al. Identification of multiple risk variants for ankylosing spondylitis through high-density genotyping of immune-related loci. Nat Genet. 2013;45:730–8.CrossRefPubMedPubMedCentral
28.
Danoy P, Pryce K, Hadler J, Bradbury LA, Farrar C, et al. Association of variants at 1q32 and STAT3 with ankylosing spondylitis suggests genetic overlap with Crohn’s disease. PLoS Genet. 2010;6, e1001195.CrossRefPubMedPubMedCentral
29.••
Brown MA, Kenna T, Wordsworth BP. Genetics of ankylosing spondylitis—insights into pathogenesis. Nat Rev Rheumatol. 2016;12:81–91. An excellent, comprehensive recent review of ankylosing spondylitis genetics.CrossRefPubMed
30.
Coffre M, Roumier M, Rybczynska M, Sechet E, Law HK, et al. Combinatorial control of Th17 and Th1 cell functions by genetic variations in genes associated with the interleukin-23 signaling pathway in spondyloarthritis. Arthritis Rheum. 2013;65:1510–21.CrossRefPubMed
31.
McGovern DP, Kugathasan S, Cho JH. Genetics of inflammatory bowel diseases. Gastroenterology. 2015;149:1163–76. e1162.CrossRefPubMed
32.
O’Rielly DD, Rahman P. Genetics of psoriatic arthritis. Best Pract Res Clin Rheumatol. 2014;28:673–85.CrossRefPubMed
33.
Stuart PE, Nair RP, Tsoi LC, Tejasvi T, Das S, et al. Genome-wide association analysis of psoriatic arthritis and cutaneous psoriasis reveals differences in their genetic architecture. Am J Hum Genet. 2015;97:816–36.CrossRefPubMed
34.
Libioulle C, Louis E, Hansoul S, Sandor C, Farnir F, et al. Novel Crohn disease locus identified by genome-wide association maps to a gene desert on 5p13.1 and modulates expression of PTGER4. PLoS Genet. 2007;3, e58.CrossRefPubMedPubMedCentral
35.
Franke A, McGovern DP, Barrett JC, Wang K, Radford-Smith GL, et al. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn’s disease susceptibility loci. Nat Genet. 2010;42:1118–25.CrossRefPubMedPubMedCentral
36.
Mielants H, Veys EM, Cuvelier C, de Vos M. Ileocolonoscopic findings in seronegative spondylarthropathies. Br J Rheumatol. 1988;27 Suppl 2:95–105.CrossRefPubMed
37.
Stolwijk C, Essers I, van Tubergen A, Boonen A, Bazelier MT, et al. The epidemiology of extra-articular manifestations in ankylosing spondylitis: a population-based matched cohort study. Ann Rheum Dis. 2015;74:1373–8.CrossRefPubMed
38.
Baraliakos X, Coates LC, Braun J. The involvement of the spine in psoriatic arthritis. Clin Exp Rheumatol. 2015;33:S31–5.PubMed
39.
Shen H, Goodall JC, Hill Gaston JS. Frequency and phenotype of peripheral blood Th17 cells in ankylosing spondylitis and rheumatoid arthritis. Arthritis Rheum. 2009;60:1647–56.CrossRefPubMed
40.
Benham H, Norris P, Goodall J, Wechalekar MD, FitzGerald O, et al. Th17 and Th22 cells in psoriatic arthritis and psoriasis. Arthritis Res Ther. 2013;15:R136. doi:10.​1186/​ar4317.CrossRefPubMedPubMedCentral
41.
Jansen DT, Hameetman M, van Bergen J, Huizinga TW, van der Heijde D, et al. IL-17-producing CD4+ T cells are increased in early, active axial spondyloarthritis including patients without imaging abnormalities. Rheumatology (Oxford). 2015;54:728–35.CrossRef
42.
Kenna TJ, Davidson SI, Duan R, Bradbury LA, McFarlane J, et al. Enrichment of circulating interleukin-17-secreting interleukin-23 receptor-positive gamma/delta T cells in patients with active ankylosing spondylitis. Arthritis Rheum. 2012;64:1420–9.CrossRefPubMed
43.
Cai Y, Shen X, Ding C, Qi C, Li K, et al. Pivotal role of dermal IL-17-producing gammadelta T cells in skin inflammation. Immunity. 2011;35:596–610.CrossRefPubMedPubMedCentral
44.
Bowness P, Ridley A, Shaw J, Chan AT, Wong-Baeza I, et al. Th17 cells expressing KIR3DL2+ and responsive to HLA-B27 homodimers are increased in ankylosing spondylitis. J Immunol. 2011;186:2672–80.CrossRefPubMedPubMedCentral
45.
Ridley A, Hatano H, Wong-Baeza I, Shaw J, Matthews KK, et al. Activation-induced KIR3DL2 binding to HLA-B27 licenses pathogenic T cell differentiation in spondyloarthritis. Arthritis Rheum. 2015. doi:10.​1002/​art.​39515.
46.
Noordenbos T, Yeremenko N, Gofita I, van de Sande M, Tak PP, et al. Interleukin-17-positive mast cells contribute to synovial inflammation in spondylarthritis. Arthritis Rheum. 2012;64:99–109.CrossRefPubMed
47.
Appel H, Maier R, Wu P, Scheer R, Hempfing A, et al. Analysis of IL-17(+) cells in facet joints of patients with spondyloarthritis suggests that the innate immune pathway might be of greater relevance than the Th17-mediated adaptive immune response. Arthritis Res Ther. 2011;13:R95. doi:10.​1186/​ar3370.CrossRefPubMedPubMedCentral
48.
Ciccia F, Bombardieri M, Principato A, Giardina A, Tripodo C, et al. Overexpression of interleukin-23, but not interleukin-17, as an immunologic signature of subclinical intestinal inflammation in ankylosing spondylitis. Arthritis Rheum. 2009;60:955–65.CrossRefPubMed
49.
Ciccia F, Accardo-Palumbo A, Alessandro R, Rizzo A, Principe S, et al. Interleukin-22 and interleukin-22-producing NKp44+ natural killer cells in subclinical gut inflammation in ankylosing spondylitis. Arthritis Rheum. 2012;64:1869–78.CrossRefPubMed
50.•
Ciccia F, Guggino G, Rizzo A, Saieva L, Peralta S, et al. Type 3 innate lymphoid cells producing IL-17 and IL-22 are expanded in the gut, in the peripheral blood, synovial fluid and bone marrow of patients with ankylosing spondylitis. Ann Rheum Dis. 2015;74:1739–47. Provides a gut-joint pathogenetic link.CrossRefPubMed
51.
Appel H, Maier R, Bleil J, Hempfing A, Loddenkemper C, et al. In situ analysis of interleukin-23- and interleukin-12-positive cells in the spine of patients with ankylosing spondylitis. Arthritis Rheum. 2013;65:1522–9.CrossRefPubMed
52.
Mashiko S, Bouguermouh S, Rubio M, Baba N, Bissonnette R, et al. Human mast cells are major IL-22 producers in patients with psoriasis and atopic dermatitis. J Allergy Clin Immunol. 2015;136:351–9. e351.CrossRefPubMed
53.•
Barnas JL, Ritchlin CT. Etiology and pathogenesis of psoriatic arthritis. Rheum Dis Clin N Am. 2015;41:643–63. A good recent review of psoriatic arthritis pathogenesis.CrossRef
54.
Menon B, Gullick NJ, Walter GJ, Rajasekhar M, Garrood T, et al. Interleukin-17+CD8+ T cells are enriched in the joints of patients with psoriatic arthritis and correlate with disease activity and joint damage progression. Arthritis Rheum. 2014;66:1272–81.CrossRef
55.
Raychaudhuri SP, Raychaudhuri SK, Genovese MC. IL-17 receptor and its functional significance in psoriatic arthritis. Mol Cell Biochem. 2012;359:419–29.CrossRefPubMed
56.
Celis R, Planell N, Fernandez-Sueiro JL, Sanmarti R, Ramirez J, et al. Synovial cytokine expression in psoriatic arthritis and associations with lymphoid neogenesis and clinical features. Arthritis Res Ther. 2012;14:R93. doi:10.​1186/​ar3817.CrossRefPubMedPubMedCentral
57.•
Ciccia F, Guggino G, Ferrante A, Raimondo S, Bignone R, et al. IL-9 over-expression and Th9 polarization characterize the inflamed gut, the synovial tissue and the peripheral blood of patients with psoriatic arthritis. Arthritis Rheum. 2016. doi:10.​1002/​art.​39649. Though Th9 cells are not reviewed here, this is a novel subset implicated in spondyloarthritis. This study is also one of the first descriptions of immune IL-17/IL-22 overexpression in subclinical gut inflammation associated with psoriatic arthritis.
58.
Hammer RE, Maika SD, Richardson JA, Tang JP, Taurog JD. Spontaneous inflammatory disease in transgenic rats expressing HLA-B27 and human beta 2m: an animal model of HLA-B27-associated human disorders. Cell. 1990;63:1099–112.CrossRefPubMed
59.
DeLay ML, Turner MJ, Klenk EI, Smith JA, Sowders DP, et al. HLA-B27 misfolding and the unfolded protein response augment interleukin-23 production and are associated with Th17 activation in transgenic rats. Arthritis Rheum. 2009;60:2633–43.CrossRefPubMedPubMedCentral
60.
Turner MJ, Sowders DP, DeLay ML, Mohapatra R, Bai S, et al. HLA-B27 misfolding in transgenic rats is associated with activation of the unfolded protein response. J Immunol. 2005;175:2438–48.CrossRefPubMed
61.
van der Fits L, Mourits S, Voerman JS, Kant M, Boon L, et al. Imiquimod-induced psoriasis-like skin inflammation in mice is mediated via the IL-23/IL-17 axis. J Immunol. 2009;182:5836–45.CrossRefPubMed
62.
Ruutu M, Thomas G, Steck R, Degli-Esposti MA, Zinkernagel MS, et al. Beta-glucan triggers spondylarthritis and Crohn’s disease-like ileitis in SKG mice. Arthritis Rheum. 2012;64:2211–22.CrossRefPubMed
63.•
Benham H, Rehaume LM, Hasnain SZ, Velasco J, Baillet AC, et al. Interleukin-23 mediates the intestinal response to microbial beta-1,3-glucan and the development of spondyloarthritis pathology in SKG mice. Arthritis Rheum. 2014;66:1755–67. This study implicates different roles for IL-17 and IL-22 in SpA pathogenesis.CrossRef
64.
Rehaume LM, Mondot S, Aguirre de Carcer A, Velasco J, Benham H, et al. ZAP-70 genotype disrupts the relationship between microbiota and host leading to spondyloarthritis and ileitis. Arthritis Rheum. 2014;66:2780–92.CrossRef
65.
Taurog JD, Richardson JA, Croft JT, Simmons WA, Zhou M, et al. The germfree state prevents development of gut and joint inflammatory disease in HLA-B27 transgenic rats. J Exp Med. 1994;180:2359–64.CrossRefPubMed
66.••
Sherlock JP, Joyce-Shaikh B, Turner SP, Chao CC, Sathe M, et al. IL-23 induces spondyloarthropathy by acting on ROR-gammat+ CD3+CD4-CD8- entheseal resident T cells. Nat Med. 2012;18:1069–76. Though not published in the last 3 years, this is a landmark study establishing the sufficiency and importance of IL-23 in producing a SpA phenotype.CrossRefPubMed
67.
Bal A, Unlu E, Bahar G, Aydog E, Eksioglu E, et al. Comparison of serum IL-1 beta, sIL-2R, IL-6, and TNF-alpha levels with disease activity parameters in ankylosing spondylitis. Clin Rheumatol. 2007;26:211–15.CrossRefPubMed
68.
Sieper J, Porter-Brown B, Thompson L, Harari O, Dougados M. Assessment of short-term symptomatic efficacy of tocilizumab in ankylosing spondylitis: results of randomised, placebo-controlled trials. Ann Rheum Dis. 2014;73:95–100.CrossRefPubMedPubMedCentral
69.
Hueber W, Sands BE, Lewitzky S, Vandemeulebroecke M, Reinisch W, et al. Secukinumab, a human anti-IL-17A monoclonal antibody, for moderate to severe Crohn’s disease: unexpected results of a randomised, double-blind placebo-controlled trial. Gut. 2012;61:1693–700.CrossRefPubMed
70.
Sandborn WJ, Feagan BG, Fedorak RN, Scherl E, Fleisher MR, et al. A randomized trial of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with moderate-to-severe Crohn’s disease. Gastroenterology. 2008;135:1130–41.CrossRefPubMed
71.•
Langley RG, Elewski BE, Lebwohl M, Reich K, Griffiths CE, et al. Secukinumab in plaque psoriasis—results of two phase 3 trials. N Engl J Med. 2014;371:326–38. A definitive study documenting tremendous efficacy in cutaneous psoriasis.CrossRefPubMed
72.
Thaci D, Blauvelt A, Reich K, Tsai TF, Vanaclocha F, et al. Secukinumab is superior to ustekinumab in clearing skin of subjects with moderate to severe plaque psoriasis: CLEAR, a randomized controlled trial. J Am Acad Dermatol. 2015;73:400–9.CrossRefPubMed
73.
Lebwohl M, Strober B, Menter A, Gordon K, Weglowska J, et al. Phase 3 studies comparing brodalumab with ustekinumab in psoriasis. N Engl J Med. 2015;373:1318–28.CrossRefPubMed
74.•
Mease PJ, McInnes IB, Kirkham B, Kavanaugh A, Rahman P, et al. Secukinumab inhibition of interleukin-17A in patients with psoriatic arthritis. N Engl J Med. 2015;373:1329–39. Definitive clinical trials of secukinumab in psoriatic arthritis.CrossRefPubMed
75.•
McInnes IB, Mease PJ, Kirkham B, Kavanaugh A, Ritchlin CT, et al. Secukinumab, a human anti-interleukin-17A monoclonal antibody, in patients with psoriatic arthritis (FUTURE 2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2015;386:1137–46. A definitive report in psoriatic arthritis published contemporaneously with Mease et al. CrossRefPubMed
76.
Antoni CE, Kavanaugh A, Kirkham B, Tutuncu Z, Burmester GR, et al. Sustained benefits of infliximab therapy for dermatologic and articular manifestations of psoriatic arthritis: results from the infliximab multinational psoriatic arthritis controlled trial (IMPACT). Arthritis Rheum. 2005;52:1227–36.CrossRefPubMed
77.
Antoni C, Krueger GG, de Vlam K, Birbara C, Beutler A, et al. Infliximab improves signs and symptoms of psoriatic arthritis: results of the IMPACT 2 trial. Ann Rheum Dis. 2005;64:1150–7.CrossRefPubMedPubMedCentral
78.
Mease PJ, Goffe BS, Metz J, VanderStoep A, Finck B, et al. Etanercept in the treatment of psoriatic arthritis and psoriasis: a randomised trial. Lancet. 2000;356:385–90.CrossRefPubMed
79.
Gottlieb A, Menter A, Mendelsohn A, Shen YK, Li S, et al. Ustekinumab, a human interleukin 12/23 monoclonal antibody, for psoriatic arthritis: randomised, double-blind, placebo-controlled, crossover trial. Lancet. 2009;373:633–40.CrossRefPubMed
80.
McInnes IB, Kavanaugh A, Gottlieb AB, Puig L, Rahman P, et al. Efficacy and safety of ustekinumab in patients with active psoriatic arthritis: 1 year results of the phase 3, multicentre, double-blind, placebo-controlled PSUMMIT 1 trial. Lancet. 2013;382:780–9.CrossRefPubMed
81.••
Baeten D, Sieper J, Braun J, Baraliakos X, Dougados M, et al. Secukinumab, an interleukin-17A inhibitor, in ankylosing spondylitis. N Engl J Med. 2015;373:2534–48. IL-17 blockade may be the most viable biologic option for AS since the TNFs became available.CrossRefPubMed
82.
Baraliakos X, Borah B, Braun J, Baeten D, Laurent D, et al. Long-term effects of secukinumab on MRI findings in relation to clinical efficacy in subjects with active ankylosing spondylitis: an observational study. Ann Rheum Dis. 2016;75:408–12.CrossRefPubMed
83.
Poddubnyy D, Hermann KG, Callhoff J, Listing J, Sieper J. Ustekinumab for the treatment of patients with active ankylosing spondylitis: results of a 28-week, prospective, open-label, proof-of-concept study (TOPAS). Ann Rheum Dis. 2014;73:817–23.CrossRefPubMed
84.
Lee E, Trepicchio WL, Oestreicher JL, Pittman D, Wang F, et al. Increased expression of interleukin 23 p19 and p40 in lesional skin of patients with psoriasis vulgaris. J Exp Med. 2004;199:125–30.CrossRefPubMedPubMedCentral
85.
Baeten D, Baraliakos X, Braun J, Sieper J, Emery P, et al. Anti-interleukin-17A monoclonal antibody secukinumab in treatment of ankylosing spondylitis: a randomised, double-blind, placebo-controlled trial. Lancet. 2013;382:1705–13.CrossRefPubMed
86.
McInnes IB, Sieper J, Braun J, Emery P, van der Heijde D, et al. Efficacy and safety of secukinumab, a fully human anti-interleukin-17A monoclonal antibody, in patients with moderate-to-severe psoriatic arthritis: a 24-week, randomised, double-blind, placebo-controlled, phase II proof-of-concept trial. Ann Rheum Dis. 2014;73:349–56.CrossRefPubMed
87.•
Belasco J, Louie JS, Gulati N, Wei N, Nograles K, et al. Comparative genomic profiling of synovium versus skin lesions in psoriatic arthritis. Arthritis Rheum. 2015;67:934–44. A study suggesting why secukinumab may be more efficacious in treating psoriatic skin than joints.CrossRef
88.
Ward MM, Deodhar A, Akl EA, Lui A, Ermann J, et al. American College of Rheumatology/Spondylitis Association of America/Spondyloarthritis Research and Treatment Network 2015 recommendations for the treatment of ankylosing spondylitis and nonradiographic axial spondyloarthritis. Arthritis Rheum. 2016;68:282–98.CrossRef
89.
Gossec L, Smolen JS, Ramiro S, de Wit M, Cutolo M, et al. European League Against Rheumatism (EULAR) recommendations for the management of psoriatic arthritis with pharmacological therapies: 2015 update. Ann Rheum Dis. 2016;75:499–510.CrossRefPubMed
90.
Agarwal S, Misra R, Aggarwal A. Interleukin 17 levels are increased in juvenile idiopathic arthritis synovial fluid and induce synovial fibroblasts to produce proinflammatory cytokines and matrix metalloproteinases. J Rheumatol. 2008;35:515–19.PubMed
91.
Gaur P, Misra R, Aggarwal A. Natural killer cell and gamma delta T cell alterations in enthesitis related arthritis category of juvenile idiopathic arthritis. Clin Immunol. 2015;161:163–9.CrossRefPubMed