Skip to main content
Top

06-10-2016 | Systemic lupus erythematosus | Article

Clinical associations of IL-10 and IL-37 in systemic lupus erythematosus

Journal: Scientific Reports

Authors: Jack Godsell, Ina Rudloff, Rangi Kandane-Rathnayake, Alberta Hoi, Marcel F. Nold, Eric F. Morand, James Harris

Authors: Jack Godsell, Ina Rudloff, Rangi Kandane-Rathnayake, Alberta Hoi, Marcel F. Nold, Eric F. Morand, James Harris

Publisher: Nature Publishing Group UK

Abstract

Systemic lupus erythematosus (SLE) is a systemic autoimmune disease characterized by the development of autoantibodies to nuclear antigens and inflammatory responses mediated by multiple cytokines. Although previous studies have determined clinical associations between SLE and the anti-inflammatory cytokines IL-10 and IL-37, their role in the disease, or their potential as biomarkers, remains unclear. We examined serum levels of IL-10 and IL-37 in a large cohort of SLE patients, with detailed longitudinal clinical data. We demonstrate a statistically significant association of serum IL-10 with disease activity, with higher levels in active compared to inactive disease. High first visit IL-10 was predictive of high subsequent disease activity; patients with IL-10 in highest quartile at first visit were 3.6 times more likely to have active disease in subsequent visits. Serum IL-37 was also higher in SLE patients compared to control, and was strongly associated with Asian ethnicity. However, IL-37 was not statistically significantly associated with disease activity. IL-37 was significantly reduced in patients with organ damage but this association was attenuated in multivariable analysis. The data suggest that IL-10, but not IL-37, may have potential as a biomarker predictive for disease activity in SLE.

Scientific Reports 2016;6:34604. doi:10.1038/srep34604

Literature
Boonstra, A. et al. Macrophages and myeloid dendritic cells, but not plasmacytoid dendritic cells, produce IL-10 in response to MyD88- and TRIF-dependent TLR signals, and TLR-independent signals. J Immunol 177, 7551–7558 (2006).CrossRefPubMed
McGeachy, M. J. et al. TGF-beta and IL-6 drive the production of IL-17 and IL-10 by T cells and restrain T(H)-17 cell-mediated pathology. Nat Immunol 8, 1390–1397, 10.1038/ni1539 (2007).CrossRefPubMed
Peng, H. et al. Role of interleukin-10 and interleukin-10 receptor in systemic lupus erythematosus. Clin Rheumatol 32, 1255–1266, 10.1007/s10067-013-2294-3 (2013).CrossRefPubMed
Ding, L., Linsley, P. S., Huang, L. Y., Germain, R. N. & Shevach, E. M. IL-10 inhibits macrophage costimulatory activity by selectively inhibiting the up-regulation of B7 expression. J Immunol 151, 1224–1234 (1993).PubMed
Joss, A., Akdis, M., Faith, A., Blaser, K. & Akdis, C. A. IL-10 directly acts on T cells by specifically altering the CD28 co-stimulation pathway. Eur J Immunol 30, 1683–1690, 10.1002/1521-4141(200006)30:6<1683::AID-IMMU1683>3.0.CO;2-A (2000).CrossRefPubMed
McBride, J. M., Jung, T., de Vries, J. E. & Aversa, G. IL-10 alters DC function via modulation of cell surface molecules resulting in impaired T-cell responses. Cell Immunol 215, 162–172 (2002).CrossRefPubMed
Moore, K. W., de Waal Malefyt, R., Coffman, R. L. & O’Garra, A. Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 19, 683–765, 10.1146/annurev.immunol.19.1.683 (2001).CrossRefPubMed
Schuetze, N. et al. IL-12 family members: differential kinetics of their TLR4-mediated induction by Salmonella enteritidis and the impact of IL-10 in bone marrow-derived macrophages. Int Immunol 17, 649–659, 10.1093/intimm/dxh247 (2005).CrossRefPubMed
Wang, H. et al. The abnormal apoptosis of T cell subsets and possible involvement of IL-10 in systemic lupus erythematosus. Cell Immunol 235, 117–121, 10.1016/j.cellimm.2005.08.031 (2005).CrossRefPubMed
Ouyang, W., Rutz, S., Crellin, N. K., Valdez, P. A. & Hymowitz, S. G. Regulation and functions of the IL-10 family of cytokines in inflammation and disease. Annu Rev Immunol 29, 71–109, 10.1146/annurev-immunol-031210-101312 (2011).CrossRefPubMed
Levy, Y. & Brouet, J. C. Interleukin-10 prevents spontaneous death of germinal center B cells by induction of the bcl-2 protein. J Clin Invest 93, 424–428, 10.1172/JCI116977 (1994).CrossRefPubMedPubMedCentral
Llorente, L. et al. Role of interleukin 10 in the B lymphocyte hyperactivity and autoantibody production of human systemic lupus erythematosus. J Exp Med 181, 839–844 (1995).CrossRefPubMed
Chun, H. Y. et al. Cytokine IL-6 and IL-10 as biomarkers in systemic lupus erythematosus. J Clin Immunol 27, 461–466, 10.1007/s10875-007-9104-0 (2007).CrossRefPubMed
Houssiau, F. A. et al. Serum interleukin 10 titers in systemic lupus erythematosus reflect disease activity. Lupus 4, 393–395 (1995).CrossRefPubMed
Liu, T. F. & Jones, B. M. Impaired production of IL-12 in system lupus erythematosus. II: IL-12 production in vitro is correlated negatively with serum IL-10, positively with serum IFN-gamma and negatively with disease activity in SLE. Cytokine 10, 148–153, 10.1006/cyto.1997.0269 (1998).CrossRefPubMed
Llorente, L. et al. Clinical and biologic effects of anti-interleukin-10 monoclonal antibody administration in systemic lupus erythematosus. Arthritis Rheum 43, 1790–1800, 10.1002/1529-0131(200008)43:8<1790::AID-ANR15>3.0.CO;2-2 (2000).CrossRefPubMed
Ishida, H. et al. Continuous administration of anti-interleukin 10 antibodies delays onset of autoimmunity in NZB/W F1 mice. J Exp Med 179, 305–310 (1994).CrossRefPubMed
Yin, Z. et al. IL-10 regulates murine lupus. J Immunol 169, 2148–2155 (2002).CrossRefPubMed
Blenman, K. R. et al. IL-10 regulation of lupus in the NZM2410 murine model. Lab Invest 86, 1136–1148, 10.1038/labinvest.3700468 (2006).CrossRefPubMed
Zulu, I. et al. Cytokine activation is predictive of mortality in Zambian patients with AIDS-related diarrhoea. BMC Infect Dis 8, 156, 10.1186/1471-2334-8-156 (2008).CrossRefPubMedPubMedCentral
Su, D. L., Lu, Z. M., Shen, M. N., Li, X. & Sun, L. Y. Roles of pro- and anti-inflammatory cytokines in the pathogenesis of SLE. J Biomed Biotechnol 2012, 347141, 10.1155/2012/347141 (2012).CrossRefPubMedPubMedCentral
Busfield, S. J. et al. Identification and gene organization of three novel members of the IL-1 family on human chromosome 2. Genomics 66, 213–216, 10.1006/geno.2000.6184 (2000).CrossRefPubMed
Kumar, S. et al. Identification and initial characterization of four novel members of the interleukin-1 family. J Biol Chem 275, 10308–10314 (2000).CrossRefPubMed
Smith, D. E. et al. Four new members expand the interleukin-1 superfamily. J Biol Chem 275, 1169–1175 (2000).CrossRefPubMed
Dinarello, C. et al. IL-1 family nomenclature. Nat Immunol 11, 973, 10.1038/ni1110-973 (2010).CrossRefPubMedPubMedCentral
Nold, M. F. et al. IL-37 is a fundamental inhibitor of innate immunity. Nat Immunol 11, 1014–1022, 10.1038/ni.1944 (2010).CrossRefPubMedPubMedCentral
Boraschi, D. et al. IL-37: a new anti-inflammatory cytokine of the IL-1 family. Eur Cytokine Netw 22, 127–147, 10.1684/ecn.2011.0288 (2011).CrossRefPubMed
Bufler, P., Gamboni-Robertson, F., Azam, T., Kim, S. H. & Dinarello, C. A. Interleukin-1 homologues IL-1F7b and IL-18 contain functional mRNA instability elements within the coding region responsive to lipopolysaccharide. Biochem J 381, 503–510, 10.1042/BJ20040217 (2004).CrossRefPubMedPubMedCentral
Sims, J. E. & Smith, D. E. The IL-1 family: regulators of immunity. Nat Rev Immunol 10, 89–102, 10.1038/nri2691 (2010).CrossRefPubMed
Nold-Petry, C. A. et al. IL-37 requires the receptors IL-18Ralpha and IL-1R8 (SIGIRR) to carry out its multifaceted anti-inflammatory program upon innate signal transduction. Nat Immunol 16, 354–365, 10.1038/ni.3103 (2015).CrossRefPubMed
Song, L. et al. Glucocorticoid regulates interleukin-37 in systemic lupus erythematosus. J Clin Immunol 33, 111–117, 10.1007/s10875-012-9791-z (2013).CrossRefPubMed
Liu, Z. & Davidson, A. Taming lupus-a new understanding of pathogenesis is leading to clinical advances. Nat Med 18, 871–882, 10.1038/nm.2752 (2012).CrossRefPubMedPubMedCentral
Gelati, M. et al. IL-10 production in multiple sclerosis patients, SLE patients and healthy controls: preliminary findings. Ital J Neurol Sci 18, 191–194 (1997).CrossRefPubMed
Hase, K. et al. Increased CCR4 expression in active systemic lupus erythematosus. J Leukoc Biol 70, 749–755 (2001).PubMed
Lacki, J. K., Samborski, W. & Mackiewicz, S. H. Interleukin-10 and interleukin-6 in lupus erythematosus and rheumatoid arthritis, correlations with acute phase proteins. Clin Rheumatol 16, 275–278 (1997).CrossRefPubMed
Mellor-Pita, S. et al. Monocytes and T lymphocytes contribute to a predominance of interleukin 6 and interleukin 10 in systemic lupus erythematosus. Cytometry B Clin Cytom 76, 261–270, 10.1002/cyto.b.20468 (2009).CrossRefPubMed
Park, Y. B. et al. Elevated interleukin-10 levels correlated with disease activity in systemic lupus erythematosus. Clin Exp Rheumatol 16, 283–288 (1998).PubMed
Waszczykowska, E. et al. Estimation of SLE activity based on the serum level of chosen cytokines and superoxide radical generation. Mediators Inflamm 8, 93–100, 10.1080/09629359990586 (1999).CrossRefPubMedPubMedCentral
Yang, P. T. et al. Increased CCR4 expression on circulating CD4(+) T cells in ankylosing spondylitis, rheumatoid arthritis and systemic lupus erythematosus. Clin Exp Immunol 138, 342–347, 10.1111/j.1365-2249.2004.02617.x (2004).CrossRefPubMedPubMedCentral
Koenig, K. F. et al. Serum cytokine profile in patients with active lupus nephritis. Cytokine 60, 410–416, 10.1016/j.cyto.2012.07.004 (2012).CrossRefPubMed
Xu, Q. et al. IL-10 augments antibody production in in vitro immunized lymphocytes by inducing a Th2-type response and B cell maturation. Biosci Biotechnol Biochem 68, 2279–2284, 10.1271/bbb.68.2279 (2004).CrossRefPubMed
Herbst, R., Liu, Z., Jallal, B. & Yao, Y. Biomarkers for systemic lupus erythematosus. Int J Rheum Dis 15, 433–444, 10.1111/j.1756-185X.2012.01764.x (2012).CrossRefPubMed
Visser, J. et al. Differential regulation of interleukin-10 (IL-10) and IL-12 by glucocorticoids in vitro. Blood 91, 4255–4264 (1998).CrossRefPubMed
Mok, M. Y. & Li, W. L. Do Asian patients have worse lupus? Lupus 19, 1384–1390, 10.1177/0961203310375832 (2010).CrossRefPubMed
Hochberg, M. C. Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum 40, 1725, 10.1002/1529-0131(199709)40:9<1725::AID-ART29>3.0.CO;2-Y (1997).CrossRefPubMed
Vincent, F. B., Northcott, M., Hoi, A., Mackay, F. & Morand, E. F. Association of serum B cell activating factor from the tumour necrosis factor family (BAFF) and a proliferation-inducing ligand (APRIL) with central nervous system and renal disease in systemic lupus erythematosus. Lupus 22, 873–884, 10.1177/0961203313496302 (2013).CrossRefPubMed
Vincent, F. B., Northcott, M., Hoi, A., Mackay, F. & Morand, E. F. Clinical associations of serum interleukin-17 in systemic lupus erythematosus. Arthritis Res Ther 15, R97, 10.1186/ar4277 (2013).CrossRefPubMedPubMedCentral
Gladman, D. D. et al. The Systemic Lupus International Collaborating Clinics/American College of Rheumatology (SLICC/ACR) Damage Index for Systemic Lupus Erythematosus International Comparison. J Rheumatol 27, 373–376 (2000).PubMed
Nikpour, M., Urowitz, M. B., Ibanez, D. & Gladman, D. D. Frequency and determinants of flare and persistently active disease in systemic lupus erythematosus. Arthritis Rheum 61, 1152–1158, 10.1002/art.24741 (2009).CrossRefPubMed
Ibanez, D., Gladman, D. D. & Urowitz, M. B. Adjusted mean Systemic Lupus Erythematosus Disease Activity Index-2K is a predictor of outcome in SLE. J Rheumatol 32, 824–827 (2005).PubMed
Gladman, D. D., Ibanez, D. & Urowitz, M. B. Systemic lupus erythematosus disease activity index 2000. J Rheumatol 29, 288–291 (2002).PubMed