Skip to main content
Top

15-05-2018 | Systemic lupus erythematosus | Review | Article

Monogenic systemic lupus erythematosus: insights in pathophysiology

Journal: Rheumatology International

Author: Ezgi Deniz Batu

Publisher: Springer Berlin Heidelberg

Abstract

Systemic lupus erythematosus (SLE) is a complex disease with different genetic, immunologic, and environmental factors contributing to the pathogenesis. Monogenic SLE could help us understand the main phases of immune dysregulation in SLE. The aim of this review is to summarize the current knowledge on monogenic SLE with the implications of the respective genes on disease pathogenesis. A comprehensive literature search on monogenic SLE was conducted utilizing the Cochrane Library and MEDLINE/PubMed databases. The main affected pathways in disease pathogenesis are identified as follows: complement system, apoptosis, nucleic acid degradation, nucleic acid sensing, self-tolerance, and type I interferon production. Further studies on monogenic SLE can make precision medicine possible for SLE by increasing our understanding of disease pathogenesis.
Literature
1.
Hom G, Graham RR, Modrek B, Taylor KE, Ortmann W, Garnier S, Lee AT, Chung SA, Ferreira RC, Pant PV, Ballinger DG, Kosoy R, Demirci FY, Kamboh MI, Kao AH, Tian C, Gunnarsson I, Bengtsson AA, Rantapaa-Dahlqvist S, Petri M, Manzi S, Seldin MF, Ronnblom L, Syvanen AC, Criswell LA, Gregersen PK, Behrens TW (2008) Association of systemic lupus erythematosus with C8orf13-BLK and ITGAM-ITGAX. N Engl J Med 358:900–909. https://​doi.​org/​10.​1056/​NEJMoa0707865 PubMedCrossRef
2.
Namjou B, Kilpatrick J, Harley JB (2007) Genetics of clinical expression in SLE. Autoimmunity 40:602–612. https://​doi.​org/​10.​1080/​0891693070151096​2 PubMedCrossRef
3.
So HC, Gui AH, Cherny SS, Sham PC (2011) Evaluating the heritability explained by known susceptibility variants: a survey of ten complex diseases. Genet Epidemiol 35:310–317. https://​doi.​org/​10.​1002/​gepi.​20579 PubMedCrossRef
4.
Gasparyan AY, Ayvazyan L, Blackmore H, Kitas GD (2011) Writing a narrative biomedical review: considerations for authors, peer reviewers, and editors. Rheumatol Int 31:1409–1417. https://​doi.​org/​10.​1007/​s00296-011-1999-3 PubMedCrossRef
5.
Wu YL, Brookshire BP, Verani RR, Arnett FC, Yu CY (2011) Clinical presentations and molecular basis of complement C1r deficiency in a male African-American patient with systemic lupus erythematosus. Lupus 20:1126–1134. https://​doi.​org/​10.​1177/​0961203311404914​ PubMedCrossRef
6.
Botto M, Dell’Agnola C, Bygrave AE, Thompson EM, Cook HT, Petry F, Loos M, Pandolfi PP, Walport MJ (1998) Homozygous C1q deficiency causes glomerulonephritis associated with multiple apoptotic bodies. Nat Genet 19:56–59. https://​doi.​org/​10.​1038/​ng0598-56 PubMedCrossRef
7.
Yoshida K, van den Berg TK, Dijkstra CD (1993) Two functionally different follicular dendritic cells in secondary lymphoid follicles of mouse spleen, as revealed by CR1/2 and FcR gamma II-mediated immune-complex trapping. Immunology 80:34–39PubMedPubMedCentral
8.
Klickstein LB, Barbashov SF, Liu T, Jack RM, Nicholson-Weller A (1997) Complement receptor type 1 (CR1, CD35) is a receptor for C1q. Immunity 7:345–355PubMedCrossRef
9.
Tuveson DA, Ahearn JM, Matsumoto AK, Fearon DT (1991) Molecular interactions of complement receptors on B lymphocytes: a CR1/CR2 complex distinct from the CR2/CD19 complex. J Exp Med 173:1083–1089PubMedCrossRef
10.
Jozsi M, Prechl J, Bajtay Z, Erdei A (2002) Complement receptor type 1 (CD35) mediates inhibitory signals in human B lymphocytes. J Immunol 168:2782–2788PubMedCrossRef
11.
Gadjeva MG, Rouseva MM, Zlatarova AS, Reid KB, Kishore U, Kojouharova MS (2008) Interaction of human C1q with IgG and IgM: revisited. Biochemistry 47:13093–13102. https://​doi.​org/​10.​1021/​bi801131h PubMedCrossRef
12.
Sellar GC, Blake DJ, Reid KB (1991) Characterization and organization of the genes encoding the A-, B- and C-chains of human complement subcomponent C1q. The complete derived amino acid sequence of human C1q. Biochem J 274:481–490PubMedPubMedCentralCrossRef
13.
Moreau C, Bally I, Chouquet A, Bottazzi B, Ghebrehiwet B, Gaboriaud C, Thielens N (2016) Structural and functional characterization of a single-chain form of the recognition domain of complement protein C1q. Front Immunol 7:79. https://​doi.​org/​10.​3389/​fimmu.​2016.​00079 PubMedPubMedCentralCrossRef
14.
Duncan AR, Winter G (1988) The binding site for C1q on IgG. Nature 332:738–740. https://​doi.​org/​10.​1038/​332738a0 PubMedCrossRef
15.
Navratil JS, Watkins SC, Wisnieski JJ, Ahearn JM (2001) The globular heads of C1q specifically recognize surface blebs of apoptotic vascular endothelial cells. J Immunol 166:3231–3239PubMedCrossRef
16.
Kusumoto H, Hirosawa S, Salier JP, Hagen FS, Kurachi K (1988) Human genes for complement components C1r and C1s in a close tail-to-tail arrangement. Proc Natl Acad Sci USA 85:7307–7311PubMedCrossRefPubMedCentral
17.
Lintner KE, Wu YL, Yang Y, Spencer CH, Hauptmann G, Hebert LA, Atkinson JP, Yu CY (2016) Early components of the complement classical activation pathway in human systemic autoimmune diseases. Front Immunol 7:36. https://​doi.​org/​10.​3389/​fimmu.​2016.​00036 PubMedPubMedCentralCrossRef
18.
Walport MJ (2001) Complement. First of two parts. N Engl J Med 344:1058–1066. https://​doi.​org/​10.​1056/​NEJM200104053441​406 PubMedCrossRef
19.
Lewis LA, Ram S (2014) Meningococcal disease and the complement system. Virulence 5:98–126. https://​doi.​org/​10.​4161/​viru.​26515 PubMedCrossRef
20.
Belot A, Cimaz R (2012) Monogenic forms of systemic lupus erythematosus: new insights into SLE pathogenesis. Pediatr Rheumatol Online J 10:21. https://​doi.​org/​10.​1186/​1546-0096-10-21 PubMedPubMedCentralCrossRef
21.
Atkinson JYC (2016) The complement system in systemic lupus eryhtematosus. In: GC T (ed) Systemic lupus erythematosus, Elseiver, Newyork, pp 81–112CrossRef
22.
Bhattad S, Rawat A, Gupta A, Suri D, Garg R, de Boer M, Kuijpers TW, Singh S (2015) Early complement component deficiency in a single-centre cohort of pediatric onset lupus. J Clin Immunol 35:777–785. https://​doi.​org/​10.​1007/​s10875-015-0212-y PubMedCrossRef
23.
Niewold TB, Wu SC, Smith M, Morgan GA, Pachman LM (2011) Familial aggregation of autoimmune disease in juvenile dermatomyositis. Pediatrics 127:e1239-1246. https://​doi.​org/​10.​1542/​peds.​2010-3022 CrossRef
24.
Olsson RF, Hagelberg S, Schiller B, Ringden O, Truedsson L, Ahlin A (2016) Allogeneic hematopoietic stem cell transplantation in the treatment of human C1q deficiency: the Karolinska experience. Transplantation 100:1356–1362. https://​doi.​org/​10.​1097/​TP.​0000000000000975​ PubMedCrossRef
25.
Pickering MC, Botto M, Taylor PR, Lachmann PJ, Walport MJ (2000) Systemic lupus erythematosus, complement deficiency, and apoptosis. Adv Immunol 76:227–324PubMedCrossRef
26.
Schejbel L, Skattum L, Hagelberg S, Ahlin A, Schiller B, Berg S, Genel F, Truedsson L, Garred P (2011) Molecular basis of hereditary C1q deficiency–revisited: identification of several novel disease-causing mutations. Genes Immunol 12:626–634. https://​doi.​org/​10.​1038/​gene.​2011.​39 CrossRef
27.
Stegert M, Bock M, Trendelenburg M (2015) Clinical presentation of human C1q deficiency: how much of a lupus? Mol Immunol 67:3–11. https://​doi.​org/​10.​1016/​j.​molimm.​2015.​03.​007 PubMedCrossRef
28.
van Schaarenburg RA, Schejbel L, Truedsson L, Topaloglu R, Al-Mayouf SM, Riordan A, Simon A, Kallel-Sellami M, Arkwright PD, Ahlin A, Hagelberg S, Nielsen S, Shayesteh A, Morales A, Tam S, Genel F, Berg S, Ketel AG, Merlijn van den Berg J, Kuijpers TW, Olsson RF, Huizinga TW, Lankester AC, Trouw LA (2015) Marked variability in clinical presentation and outcome of patients with C1q immunodeficiency. J Autoimmun 62:39–44. https://​doi.​org/​10.​1016/​j.​jaut.​2015.​06.​002 PubMedCrossRef
29.
Al-Mayouf SM, AlSaleem A, AlMutairi N, AlSonbul A, Alzaid T, Alazami AM, Al-Mousa H (2018) Monogenic interferonopathies: phenotypic and genotypic findings of CANDLE syndrome and its overlap with C1q deficient SLE. Int J Rheum Dis 21:208–213. https://​doi.​org/​10.​1111/​1756-185X.​13228 PubMedCrossRef
30.
Ekinci Z, Ozturk K (2018) Systemic lupus erythematosus with C1q deficiency: treatment with fresh frozen plasma. Lupus 27:134–138. https://​doi.​org/​10.​1177/​0961203317741565​ PubMedCrossRef
31.
Gomes RC, Silva MF, Kozu K, Bonfa E, Pereira RM, Terreri MT, Magalhaes CS, Sacchetti SB, Marini R, Fraga M, Carvalho LM, Barbosa CM, Carneiro-Sampaio M, Silva CA (2016) Features of 847 childhood-onset systemic lupus erythematosus patients in three age groups at diagnosis: a Brazilian multicenter study. Arthritis Care Res 68:1736–1741. https://​doi.​org/​10.​1002/​acr.​22881 CrossRef
32.
Amano MT, Ferriani VP, Florido MP, Reis ES, Delcolli MI, Azzolini AE, Assis-Pandochi AI, Sjoholm AG, Farah CS, Jensenius JC, Isaac L (2008) Genetic analysis of complement C1s deficiency associated with systemic lupus erythematosus highlights alternative splicing of normal C1s gene. Mol Immunol 45:1693–1702. https://​doi.​org/​10.​1016/​j.​molimm.​2007.​09.​034 PubMedCrossRef
33.
Demirkaya E, Zhou Q, Smith CK, Ombrello MJ, Deuitch N, Tsai WL, Hoffmann P, Remmers EF, Takeuchi M, Park YH, Chae J, Barut K, Simsek D, Adrovic A, Sahin S, Caliskan S, Chandrasekharappa SC, Hasni SA, Ombrello AK, Gadina M, Kastner DL, Kaplan MJ, Kasapcopur O, Aksentijevich I (2017) Brief Report: Deficiency of complement 1r subcomponent in early-onset systemic lupus erythematosus: the role of disease-modifying alleles in a monogenic disease. Arthritis Rheumatol 69:1832–1839. https://​doi.​org/​10.​1002/​art.​40158 PubMedPubMedCentralCrossRef
34.
Dragon-Durey MA, Quartier P, Fremeaux-Bacchi V, Blouin J, de Barace C, Prieur AM, Weiss L, Fridman WH (2001) Molecular basis of a selective C1s deficiency associated with early onset multiple autoimmune diseases. J Immunol 166:7612–7616PubMedCrossRef
35.
Kapferer-Seebacher I, Pepin M, Werner R, Aitman TJ, Nordgren A, Stoiber H, Thielens N, Gaboriaud C, Amberger A, Schossig A, Gruber R, Giunta C, Bamshad M, Bjorck E, Chen C, Chitayat D, Dorschner M, Schmitt-Egenolf M, Hale CJ, Hanna D, Hennies HC, Heiss-Kisielewsky I, Lindstrand A, Lundberg P, Mitchell AL, Nickerson DA, Reinstein E, Rohrbach M, Romani N, Schmuth M, Silver R, Taylan F, Vandersteen A, Vandrovcova J, Weerakkody R, Yang M, Pope FM,, Byers PH, Zschocke J (2016) Molecular basis of periodontal EDSC. Periodontal Ehlers–Danlos syndrome is caused by mutations in C1R and C1S, which encode subcomponents C1r and C1s of complement. Am J Hum Genet 99:1005–1014. https://​doi.​org/​10.​1016/​j.​ajhg.​2016.​08.​019 PubMedPubMedCentralCrossRef
36.
Agnello V (1986) Lupus diseases associated with hereditary and acquired deficiencies of complement. Spring Semin Immunopathol 9:161–178CrossRef
37.
Johnson CA, Densen P, Hurford RK Jr, Colten HR, Wetsel RA (1992) Type I human complement C2 deficiency. A 28-base pair gene deletion causes skipping of exon 6 during RNA splicing. J Biol Chem 267:9347–9353PubMed
38.
Jonsson G, Sjoholm AG, Truedsson L, Bengtsson AA, Braconier JH, Sturfelt G (2007) Rheumatological manifestations, organ damage and autoimmunity in hereditary C2 deficiency. Rheumatology 46:1133–1139. https://​doi.​org/​10.​1093/​rheumatology/​kem023 PubMedCrossRef
39.
Macedo AC, Isaac L (2016) Systemic lupus erythematosus and deficiencies of early components of the complement classical pathway. Front Immunol 7:55. https://​doi.​org/​10.​3389/​fimmu.​2016.​00055 PubMedPubMedCentralCrossRef
40.
Yang Y, Chung EK, Wu YL, Savelli SL, Nagaraja HN, Zhou B, Hebert M, Jones KN, Shu Y, Kitzmiller K, Blanchong CA, McBride KL, Higgins GC, Rennebohm RM, Rice RR, Hackshaw KV, Roubey RA, Grossman JM, Tsao BP, Birmingham DJ, Rovin BH, Hebert LA, Yu CY (2007) Gene copy-number variation and associated polymorphisms of complement component C4 in human systemic lupus erythematosus (SLE): low copy number is a risk factor for and high copy number is a protective factor against SLE susceptibility in European Americans. Am J Hum Genet 80:1037–1054. https://​doi.​org/​10.​1086/​518257 PubMedPubMedCentralCrossRef
41.
Yang Y, Lhotta K, Chung EK, Eder P, Neumair F, Yu CY (2004) Complete complement components C4A and C4B deficiencies in human kidney diseases and systemic lupus erythematosus. J Immunol 173:2803–2814PubMedCrossRef
42.
Lokki ML, Circolo A, Ahokas P, Rupert KL, Yu CY, Colten HR (1999) Deficiency of human complement protein C4 due to identical frameshift mutations in the C4A and C4B genes. J Immunol 162:3687–3693PubMed
43.
Nordin Fredrikson G, Truedsson L, Sjoholm AG, Kjellman M (1991) DNA analysis in a MHC heterozygous patient with complete C4 deficiency–homozygosity for C4 gene deletion and C4 pseudogene. Exp Clin Immunogenet 8:29–37PubMed
44.
Rupert KL, Moulds JM, Yang Y, Arnett FC, Warren RW, Reveille JD, Myones BL, Blanchong CA, Yu CY (2002) The molecular basis of complete complement C4A and C4B deficiencies in a systemic lupus erythematosus patient with homozygous C4A and C4B mutant genes. J Immunol 169:1570–1578PubMedCrossRef
45.
Wu YL, Hauptmann G, Viguier M, Yu CY (2009) Molecular basis of complete complement C4 deficiency in two North-African families with systemic lupus erythematosus. Genes Immun 10:433–445. https://​doi.​org/​10.​1038/​gene.​2009.​10 PubMedPubMedCentralCrossRef
46.
Chen JY, Wu YL, Mok MY, Wu YJ, Lintner KE, Wang CM, Chung EK, Yang Y, Zhou B, Wang H, Yu D, Alhomosh A, Jones K, Spencer CH, Nagaraja HN, Lau YL, Lau CS, Yu CY (2016) Effects of complement C4 gene copy number variations, size dichotomy, and C4A deficiency on genetic risk and clinical presentation of systemic lupus erythematosus in East Asian Populations. Arthritis Rheumatol 68:1442–1453. https://​doi.​org/​10.​1002/​art.​39589 PubMedPubMedCentralCrossRef
47.
Kim JH, Jung SH, Bae JS, Lee HS, Yim SH, Park SY, Bang SY, Hu HJ, Shin HD, Bae SC, Chung YJ (2013) Deletion variants of RABGAP1L, 10q21.3, and C4 are associated with the risk of systemic lupus erythematosus in Korean women. Arthritis Rheum 65:1055–1063. https://​doi.​org/​10.​1002/​art.​37854 PubMedCrossRef
48.
Lv Y, He S, Zhang Z, Li Y, Hu D, Zhu K, Cheng H, Zhou F, Chen G, Zheng X, Li P, Ren Y, Yin X, Cui Y, Sun L, Yang S, Zhang X (2012) Confirmation of C4 gene copy number variation and the association with systemic lupus erythematosus in Chinese Han population. Rheumatol Int 32:3047–3053. https://​doi.​org/​10.​1007/​s00296-011-2023-7 PubMedCrossRef
49.
Skattum L, van Deuren M, van der Poll T, Truedsson L (2011) Complement deficiency states and associated infections. Mol Immunol 48:1643–1655. https://​doi.​org/​10.​1016/​j.​molimm.​2011.​05.​001 PubMedCrossRef
50.
Fremeaux-Bacchi V, Miller EC, Liszewski MK, Strain L, Blouin J, Brown AL, Moghal N, Kaplan BS, Weiss RA, Lhotta K, Kapur G, Mattoo T, Nivet H, Wong W, Gie S, Hurault de Ligny B, Fischbach M, Gupta R, Hauhart R, Meunier V, Loirat C, Dragon-Durey MA, Fridman WH, Janssen BJ, Goodship TH, Atkinson JP (2008) Mutations in complement C3 predispose to development of atypical hemolytic uremic syndrome. Blood 112:4948–4952. https://​doi.​org/​10.​1182/​blood-2008-01-133702 PubMedPubMedCentralCrossRef
51.
Santos-Valente E, Reisli I, Artac H, Ott R, Sanal O, Boztug K (2013) A novel mutation in the complement component 3 gene in a patient with selective IgA deficiency. J Clin Immunol 33:127–133. https://​doi.​org/​10.​1007/​s10875-012-9775-z PubMedCrossRef
52.
Tsukamoto H, Horiuchi T, Kokuba H, Nagae S, Nishizaka H, Sawabe T, Harashima S, Himeji D, Koyama T, Otsuka J, Mitoma H, Kimoto Y, Hashimura C, Kitano E, Kitamura H, Furue M, Harada M (2005) Molecular analysis of a novel hereditary C3 deficiency with systemic lupus erythematosus. Biochem Biophys Res Commun 330:298–304. https://​doi.​org/​10.​1016/​j.​bbrc.​2005.​02.​159 PubMedCrossRef
53.
Imai K, Nakajima K, Eguchi K, Miyazaki M, Endoh M, Tomino Y, Nomoto Y, Sakai H, Hyodo Y (1991) Homozygous C3 deficiency associated with IgA nephropathy. Nephron 59:148–152. https://​doi.​org/​10.​1159/​000186535 PubMedCrossRef
54.
Matsuyama W, Nakagawa M, Takashima H, Muranaga F, Sano Y, Osame M (2001) Identification of a novel mutation (Tyr1081Ter) in sisters with hereditary component C3 deficiency and SLE-like symptoms. Hum Mutat 17:79. https://​doi.​org/​10.​1002/​1098-1004(2001)17:1<79::AID-HUMU22>3.0.CO;2-5
55.
Sano Y, Nishimukai H, Kitamura H, Nagaki K, Inai S, Hamasaki Y, Maruyama I, Igata A (1981) Hereditary deficiency of the third component of complement in two sisters with systemic lupus erythematosus-like symptoms. Arthritis Rheum 24:1255–1260PubMedCrossRef
56.
Falcao ESR, Isaac DAL (2006) Clinical aspects and molecular basis of primary deficiencies of complement component C3 and its regulatory proteins factor I and factor H. Scand J Immunol 63:155–168. https://​doi.​org/​10.​1111/​j.​1365-3083.​2006.​01729.​x PubMedCrossRef
57.
Segurado OG, Arnaiz-Villena AA, Iglesias-Casarrubios P, Martinez-Laso J, Vicario JL, Fontan G, Lopez-Trascasa M (1992) Combined total deficiency of C7 and C4B with systemic lupus erythematosus (SLE). Clin Exp Immunol 87:410–414PubMedPubMedCentralCrossRef
58.
Sugimoto M, Nishikai M, Sato A, Suzuki Y, Nihei M, Uchida J, Mimura N (1987) SLE-like and sicca symptoms in late component (C9) complement deficiency. Ann Rheum Dis 46:153–155PubMedPubMedCentralCrossRef
59.
Trapp RG, Mooney E, Coleman TH, Forristal J, Herman JH (1987) Hereditary complement (C6) deficiency associated with systemic lupus erythematosus, Sjogren’s syndrome and hyperthyroidism. J Rheumatol 14:1030–1033PubMed
60.
Wisnieski JJ, Naff GB, Pensky J, Sorin SB (1985) Terminal complement component deficiencies and rheumatic disease: development of a rheumatic syndrome and anticomplementary activity in a patient with complete C6 deficiency. Ann Rheum Dis 44:716–722PubMedPubMedCentralCrossRef
61.
Tait SW, Green DR (2010) Mitochondria and cell death: outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol 11:621–632. https://​doi.​org/​10.​1038/​nrm2952 PubMedCrossRef
62.
Wu J, Wilson J, He J, Xiang L, Schur PH, Mountz JD (1996) Fas ligand mutation in a patient with systemic lupus erythematosus and lymphoproliferative disease. J Clin Invest 98:1107–1113. https://​doi.​org/​10.​1172/​JCI118892 PubMedPubMedCentralCrossRef
63.
Elkon KB (2018) Cell death, nucleic acids and immunity: inflammation beyond the Grave. Arthritis Rheumatol. https://​doi.​org/​10.​1002/​art.​40452 CrossRefPubMedPubMedCentral
64.
Zhang P, Lu Q (2018) Genetic and epigenetic influences on the loss of tolerance in autoimmunity. Cell Mol Immunol. https://​doi.​org/​10.​1038/​cmi.​2017.​137 CrossRefPubMedPubMedCentral
65.
Rieux-Laucat F, Le Deist F, Hivroz C, Roberts IA, Debatin KM, Fischer A, de Villartay JP (1995) Mutations in Fas associated with human lymphoproliferative syndrome and autoimmunity. Science 268:1347–1349PubMedCrossRef
66.
Del-Rey M, Ruiz-Contreras J, Bosque A, Calleja S, Gomez-Rial J, Roldan E, Morales P, Serrano A, Anel A, Paz-Artal E, Allende LM (2006) A homozygous Fas ligand gene mutation in a patient causes a new type of autoimmune lymphoproliferative syndrome. Blood 108:1306–1312. https://​doi.​org/​10.​1182/​blood-2006-04-015776 PubMedCrossRef
67.
Bartels AK, Banks TA, Bay JL (2017) Pearls and pitfalls: autoimmune lymphoproliferative syndrome and autoimmune lymphoproliferative syndrome-like disease. Allergy Asthma Proc 38:317–321. https://​doi.​org/​10.​2500/​aap.​2017.​38.​4062 PubMedCrossRef
68.
Rottman JB, Willis CR (2010) Mouse models of systemic lupus erythematosus reveal a complex pathogenesis. Vet Pathol 47:664–676. https://​doi.​org/​10.​1177/​0300985810370005​ PubMedCrossRef
69.
Bussone G, Mouthon L (2009) Autoimmune manifestations in primary immune deficiencies. Autoimmun Rev 8:332–336. https://​doi.​org/​10.​1016/​j.​autrev.​2008.​11.​004 PubMedCrossRef
70.
Vaishnaw AK, Toubi E, Ohsako S, Drappa J, Buys S, Estrada J, Sitarz A, Zemel L, Chu JL, Elkon KB (1999) The spectrum of apoptotic defects and clinical manifestations, including systemic lupus erythematosus, in humans with CD95 (Fas/APO-1) mutations. Arthritis Rheum 42:1833–1842. https://​doi.​org/​10.​1002/​1529-0131(199909)42:9<1833::AID-ANR7>3.0.CO;2-Q
71.
Duquesnes N, Lezoualc’h F, Crozatier B (2011) PKC-delta and PKC-epsilon: foes of the same family or strangers? J Mol Cell Cardiol 51:665–673. https://​doi.​org/​10.​1016/​j.​yjmcc.​2011.​07.​013 PubMedCrossRef
72.
Limnander A, Zikherman J, Lau T, Leitges M, Weiss A, Roose JP (2014) Protein kinase Cdelta promotes transitional B cell-negative selection and limits proximal B cell receptor signaling to enforce tolerance. Mol Cell Biol 34:1474–1485. https://​doi.​org/​10.​1128/​MCB.​01699-13 PubMedPubMedCentralCrossRef
73.
Belot A, Kasher PR, Trotter EW, Foray AP, Debaud AL, Rice GI, Szynkiewicz M, Zabot MT, Rouvet I, Bhaskar SS, Daly SB, Dickerson JE, Mayer J, O’Sullivan J, Juillard L, Urquhart JE, Fawdar S, Marusiak AA, Stephenson N, Waszkowycz B, M WB, Biesecker LG, Rene GCMB., Eliaou C, Fabien JF, Ranchin N, Cochat B, Gaffney P, Rozenberg PM, Lebon F, Malcus P, Crow C, Brognard YJ, Bonnefoy J N (2013) Protein kinase cdelta deficiency causes mendelian systemic lupus erythematosus with B cell-defective apoptosis and hyperproliferation. Arthritis Rheum 65:2161–2171. https://​doi.​org/​10.​1002/​art.​38008 PubMedPubMedCentralCrossRef
74.
Kiykim A, Ogulur I, Baris S, Salzer E, Karakoc-Aydiner E, Ozen AO, Garncarz W, Hirschmugl T, Krolo A, Yucelten AD, Boztug K, Barlan IB (2015) Potentially beneficial effect of hydroxychloroquine in a patient with a novel mutation in protein kinase cdelta deficiency. J Clin Immunol 35:523–526. https://​doi.​org/​10.​1007/​s10875-015-0178-9 PubMedCrossRef
75.
Pullabhatla V, Roberts AL, Lewis MJ, Mauro D, Morris DL, Odhams CA, Tombleson P, Liljedahl U, Vyse S, Simpson MA, Sauer S, de Rinaldis E, Syvanen AC, Vyse TJ (2018) De novo mutations implicate novel genes in systemic lupus erythematosus. Hum Mol Genet 27:421–429. https://​doi.​org/​10.​1093/​hmg/​ddx407 PubMedCrossRef
76.
Peschke K, Achleitner M, Frenzel K, Gerbaulet A, Ada SR, Zeller N, Lienenklaus S, Lesche M, Poulet C, Naumann R, Dahl A, Ravens U, Gunther C, Muller W, Knobeloch KP, Prinz M, Roers A, Behrendt R (2016) Loss of Trex1 in dendritic cells is sufficient to trigger systemic autoimmunity. J Immunol 197:2157–2166. https://​doi.​org/​10.​4049/​jimmunol.​1600722 PubMedCrossRef
77.
Yang YG, Lindahl T, Barnes DE (2007) Trex1 exonuclease degrades ssDNA to prevent chronic checkpoint activation and autoimmune disease. Cell 131:873–886. https://​doi.​org/​10.​1016/​j.​cell.​2007.​10.​017 PubMedCrossRef
78.
Napirei M, Karsunky H, Zevnik B, Stephan H, Mannherz HG, Moroy T (2000) Features of systemic lupus erythematosus in Dnase1-deficient mice. Nat Genet 25:177–181. https://​doi.​org/​10.​1038/​76032 PubMedCrossRef
79.
Mohammadoo-Khorasani M, Musavi M, Mousavi M, Moossavi M, Khoddamian M, Sandoughi M, Zakeri Z (2016) Deoxyribonuclease I gene polymorphism and susceptibility to systemic lupus erythematosus. Clin Rheumatol 35:101–105. https://​doi.​org/​10.​1007/​s10067-015-3111-y PubMedCrossRef
80.
Bodano A, Amarelo J, Gonzalez A, Gomez-Reino JJ, Conde C (2004) Novel DNASE I mutations related to systemic lupus erythematosus. Arthritis Rheum 50:4070–4071. https://​doi.​org/​10.​1002/​art.​20721 PubMedCrossRef
81.
Yasutomo K, Horiuchi T, Kagami S, Tsukamoto H, Hashimura C, Urushihara M, Kuroda Y (2001) Mutation of DNASE1 in people with systemic lupus erythematosus. Nat Genet 28:313–314. https://​doi.​org/​10.​1038/​91070 PubMedCrossRef
82.
Chen WJ, Lee IS, Chen CY, Liao TH (2004) Biological functions of the disulfides in bovine pancreatic deoxyribonuclease. Protein Sci 13:875–883. https://​doi.​org/​10.​1110/​ps.​03438204 PubMedPubMedCentralCrossRef
83.
Rodriguez AM, Rodin D, Nomura H, Morton CC, Weremowicz S, Schneider MC (1997) Identification, localization, and expression of two novel human genes similar to deoxyribonuclease I. Genomics 42:507–513. https://​doi.​org/​10.​1006/​geno.​1997.​4748 PubMedCrossRef
84.
Zeng Z, Parmelee D, Hyaw H, Coleman TA, Su K, Zhang J, Gentz R, Ruben S, Rosen C, Li Y (1997) Cloning and characterization of a novel human DNase. Biochem Biophys Res Commun 231:499–504. https://​doi.​org/​10.​1006/​bbrc.​1996.​5923 PubMedCrossRef
85.
Al-Mayouf SM, Sunker A, Abdwani R, Abrawi SA, Almurshedi F, Alhashmi N, Al Sonbul A, Sewairi W, Qari A, Abdallah E, Al-Owain M, Al Motywee S, Al-Rayes H, Hashem M, Khalak H, Al-Jebali L, Alkuraya FS (2011) Loss-of-function variant in DNASE1L3 causes a familial form of systemic lupus erythematosus. Nat Genet 43:1186–1188. https://​doi.​org/​10.​1038/​ng.​975 PubMedCrossRef
86.
Ozcakar ZB, Foster J II, Diaz-Horta O, Kasapcopur O, Fan YS, Yalcinkaya F, Tekin M (2013) DNASE1L3 mutations in hypocomplementemic urticarial vasculitis syndrome. Arthritis Rheum 65:2183–2189. https://​doi.​org/​10.​1002/​art.​38010 PubMedCrossRef
87.
Rice GI, Rodero MP, Crow YJ (2015) Human disease phenotypes associated with mutations in TREX1. J Clin Immunol 35:235–243. https://​doi.​org/​10.​1007/​s10875-015-0147-3 PubMedCrossRef
88.
Chahwan C, Chahwan R (2012) Aicardi-Goutieres syndrome: from patients to genes and beyond. Clin Genet 81:413–420. https://​doi.​org/​10.​1111/​j.​1399-0004.​2011.​01825.​x PubMedCrossRef
89.
Crow YJ, Livingston JH (2008) Aicardi-Goutieres syndrome: an important Mendelian mimic of congenital infection. Dev Med Child Neurol 50:410–416. https://​doi.​org/​10.​1111/​j.​1469-8749.​2008.​02062.​x PubMedCrossRef
90.
Crow YJ, Manel N (2015) Aicardi-Goutieres syndrome and the type I interferonopathies. Nat Rev Immunol 15:429–440. https://​doi.​org/​10.​1038/​nri3850 PubMedCrossRef
91.
Crow YJ, Rehwinkel J (2009) Aicardi-Goutieres syndrome and related phenotypes: linking nucleic acid metabolism with autoimmunity. Hum Mol Genet 18:R130-136. https://​doi.​org/​10.​1093/​hmg/​ddp293 CrossRef
92.
Mackenzie KJ, Carroll P, Lettice L, Tarnauskaite Z, Reddy K, Dix F, Revuelta A, Abbondati E, Rigby RE, Rabe B, Kilanowski F, Grimes G, Fluteau A, Devenney PS, Hill RE, Reijns MA, Jackson AP (2016) Ribonuclease H2 mutations induce a cGAS/STING-dependent innate immune response. EMBO J 35:831–844. https://​doi.​org/​10.​15252/​embj.​201593339 PubMedPubMedCentralCrossRef
93.
Rice GI, Bond J, Asipu A, Brunette RL, Manfield IW, Carr IM, Fuller JC, Jackson RM, Lamb T, Briggs TA, Ali M, Gornall H, Couthard LR, Aeby A, Attard-Montalto SP, Bertini E, Bodemer C, Brockmann K, Brueton LA, Corry PC, Desguerre I, Fazzi E, Cazorla AG, Gener B, Hamel BC, Heiberg A, Hunter M, van der Knaap MS, Kumar R, Lagae L, Landrieu PG, Lourenco CM, Marom D, McDermott MF, van der Merwe W, Orcesi S, Prendiville JS, Rasmussen M, Shalev SA, Soler DM, Shinawi M, Spiegel R, Tan TY, Vanderver A, Wakeling EL, Wassmer E, Whittaker E, Lebon P, Stetson DB, Bonthron DT, Crow YJ (2009) Mutations involved in Aicardi–Goutieres syndrome implicate SAMHD1 as regulator of the innate immune response. Nat Genet 41:829–832. https://​doi.​org/​10.​1038/​ng.​373 PubMedPubMedCentralCrossRef
94.
Volpi S, Picco P, Caorsi R, Candotti F, Gattorno M (2016) Type I interferonopathies in pediatric rheumatology. Pediatr Rheumatol 14:35. https://​doi.​org/​10.​1186/​s12969-016-0094-4 CrossRef
95.
Livingston JH, Crow YJ (2016) Neurologic phenotypes associated with mutations in TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, ADAR1, and IFIH1: Aicardi–Goutieres syndrome and beyond. Neuropediatrics 47:355–360. https://​doi.​org/​10.​1055/​s-0036-1592307 PubMedCrossRef
96.
Crow YJ, Chase DS, Lowenstein Schmidt J, Szynkiewicz M, Forte GM, Gornall HL, Oojageer A, Anderson B, Pizzino A, Helman G, Abdel-Hamid MS, Abdel-Salam GM, Ackroyd S, Aeby A, Agosta G, Albin C, Allon-Shalev S, Arellano M, Ariaudo G, Aswani V, Babul-Hirji R, Baildam EM, Bahi-Buisson N, Bailey KM, Barnerias C, Barth M, Battini R, Beresford MW, Bernard G, Bianchi M, Billette de Villemeur T, Blair EM, Bloom M, Burlina AB, Carpanelli ML, Carvalho DR, Castro-Gago M, Cavallini A, Cereda C, Chandler KE, Chitayat DA, Collins AE, Sierra Corcoles C, Cordeiro NJ, Crichiutti G, Dabydeen L, Dale RC, D’Arrigo S, De Goede CG, De Laet C, De Waele LM, Denzler I, Desguerre I, Devriendt K, Di Rocco M, Fahey MC, Fazzi E, Ferrie CD, Figueiredo A, Gener B, Goizet C, Gowrinathan NR, Gowrishankar K, Hanrahan D, Isidor B, Kara B, Khan N, King MD, Kirk EP, Kumar R, Lagae L, Landrieu P, Lauffer H, Laugel V, La Piana R, Lim MJ, Lin JP, Linnankivi T, Mackay MT, Marom DR, Marques Lourenco C, McKee SA, Moroni I, Morton JE, Moutard ML, Murray K, Nabbout R, Nampoothiri S, Nunez-Enamorado N, Oades PJ, Olivieri I, Ostergaard JR, Perez-Duenas B, Prendiville JS, Ramesh V, Rasmussen M, Regal L, Ricci F, Rio M, Rodriguez D, Roubertie A, Salvatici E, Segers KA, Sinha GP, Soler D, Spiegel R, Stodberg TI, Straussberg R, Swoboda KJ, Suri M, Tacke U, Tan TY, te Water Naude Wee Teik J, Thomas K, Till MM, Tonduti M, Valente D, Van Coster EM, van der Knaap RN, Vassallo MS, Vijzelaar G, Vogt R, Wallace J, Wassmer GB, Webb E, Whitehouse HJ, Whitney WP, Zaki RN, Zuberi MS, Livingston SM, Rozenberg JH, Lebon F, Vanderver P, Orcesi A, Rice S GI (2015) Characterization of human disease phenotypes associated with mutations in TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, ADAR, and IFIH1. Am J Med Genet Part A 167A:296–312. https://​doi.​org/​10.​1002/​ajmg.​a.​36887 PubMedCrossRef
97.
Chowdhury D, Beresford PJ, Zhu P, Zhang D, Sung JS, Demple B, Perrino FW, Lieberman J (2006) The exonuclease TREX1 is in the SET complex and acts in concert with NM23-H1 to degrade DNA during granzyme A-mediated cell death. Mol Cell 23:133–142. https://​doi.​org/​10.​1016/​j.​molcel.​2006.​06.​005 PubMedCrossRef
98.
Malattia C, Martini A (2013) Paediatric-onset systemic lupus erythematosus. Best Pract Res Clin Rheumatol 27:351–362. https://​doi.​org/​10.​1016/​j.​berh.​2013.​07.​007 PubMedCrossRef
99.
de Vries B, Steup-Beekman GM, Haan J, Bollen EL, Luyendijk J, Frants RR, Terwindt GM, van Buchem MA, Huizinga TW, van den Maagdenberg AM, Ferrari MD (2010) TREX1 gene variant in neuropsychiatric systemic lupus erythematosus. Ann Rheum Dis 69:1886–1887. https://​doi.​org/​10.​1136/​ard.​2009.​114157 PubMedCrossRef
100.
Ellyard JI, Jerjen R, Martin JL, Lee AY, Field MA, Jiang SH, Cappello J, Naumann SK, Andrews TD, Scott HS, Casarotto MG, Goodnow CC, Chaitow J, Pascual V, Hertzog P, Alexander SI, Cook MC, Vinuesa CG (2014) Identification of a pathogenic variant in TREX1 in early-onset cerebral systemic lupus erythematosus by Whole-exome sequencing. Arthritis Rheumatol 66:3382–3386. https://​doi.​org/​10.​1002/​art.​38824 PubMedCrossRef
101.
Fredi M, Bianchi M, Andreoli L, Greco G, Olivieri I, Orcesi S, Fazzi E, Cereda C, Tincani A (2015) Typing TREX1 gene in patients with systemic lupus erythematosus. Reumatismo 67:1–7. https://​doi.​org/​10.​4081/​reumatismo.​2015.​782 PubMedCrossRef
102.
Lee-Kirsch MA, Gong M, Chowdhury D, Senenko L, Engel K, Lee YA, de Silva U, Bailey SL, Witte T, Vyse TJ, Kere J, Pfeiffer C, Harvey S, Wong A, Koskenmies S, Hummel O, Rohde K, Schmidt RE, Dominiczak AF, Gahr M, Hollis T, Perrino FW, Lieberman J, Hubner N (2007) Mutations in the gene encoding the 3′–5′ DNA exonuclease TREX1 are associated with systemic lupus erythematosus. Nat Genet 39:1065–1067. https://​doi.​org/​10.​1038/​ng2091 PubMedCrossRef
103.
Namjou B, Kothari PH, Kelly JA, Glenn SB, Ojwang JO, Adler A, Alarcon-Riquelme ME, Gallant CJ, Boackle SA, Criswell LA, Kimberly RP, Brown E, Edberg J, Stevens AM, Jacob CO, Tsao BP, Gilkeson GS, Kamen DL, Merrill JT, Petri M, Goldman RR, Vila LM, Anaya JM, Niewold TB, Martin J, Pons-Estel BA, Sabio JM, Callejas JL, Vyse TJ, Bae SC, Perrino FW, Freedman BI, Scofield RH, Moser KL, Gaffney PM, James JA, Langefeld CD, Kaufman KM, Harley JB, Atkinson JP (2011) Evaluation of the TREX1 gene in a large multi-ancestral lupus cohort. Genes Immun 12:270–279. https://​doi.​org/​10.​1038/​gene.​2010.​73 PubMedPubMedCentralCrossRef
104.
Ramantani G, Kohlhase J, Hertzberg C, Innes AM, Engel K, Hunger S, Borozdin W, Mah JK, Ungerath K, Walkenhorst H, Richardt HH, Buckard J, Bevot A, Siegel C, von Stulpnagel C, Ikonomidou C, Thomas K, Proud V, Niemann F, Wieczorek D, Hausler M, Niggemann P, Baltaci V, Conrad K, Lebon P, Lee-Kirsch MA (2010) Expanding the phenotypic spectrum of lupus erythematosus in Aicardi–Goutieres syndrome. Arthritis Rheum 62:1469–1477. https://​doi.​org/​10.​1002/​art.​27367 PubMedCrossRef
105.
Cerritelli SM, Crouch RJ (2009) Ribonuclease H: the enzymes in eukaryotes. FEBS J 276:1494–1505. https://​doi.​org/​10.​1111/​j.​1742-4658.​2009.​06908.​x PubMedCrossRef
106.
Gunther C, Kind B, Reijns MA, Berndt N, Martinez-Bueno M, Wolf C, Tungler V, Chara O, Lee YA, Hubner N, Bicknell L, Blum S, Krug C, Schmidt F, Kretschmer S, Koss S, Astell KR, Ramantani G, Bauerfeind A, Morris DL, Cunninghame Graham DS, Bubeck D, Leitch A, Ralston SH, Blackburn EA, Gahr M, Witte T, Vyse TJ, Melchers I, Mangold E, Nothen MM, Aringer M, Kuhn A, Luthke K, Unger L, Bley A, Lorenzi A, Isaacs JD, Alexopoulou D, Conrad K, Dahl A, Roers A, Alarcon-Riquelme ME, Jackson AP, Lee-Kirsch MA (2015) Defective removal of ribonucleotides from DNA promotes systemic autoimmunity. J Clin Invest 125:413–424. https://​doi.​org/​10.​1172/​JCI78001 PubMedCrossRef
107.
Costa-Reis P, Sullivan KE (2017) Monogenic lupus: it’s all new! Curr Opin Immunol 49:87–95. https://​doi.​org/​10.​1016/​j.​coi.​2017.​10.​008 PubMedCrossRef
108.
Stetson DB, Ko JS, Heidmann T, Medzhitov R (2008) Trex1 prevents cell-intrinsic initiation of autoimmunity. Cell 134:587–598. https://​doi.​org/​10.​1016/​j.​cell.​2008.​06.​032 PubMedPubMedCentralCrossRef
109.
Roers A, Hiller B, Hornung V (2016) Recognition of Endogenous Nucleic Acids by the Innate Immune System. Immunity 44:739–754. https://​doi.​org/​10.​1016/​j.​immuni.​2016.​04.​002 PubMedCrossRef
110.
Wang Z, Choi MK, Ban T, Yanai H, Negishi H, Lu Y, Tamura T, Takaoka A, Nishikura K, Taniguchi T (2008) Regulation of innate immune responses by DAI (DLM-1/ZBP1) and other DNA-sensing molecules. Proc Natl Acad Sci USA 105:5477–5482. https://​doi.​org/​10.​1073/​pnas.​0801295105 PubMedCrossRefPubMedCentral
111.
Wahadat MJ, Bodewes ILA, Maria NI, van Helden-Meeuwsen CG, van Dijk-Hummelman A, Steenwijk EC, Kamphuis S, Versnel MA (2018) Type I IFN signature in childhood-onset systemic lupus erythematosus: a conspiracy of DNA- and RNA-sensing receptors? Arthritis Res Ther 20:4. https://​doi.​org/​10.​1186/​s13075-017-1501-z PubMedPubMedCentralCrossRef
112.
Kato H, Takeuchi O, Sato S, Yoneyama M, Yamamoto M, Matsui K, Uematsu S, Jung A, Kawai T, Ishii KJ, Yamaguchi O, Otsu K, Tsujimura T, Koh CS, Reis e Sousa C, Matsuura Y, Fujita T, Akira S (2006) Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441:101–105. https://​doi.​org/​10.​1038/​nature04734 PubMedCrossRef
113.
Choubey D, Panchanathan R (2017) Absent in Melanoma 2 proteins in SLE. Clin Immunol 176:42–48. https://​doi.​org/​10.​1016/​j.​clim.​2016.​12.​011 PubMedPubMedCentralCrossRef
114.
Gao D, Li T, Li XD, Chen X, Li QZ, Wight-Carter M, Chen ZJ (2015) Activation of cyclic GMP-AMP synthase by self-DNA causes autoimmune diseases. Proc Natl Acad Sci USA 112:E5699-5705. https://​doi.​org/​10.​1073/​pnas.​1516465112 CrossRef
115.
Ori D, Murase M, Kawai T (2017) Cytosolic nucleic acid sensors and innate immune regulation. Int Rev Immunol 36:74–88. https://​doi.​org/​10.​1080/​08830185.​2017.​1298749 PubMedCrossRef
116.
Pettersson M, Bergendal B, Norderyd J, Nilsson D, Anderlid BM, Nordgren A, Lindstrand A (2017) Further evidence for specific IFIH1 mutation as a cause of Singleton-Merten syndrome with phenotypic heterogeneity. Am J Med Genet Part A 173:1396–1399. https://​doi.​org/​10.​1002/​ajmg.​a.​38214 PubMedCrossRef
117.
Van Eyck L, De Somer L, Pombal D, Bornschein S, Frans G, Humblet-Baron S, Moens L, de Zegher F, Bossuyt X, Wouters C, Liston A (2015) Brief Report: IFIH1 Mutation Causes Systemic Lupus Erythematosus With Selective IgA Deficiency. Arthritis Rheumatol 67:1592–1597. https://​doi.​org/​10.​1002/​art.​39110 PubMedCrossRef
118.
Nishikura K (2010) Functions and regulation of RNA editing by ADAR deaminases. Annu Rev Biochem 79:321–349. https://​doi.​org/​10.​1146/​annurev-biochem-060208-105251 PubMedPubMedCentralCrossRef
119.
Yang JH, Luo X, Nie Y, Su Y, Zhao Q, Kabir K, Zhang D, Rabinovici R (2003) Widespread inosine-containing mRNA in lymphocytes regulated by ADAR1 in response to inflammation. Immunology 109:15–23PubMedPubMedCentralCrossRef
120.
Li M, Zhang D, Zhu M, Shen Y, Wei W, Ying S, Korner H, Li J (2017) Roles of SAMHD1 in antiviral defense, autoimmunity and cancer. Rev Med Virol 27. https://​doi.​org/​10.​1002/​rmv.​1931
121.
Goncalves A, Karayel E, Rice GI, Bennett KL, Crow YJ, Superti-Furga G, Burckstummer T (2012) SAMHD1 is a nucleic-acid binding protein that is mislocalized due to aicardi-goutieres syndrome-associated mutations. Hum Mutat 33:1116–1122. https://​doi.​org/​10.​1002/​humu.​22087 PubMedCrossRef
122.
Kretschmer S, Wolf C, Konig N, Staroske W, Guck J, Hausler M, Luksch H, Nguyen LA, Kim B, Alexopoulou D, Dahl A, Rapp A, Cardoso MC, Shevchenko A, Lee-Kirsch MA (2015) SAMHD1 prevents autoimmunity by maintaining genome stability. Ann Rheum Dis 74:e17. https://​doi.​org/​10.​1136/​annrheumdis-2013-204845 PubMedCrossRef
123.
Ramantani G, Hausler M, Niggemann P, Wessling B, Guttmann H, Mull M, Tenbrock K, Lee-Kirsch MA (2011) Aicardi-Goutieres syndrome and systemic lupus erythematosus (SLE) in a 12-year-old boy with SAMHD1 mutations. J Child Neurol 26:1425–1428. https://​doi.​org/​10.​1177/​0883073811408310​ PubMedCrossRef
124.
Theofilopoulos AN, Kono DH, Baccala R (2017) The multiple pathways to autoimmunity. Nat ImmunolI 18:716–724. https://​doi.​org/​10.​1038/​ni.​3731 CrossRef
125.
Notarangelo LD, Kim MS, Walter JE, Lee YN (2016) Human RAG mutations: biochemistry and clinical implications. Nat Rev Immunol 16:234–246. https://​doi.​org/​10.​1038/​nri.​2016.​28 PubMedPubMedCentralCrossRef
126.
Walter JE, Rucci F, Patrizi L, Recher M, Regenass S, Paganini T, Keszei M, Pessach I, Lang PA, Poliani PL, Giliani S, Al-Herz W, Cowan MJ, Puck JM, Bleesing J, Niehues T, Schuetz C, Malech H, DeRavin SS, Facchetti F, Gennery AR, Andersson E, Kamani NR, Sekiguchi J, Alenezi HM, Chinen J, Dbaibo G, ElGhazali G, Fontana A, Pasic S, Detre C, Terhorst C, Alt FW, Notarangelo LD (2010) Expansion of immunoglobulin-secreting cells and defects in B cell tolerance in Rag-dependent immunodeficiency. J Exp Med 207:1541–1554. https://​doi.​org/​10.​1084/​jem.​20091927 PubMedPubMedCentralCrossRef
127.
de Villartay JP (2009) V(D)J recombination deficiencies. Adv Exp Med Biol 650:46–58PubMedCrossRef
128.
Fischer A, Le Deist F, Hacein-Bey-Abina S, Andre-Schmutz I, Basile Gde S, de Villartay JP, Cavazzana-Calvo M (2005) Severe combined immunodeficiency. A model disease for molecular immunology and therapy. Immunol Rev 203:98–109. https://​doi.​org/​10.​1111/​j.​0105-2896.​2005.​00223.​x PubMedCrossRef
129.
Buckley RH (2004) Molecular defects in human severe combined immunodeficiency and approaches to immune reconstitution. Annu Rev Immunol 22:625–655. https://​doi.​org/​10.​1146/​annurev.​immunol.​22.​012703.​104614 PubMedCrossRef
130.
Walter JE, Lo MS, Kis-Toth K, Tirosh I, Frugoni F, Lee YN, Csomos K, Chen K, Pillai S, Dunham J, Tsokos GC, Luning Prak ET, Notarangelo LD (2015) Impaired receptor editing and heterozygous RAG2 mutation in a patient with systemic lupus erythematosus and erosive arthritis. J Allergy Clin Immunol 135:272–273. https://​doi.​org/​10.​1016/​j.​jaci.​2014.​07.​063 PubMedCrossRef
131.
Bengtsson AA, Ronnblom L (2017) Role of interferons in SLE. Best Pract Res Clin Rheumatol 31:415–428. https://​doi.​org/​10.​1016/​j.​berh.​2017.​10.​003 PubMedCrossRef
132.
Hoffmann HH, Schneider WM, Rice CM (2015) Interferons and viruses: an evolutionary arms race of molecular interactions. Trends Immunol 36:124–138. https://​doi.​org/​10.​1016/​j.​it.​2015.​01.​004 PubMedPubMedCentralCrossRef
133.
Schneider WM, Chevillotte MD, Rice CM (2014) Interferon-stimulated genes: a complex web of host defenses. Annu Rev Immunol 32:513–545. https://​doi.​org/​10.​1146/​annurev-immunol-032713-120231 PubMedPubMedCentralCrossRef
134.
Weber GF, Zawaideh S, Hikita S, Kumar VA, Cantor H, Ashkar S (2002) Phosphorylation-dependent interaction of osteopontin with its receptors regulates macrophage migration and activation. J Leuk Biol 72:752–761
135.
Shinohara ML, Lu L, Bu J, Werneck MB, Kobayashi KS, Glimcher LH, Cantor H (2006) Osteopontin expression is essential for interferon-alpha production by plasmacytoid dendritic cells. Nat Immunol 7:498–506. https://​doi.​org/​10.​1038/​ni1327 PubMedPubMedCentralCrossRef
136.
Briggs TA, Rice GI, Daly S, Urquhart J, Gornall H, Bader-Meunier B, Baskar K, Baskar S, Baudouin V, Beresford MW, Black GC, Dearman RJ, de Zegher F, Foster ES, Frances C, Hayman AR, Hilton E, Job-Deslandre C, Kulkarni ML, Le Merrer M, Linglart A, Lovell SC, Maurer K, Musset L, Navarro V, Picard C, Puel A, Rieux-Laucat F, Roifman CM, Scholl-Burgi S, Smith N, Szynkiewicz M, Wiedeman A, Wouters C, Zeef LA, Casanova JL, Elkon KB, Janckila A, Lebon P, Crow YJ (2011) Tartrate-resistant acid phosphatase deficiency causes a bone dysplasia with autoimmunity and a type I interferon expression signature. Nat Genet 43:127–131. https://​doi.​org/​10.​1038/​ng.​748 PubMedCrossRef
137.
Superti-Furga A, Spranger J, Nishimura G (2012) Enchondromatosis revisited: new classification with molecular basis. Am J Med Genet Part C 160C:154–164. https://​doi.​org/​10.​1002/​ajmg.​c.​31331 PubMedCrossRef
138.
Bilginer Y, Duzova A, Topaloglu R, Batu ED, Boduroglu K, Gucer S, Bodur I, Alanay Y (2016) Three cases of spondyloenchondrodysplasia (SPENCD) with systemic lupus erythematosus: a case series and review of the literature. Lupus 25:760–765. https://​doi.​org/​10.​1177/​0961203316629000​ PubMedCrossRef
139.
Girschick H, Wolf C, Morbach H, Hertzberg C, Lee-Kirsch MA (2015) Severe immune dysregulation with neurological impairment and minor bone changes in a child with spondyloenchondrodysplasia due to two novel mutations in the ACP5 gene. Pediatr Rheumatol Online J 13:37. https://​doi.​org/​10.​1186/​s12969-015-0035-7 PubMedPubMedCentralCrossRef
140.
Ishikawa H, Barber GN (2008) STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature 455:674–678. https://​doi.​org/​10.​1038/​nature07317 PubMedPubMedCentralCrossRef
141.
Liu Y, Jesus AA, Marrero B, Yang D, Ramsey SE, Sanchez GAM, Tenbrock K, Wittkowski H, Jones OY, Kuehn HS, Lee CR, DiMattia MA, Cowen EW, Gonzalez B, Palmer I, DiGiovanna JJ, Biancotto A, Kim H, Tsai WL, Trier AM, Huang Y, Stone DL, Hill S, Kim HJ, Hilaire CS, Gurprasad S, Plass N, Chapelle D, Horkayne-Szakaly I, Foell D, Barysenka A, Candotti F, Holland SM, Hughes JD, Mehmet H, Issekutz AC, Raffeld M, McElwee J, Fontana JR, Minniti CP, Moir S, Kastner DL, Gadina M, Steven AC, Wingfield PT, Brooks SR, Rosenzweig SD, Fleisher TA, Deng Z, Boehm M, Paller AS, Goldbach-Mansky R (2014) Activated STING in a vascular and pulmonary syndrome. N Engl J Med 371:507–518. https://​doi.​org/​10.​1056/​NEJMoa1312625 PubMedPubMedCentralCrossRef
142.
Jain A, Misra DP, Sharma A, Wakhlu A, Agarwal V, Negi VS (2018) Vasculitis and vasculitis-like manifestations in monogenic autoinflammatory syndromes. Rheumatol Int 38:13–24. https://​doi.​org/​10.​1007/​s00296-017-3839-6 PubMedCrossRef
143.
Jeremiah N, Neven B, Gentili M, Callebaut I, Maschalidi S, Stolzenberg MC, Goudin N, Fremond ML, Nitschke P, Molina TJ, Blanche S, Picard C, Rice GI, Crow YJ, Manel N, Fischer A, Bader-Meunier B, Rieux-Laucat F (2014) Inherited STING-activating mutation underlies a familial inflammatory syndrome with lupus-like manifestations. J Clin Invest 124:5516–5520. https://​doi.​org/​10.​1172/​JCI79100 PubMedPubMedCentralCrossRef
144.
Di Rocco M, Fantasia AR, Taro M, Loy A, Forlino A, Martini A (2007) Systemic lupus erythematosus-like disease in a 6-year-old boy with prolidase deficiency. J Inherit Metab Dis 30:814. https://​doi.​org/​10.​1007/​s10545-007-0496-z PubMedCrossRef
145.
Klar A, Navon-Elkan P, Rubinow A, Branski D, Hurvitz H, Christensen E, Khayat M, Falik-Zaccai TC (2010) Prolidase deficiency: it looks like systemic lupus erythematosus but it is not. Eur J Pediatr 169:727–732. https://​doi.​org/​10.​1007/​s00431-009-1102-1 PubMedCrossRef
146.
Aoki M, Fukao T, Fujita Y, Watanabe M, Teramoto T, Kato Y, Suzuki Y, Kondo N (2001) Lysinuric protein intolerance in siblings: complication of systemic lupus erythematosus in the elder sister. Eur J Pediatr 160:522–523PubMedCrossRef
147.
De Ravin SS, Naumann N, Cowen EW, Friend J, Hilligoss D, Marquesen M, Balow JE, Barron KS, Turner ML, Gallin JI, Malech HL (2008) Chronic granulomatous disease as a risk factor for autoimmune disease. J Allergy Clin Immunol 122:1097–1103. https://​doi.​org/​10.​1016/​j.​jaci.​2008.​07.​050 PubMedPubMedCentralCrossRef
148.
Urushihara M, Kagami S, Yasutomo K, Ito M, Kondo S, Kitamura A, Malm D, Klenow H, Nilssen O, Kuroda Y (2004) Sisters with alpha-mannosidosis and systemic lupus erythematosus. Eur J Pediatr 163:192–195. https://​doi.​org/​10.​1007/​s00431-004-1404-2 PubMedCrossRef
149.
Jouhadi Z, Khadir K, Ailal F, Bouayad K, Nadifi S, Engelhardt KR, Grimbacher B (2014) Ten-year follow-up of a DOCK8-deficient child with features of systemic lupus erythematosus. Pediatrics 134:e1458-1463. https://​doi.​org/​10.​1542/​peds.​2013-1383 CrossRef
150.
Bader-Meunier B, Cave H, Jeremiah N, Magerus A, Lanzarotti N, Rieux-Laucat F, Cormier-Daire V (2013) Are RASopathies new monogenic predisposing conditions to the development of systemic lupus erythematosus? Case report and systematic review of the literature. Semin Arthritis Rheum 43:217–219. https://​doi.​org/​10.​1016/​j.​semarthrit.​2013.​04.​009 PubMedCrossRef
151.
Aeschlimann FA, Batu ED, Canna SW, Go E, Gul A, Hoffmann P, Leavis HL, Ozen S, Schwartz DM, Stone DL, van Royen-Kerkof A, Kastner DL, Aksentijevich I, Laxer RM (2018) A20 haploinsufficiency (HA20): clinical phenotypes and disease course of patients with a newly recognised NF-kB-mediated autoinflammatory disease. Ann Rheum Dis. https://​doi.​org/​10.​1136/​annrheumdis-2017-212403 CrossRefPubMed
152.
Schepp J, Bulashevska A, Mannhardt-Laakmann W, Cao H, Yang F, Seidl M, Kelly S, Hershfield M, Grimbacher B (2016) Deficiency of adenosine deaminase 2 causes antibody deficiency. J Clin Immunol 36:179–186. https://​doi.​org/​10.​1007/​s10875-016-0245-x PubMedCrossRef
153.
Ouyang S, Gong B, Li JZ, Zhao LX, Wu W, Zhang FS, Sun L, Wang SJ, Pan M, Li C, Liang W, Shaw N, Zheng J, Zhao GP, Wang Y, Liu ZJ, Liang M (2012) Structural insights into a human anti-IFN antibody exerting therapeutic potential for systemic lupus erythematosus. J Mol Med (Berl) 90:837–846. https://​doi.​org/​10.​1007/​s00109-012-0866-3 CrossRef
154.
Sanchez GAM, Reinhardt A, Ramsey S, Wittkowski H, Hashkes PJ, Berkun Y, Schalm S, Murias S, Dare JA, Brown D, Stone DL, Gao L, Klausmeier T, Foell D, Jesus AA, Chapelle DC, Kim H, Dill S, Colbert R, Failla L, Kost B, O’Brien M, Reynolds JC, Folio LR, Calvo KR, Paul SM, Weir N, Brofferio A, Soldatos A, Biancotto A, Cowen EW, Digiovanna JG, Gadina M, Lipton AJ, Hadigan C, Holland SM, Fontana J, Alawad AS, Brown RJ, Rother KI, Heller T, Brooks KM, Kumar P, Brooks SR, Waldman M, Singh HK, Nickeleit V, Silk M, Prakash A, Janes JM, Ozen S, Wakim PG, Brogan PA, Macias WL, Goldbach-Mansky R (2018) JAK1/2 inhibition with baricitinib in the treatment of autoinflammatory interferonopathies. J Clin Invest. https://​doi.​org/​10.​1172/​JCI98814 CrossRefPubMedPubMedCentral
155.
Crow YJ, Vanderver A, Orcesi S, Kuijpers TW, Rice GI (2014) Therapies in Aicardi–Goutieres syndrome. Clin Exp Immunol 175:1–8. https://​doi.​org/​10.​1111/​cei.​12115 PubMedCrossRef
156.
John T, Walter JE, Schuetz C, Chen K, Abraham RS, Bonfim C, Boyce TG, Joshi AY, Kang E, Carvalho BT, Mahajerin A, Nugent D, Puthenveetil G, Soni A, Su H, Cowan MJ, Notarangelo L, Buchbinder D (2016) Unrelated hematopoietic cell transplantation in a patient with combined immunodeficiency with granulomatous disease and autoimmunity secondary to RAG deficiency. J Clin Immunol 36:725–732. https://​doi.​org/​10.​1007/​s10875-016-0326-x PubMedPubMedCentralCrossRef
157.
Lee-Kirsch MA, Wolf C, Gunther C (2014) Aicardi-Goutieres syndrome: a model disease for systemic autoimmunity. Clin Exp Immunol 175:17–24. https://​doi.​org/​10.​1111/​cei.​12160 PubMedCrossRef