Skip to main content
Top

22-11-2016 | Systemic lupus erythematosus | Review | Article

New insights into the immunopathogenesis of systemic lupus erythematosus

Journal: Nature Reviews Rheumatology

Authors: George C. Tsokos, Mindy S. Lo, Patricia Costa Reis, Kathleen E. Sullivan

Authors: George C. Tsokos, Mindy S. Lo, Patricia Costa Reis, Kathleen E. Sullivan

Publisher: Nature Publishing Group UK

Abstract

The aetiology of systemic lupus erythematosus (SLE) is multifactorial, and includes contributions from the environment, stochastic factors, and genetic susceptibility. Great gains have been made in understanding SLE through the use of genetic variant identification, mouse models, gene expression studies, and epigenetic analyses. Collectively, these studies support the concept that defective clearance of immune complexes and biological waste (such as apoptotic cells), neutrophil extracellular traps, nucleic acid sensing, lymphocyte signalling, and interferon production pathways are all central to loss of tolerance and tissue damage. Increased understanding of the pathogenesis of SLE is driving a renewed interest in targeted therapy, and researchers are now on the verge of developing targeted immunotherapy directed at treating either specific organ system involvement or specific subsets of patients with SLE. Accordingly, this Review places these insights within the context of our current understanding of the pathogenesis of SLE and highlights pathways that are ripe for therapeutic targeting.

Nat Rev Rheumatol 2016;12:716–730. doi:10.1038/nrrheum.2016.186

Literature
1.
Bernatsky, S. et al. Mortality in systemic lupus erythematosus. Arthritis Rheum. 54, 2550–2557 (2006).CrossRefPubMed
2.
Zhu, T. Y., Tam, L. S. & Li, E. K. Cost-of-illness studies in systemic lupus erythematosus: a systematic review. Arthritis Care Res. (Hoboken) 63, 751–760 (2011).CrossRef
3.
Casciola-Rosen, L. A., Anhalt, G. & Rosen, A. Autoantigens targeted in systemic lupus erythematosus are clustered in two populations of surface structures on apoptotic keratinocytes. J. Exp. Med. 179, 1317–1330 (1994).CrossRefPubMed
4.
Theofilopoulos, A. N., Kono, D. H., Beutler, B. & Baccala, R. Intracellular nucleic acid sensors and autoimmunity. J. Interferon Cytokine Res. 31, 867–886 (2011).CrossRefPubMedPubMedCentral
5.
Dieker, J. et al. Circulating apoptotic microparticles in systemic lupus erythematosus patients drive the activation of dendritic cell subsets and prime neutrophils for NETosis. Arthritis Rheumatol. 68, 462–472 (2016).CrossRefPubMed
6.
Leadbetter, E. A. et al. Chromatin–IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors. Nature 416, 603–607 (2002).CrossRefPubMed
7.
Achtman, J. C. & Werth, V. P. Pathophysiology of cutaneous lupus erythematosus. Arthritis Res. Ther. 17, 182 (2015).CrossRefPubMedPubMedCentral
8.
Grimaldi, C. M. Sex and systemic lupus erythematosus: the role of the sex hormones estrogen and prolactin on the regulation of autoreactive B cells. Curr. Opin. Rheumatol. 18, 456–461 (2006).CrossRefPubMed
9.
Shelly, S., Boaz, M. & Orbach, H. Prolactin and autoimmunity. Autoimmun. Rev. 11, A465–A470 (2012).CrossRefPubMed
10.
Cunningham, M. & Gilkeson, G. Estrogen receptors in immunity and autoimmunity. Clin. Rev. Allergy Immunol. 40, 66–73 (2011).CrossRefPubMed
11.
Dorgham, K. et al. Ultraviolet light converts propranolol, a nonselective β-blocker and potential lupus-inducing drug, into a proinflammatory AhR ligand. Eur. J. Immunol. 45, 3174–3187 (2015).CrossRefPubMed
12.
Nelson, P., Rylance, P., Roden, D., Trela, M. & Tugnet, N. Viruses as potential pathogenic agents in systemic lupus erythematosus. Lupus 23, 596–605 (2014).CrossRefPubMed
13.
Sawalha, A. H., Schmid, W. R., Binder, S. R., Bacino, D. K. & Harley, J. B. Association between systemic lupus erythematosus and Helicobacter pylori seronegativity. J. Rheumatol. 31, 1546–1550 (2004).PubMed
14.
Ram, M. et al. The putative protective role of hepatitis B virus (HBV) infection from autoimmune disorders. Autoimmun. Rev. 7, 621–625 (2008).CrossRefPubMed
15.
Chen, M. et al. Toxoplasma gondii infection inhibits the development of lupus-like syndrome in autoimmune (New Zealand Black × New Zealand White) F1 mice. Int. Immunol. 16, 937–946 (2004).CrossRefPubMed
16.
Gan, L. et al. Gene expression profiles from disease discordant twins suggest shared antiviral pathways and viral exposures among multiple systemic autoimmune diseases. PLoS ONE 10, e0142486 (2015).CrossRefPubMedPubMedCentral
17.
Shi, L. et al. The SLE transcriptome exhibits evidence of chronic endotoxin exposure and has widespread dysregulation of non-coding and coding RNAs. PLoS ONE 9, e93846 (2014).CrossRefPubMedPubMedCentral
18.
Nockher, W. A., Wigand, R., Schoeppe, W. & Scherberich, J. E. Elevated levels of soluble CD14 in serum of patients with systemic lupus erythematosus. Clin. Exp. Immunol. 96, 15–19 (1994).CrossRefPubMedPubMedCentral
19.
Zhai, J. X. et al. PDTC attenuate LPS-induced kidney injury in systemic lupus erythematosus-prone MRL/lpr mice. Mol. Biol. Rep. 39, 6763–6771 (2012).CrossRefPubMed
20.
Pasare, C. & Medzhitov, R. Toll-like receptors: linking innate and adaptive immunity. Microbes Infect. 6, 1382–1387 (2004).CrossRefPubMed
21.
Gallo, P. M. et al. Amyloid-DNA composites of bacterial biofilms stimulate autoimmunity. Immunity 42, 1171–1184 (2015).CrossRefPubMedPubMedCentral
22.
Belkaid, Y. & Hand, T. W. Role of the microbiota in immunity and inflammation. Cell 157, 121–141 (2014).CrossRefPubMedPubMedCentral
23.
Hevia, A. et al. Intestinal dysbiosis associated with systemic lupus erythematosus. mBio 5, e01548–e01514 (2014).CrossRefPubMedPubMedCentral
24.
Johnson, B. M., Gaudreau, M. C., Al-Gadban, M. M., Gudi, R. & Vasu, C. Impact of dietary deviation on disease progression and gut microbiome composition in lupus-prone SNF1 mice. Clin. Exp. Immunol. 181, 323–337 (2015).CrossRefPubMedPubMedCentral
25.
Zhang, H., Liao, X., Sparks, J. B. & Luo, X. M. Dynamics of gut microbiota in autoimmune lupus. Appl. Environ. Microbiol. 80, 7551–7560 (2014).CrossRefPubMedPubMedCentral
26.
Furusawa, Y. et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504, 446–450 (2013).CrossRefPubMed
27.
Arpaia, N. et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504, 451–455 (2013).CrossRefPubMedPubMedCentral
28.
Van Praet, J. T. et al. Commensal microbiota influence systemic autoimmune responses. EMBO J. 34, 466–474 (2015).CrossRefPubMedPubMedCentral
29.
Alarcon-Segovia, D. et al. Familial aggregation of systemic lupus erythematosus, rheumatoid arthritis, and other autoimmune diseases in 1,177 lupus patients from the GLADEL cohort. Arthritis Rheum. 52, 1138–1147 (2005).CrossRefPubMed
30.
Morris, D. L. et al. Unraveling multiple MHC gene associations with systemic lupus erythematosus: model choice indicates a role for HLA alleles and non-HLA genes in Europeans. Am. J. Hum. Genet. 91, 778–793 (2012).CrossRefPubMedPubMedCentral
31.
Cui, Y., Sheng, Y. & Zhang, X. Genetic susceptibility to SLE: recent progress from GWAS. J. Autoimmun. 41, 25–33 (2013).CrossRefPubMed
32.
Farh, K. K. et al. Genetic and epigenetic fine mapping of causal autoimmune disease variants. Nature 518, 337–343 (2015).CrossRefPubMed
33.
Martin, P. et al. Capture Hi-C reveals novel candidate genes and complex long-range interactions with related autoimmune risk loci. Nat. Commun. 6, 10069 (2015).CrossRefPubMed
34.
Li, Y. R. et al. Meta-analysis of shared genetic architecture across ten pediatric autoimmune diseases. Nat. Med. 21, 1018–1027 (2015).CrossRefPubMedPubMedCentral
35.
Harley, I. T., Kaufman, K. M., Langefeld, C. D., Harley, J. B. & Kelly, J. A. Genetic susceptibility to SLE: new insights from fine mapping and genome-wide association studies. Nat. Rev. Genet. 10, 285–290 (2009).CrossRefPubMedPubMedCentral
36.
Belot, A. & Cimaz, R. Monogenic forms of systemic lupus erythematosus: new insights into SLE pathogenesis. Pediatr. Rheumatol. Online J. 10, 21 (2012).CrossRefPubMedPubMedCentral
37.
Richardson, B. et al. Evidence for impaired T cell DNA methylation in systemic lupus erythematosus and rheumatoid arthritis. Arthritis Rheum. 33, 1665–1673 (1990).CrossRefPubMed
38.
Richardson, B., Ray, D. & Yung, R. Murine models of lupus induced by hypomethylated T cells. Methods Mol. Med. 102, 285–294 (2004).PubMedPubMedCentral
39.
Sawalha, A. H. et al. Defective T-cell ERK signaling induces interferon-regulated gene expression and overexpression of methylation-sensitive genes similar to lupus patients. Genes Immun. 9, 368–378 (2008).CrossRefPubMedPubMedCentral
40.
Coit, P. et al. Renal involvement in lupus is characterized by unique DNA methylation changes in naive CD4+ T cells. J. Autoimmun. 61, 29–35 (2015).CrossRefPubMedPubMedCentral
41.
Coit, P. et al. Epigenetic reprogramming in naive CD4+ T cells favoring T cell activation and non-TH1 effector T cell immune response as an early event in lupus flares. Arthritis Rheumatol. 68, 2200–2209 (2016).CrossRefPubMedPubMedCentral
42.
Lim, U. & Song, M. A. Dietary and lifestyle factors of DNA methylation. Methods Mol. Biol. 863, 359–376 (2012).CrossRefPubMed
43.
Cooney, C. A., Dave, A. A. & Wolff, G. L. Maternal methyl supplements in mice affect epigenetic variation and DNA methylation of offspring. J. Nutr. 132, 2393S–2400S (2002).CrossRefPubMed
44.
Zhao, M. et al. Increased 5-hydroxymethylcytosine in CD4+ T cells in systemic lupus erythematosus. J. Autoimmun. 69, 64–73 (2016).CrossRefPubMed
45.
Mishra, N., Reilly, C. M., Brown, D. R., Ruiz, P. & Gilkeson, G. S. Histone deacetylase inhibitors modulate renal disease in the MRL-lpr/lpr mouse. J. Clin. Invest. 111, 539–552 (2003).CrossRefPubMedPubMedCentral
46.
Regna, N. L. et al. HDAC expression and activity is upregulated in diseased lupus-prone mice. Int. Immunopharmacol. 29, 494–503 (2015).CrossRefPubMedPubMedCentral
47.
Regna, N. L. et al. Specific HDAC6 inhibition by ACY-738 reduces SLE pathogenesis in NZB/W mice. Clin. Immunol. 162, 58–73 (2016).CrossRefPubMed
48.
Skov, S. et al. Histone deacetylase inhibitors: a new class of immunosuppressors targeting a novel signal pathway essential for CD154 expression. Blood 101, 1430–1438 (2003).CrossRefPubMed
49.
Yang, Y. et al. The effect of mycophenolic acid on epigenetic modifications in lupus CD4+ T cells. Clin. Immunol. 158, 67–76 (2015).CrossRefPubMed
50.
Zhang, Z., Song, L., Maurer, K., Petri, M. A. & Sullivan, K. E. Global H4 acetylation analysis by ChIP-chip in systemic lupus erythematosus monocytes. Genes Immun. 11, 124–133 (2010).CrossRefPubMed
51.
Coit, P. et al. Genome-wide DNA methylation study suggests epigenetic accessibility and transcriptional poising of interferon-regulated genes in naive CD4+ T cells from lupus patients. J. Autoimmun. 43, 78–84 (2013).CrossRefPubMedPubMedCentral
52.
Zhang, Z. et al. Interferon regulatory factor 1 marks activated genes and can induce target gene expression in systemic lupus erythematosus. Arthritis Rheumatol. 67, 785–796 (2015).CrossRefPubMedPubMedCentral
53.
Shi, L. et al. Monocyte enhancers are highly altered in systemic lupus erythematosus. Epigenomics 7, 921–935 (2015).CrossRefPubMedPubMedCentral
54.
Zhang, Z., Song, L., Maurer, K., Bagashev, A. & Sullivan, K. E. Monocyte polarization: the relationship of genome-wide changes in H4 acetylation with polarization. Genes Immun. 12, 445–456 (2011).CrossRefPubMedPubMedCentral
55.
Zhang, Z., Maurer, K., Perin, J. C., Song, L. & Sullivan, K. E. Cytokine-induced monocyte characteristics in SLE. J. Biomed. Biotechnol. 2010, 507475 (2010).PubMedPubMedCentral
56.
Kanno, T. et al. BRD4 assists elongation of both coding and enhancer RNAs by interacting with acetylated histones. Nat. Struct. Mol. Biol. 21, 1047–1057 (2014).CrossRefPubMedPubMedCentral
57.
Wei, S., Sun, Y. & Sha, H. Therapeutic targeting of BET protein BRD4 delays murine lupus. Int. Immunopharmacol. 29, 314–319 (2015).CrossRefPubMed
58.
Wu, L. & Belasco, J. G. Let me count the ways: mechanisms of gene regulation by miRNAs and siRNAs. Mol. Cell 29, 1–7 (2008).CrossRefPubMed
59.
Dai, Y. et al. Microarray analysis of microRNA expression in peripheral blood cells of systemic lupus erythematosus patients. Lupus 16, 939–946 (2007).CrossRefPubMed
60.
Dai, Y. et al. Comprehensive analysis of microRNA expression patterns in renal biopsies of lupus nephritis patients. Rheumatol. Int. 29, 749–754 (2009).CrossRefPubMed
61.
Costa-Reis, P. et al. The role of microRNAs and human epidermal growth factor receptor 2 in proliferative lupus nephritis. Arthritis Rheumatol. 67, 2415–2426 (2015).CrossRefPubMedPubMedCentral
62.
Carlsen, A. L. et al. Circulating microRNA expression profiles associated with systemic lupus erythematosus. Arthritis Rheum. 65, 1324–1334 (2013).CrossRefPubMedPubMedCentral
63.
Yan, S., Yim, L. Y., Lu, L., Lau, C. S. & Chan, V. S. MicroRNA regulation in systemic lupus erythematosus pathogenesis. Immune Netw. 14, 138–148 (2014).CrossRefPubMedPubMedCentral
64.
Liu, Y. et al. MicroRNA-30a promotes B cell hyperactivity in patients with systemic lupus erythematosus by direct interaction with Lyn. Arthritis Rheum. 65, 1603–1611 (2013).CrossRefPubMed
65.
Pan, W. et al. MicroRNA-21 and microRNA-148a contribute to DNA hypomethylation in lupus CD4+ T cells by directly and indirectly targeting DNA methyltransferase 1. J. Immunol. 184, 6773–6781 (2010).CrossRefPubMed
66.
Xiao, C. et al. Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes. Nat. Immunol. 9, 405–414 (2008).CrossRefPubMedPubMedCentral
67.
Kang, S. G. et al. MicroRNAs of the miR-17 approximately 92 family are critical regulators of TFH differentiation. Nat. Immunol. 14, 849–857 (2013).CrossRefPubMedPubMedCentral
68.
Thai, T. H. et al. Deletion of microRNA-155 reduces autoantibody responses and alleviates lupus-like disease in the Faslpr mouse. Proc. Natl Acad. Sci. USA 110, 20194–20199 (2013).CrossRefPubMedPubMedCentral
69.
Stagakis, E. et al. Identification of novel microRNA signatures linked to human lupus disease activity and pathogenesis: miR-21 regulates aberrant T cell responses through regulation of PDCD4 expression. Ann. Rheum. Dis. 70, 1496–1506 (2011).CrossRefPubMed
70.
Hennessy, E. J. & Moore, K. J. Using microRNA as an alternative treatment for hyperlipidemia and cardiovascular disease: cardio-miRs in the pipeline. J. Cardiovasc. Pharmacol. 62, 247–254 (2013).CrossRefPubMedPubMedCentral
71.
Bennett, L. et al. Interferon and granulopoiesis signatures in systemic lupus erythematosus blood. J. Exp. Med. 197, 711–723 (2003).CrossRefPubMedPubMedCentral
72.
Baechler, E. C. et al. Interferon-inducible gene expression signature in peripheral blood cells of patients with severe lupus. Proc. Natl Acad. Sci. USA 100, 2610–2615 (2003).CrossRefPubMedPubMedCentral
73.
Kirou, K. A. et al. Coordinate overexpression of interferon-α-induced genes in systemic lupus erythematosus. Arthritis Rheum. 50, 3958–3967 (2004).CrossRefPubMed
74.
Sharma, S. et al. Widely divergent transcriptional patterns between SLE patients of different ancestral backgrounds in sorted immune cell populations. J. Autoimmun. 60, 51–58 (2015).CrossRefPubMedPubMedCentral
75.
Juang, Y. T. et al. A systemic lupus erythematosus gene expression array in disease diagnosis and classification: a preliminary report. Lupus 20, 243–249 (2011).CrossRefPubMed
76.
Grammatikos, A. P. et al. A T cell gene expression panel for the diagnosis and monitoring of disease activity in patients with systemic lupus erythematosus. Clin. Immunol. 150, 192–200 (2014).CrossRefPubMed
77.
Bradley, S. J., Suarez-Fueyo, A., Moss, D. R., Kyttaris, V. C. & Tsokos, G. C. T cell transcriptomes describe patient subtypes in systemic lupus erythematosus. PLoS ONE 10, e0141171 (2015).CrossRefPubMedPubMedCentral
78.
Banchereau, R. et al. Personalized immunomonitoring uncovers molecular networks that stratify lupus patients. Cell 165, 551–565 (2016).CrossRefPubMedPubMedCentral
79.
Gaipl, U. S. et al. Cooperation between C1q and DNase I in the clearance of necrotic cell-derived chromatin. Arthritis Rheum. 50, 640–649 (2004).CrossRefPubMed
80.
Janko, C. et al. CRP/anti-CRP antibodies assembly on the surfaces of cell remnants switches their phagocytic clearance toward inflammation. Front. Immunol. 2, 70 (2011).CrossRefPubMedPubMedCentral
81.
Wilber, A., O'Connor, T. P., Lu, M. L., Karimi, A. & Schneider, M. C. Dnase1l3 deficiency in lupus-prone MRL and NZB/W F1 mice. Clin. Exp. Immunol. 134, 46–52 (2003).CrossRefPubMedPubMedCentral
82.
Al-Mayouf, S. M. et al. Loss-of-function variant in DNASE1L3 causes a familial form of systemic lupus erythematosus. Nat. Genet. 43, 1186–1188 (2011).CrossRefPubMed
83.
Belot, A. et al. Protein kinase Cδ deficiency causes Mendelian systemic lupus erythematosus with B cell-defective apoptosis and hyperproliferation. Arthritis Rheum. 65, 2161–2171 (2013).CrossRefPubMedPubMedCentral
84.
Dieker, J. et al. Enhanced activation of dendritic cells by autologous apoptotic microvesicles in MRL/lpr mice. Arthritis Res. Ther. 17, 103 (2015).CrossRefPubMedPubMedCentral
85.
Honda, K. et al. Spatiotemporal regulation of MyD88–IRF-7 signalling for robust type-I interferon induction. Nature 434, 1035–1040 (2005).CrossRefPubMed
86.
Barton, G. M., Kagan, J. C. & Medzhitov, R. Intracellular localization of Toll-like receptor 9 prevents recognition of self DNA but facilitates access to viral DNA. Nat. Immunol. 7, 49–56 (2006).CrossRefPubMed
87.
Savarese, E. et al. Requirement of Toll-like receptor 7 for pristane-induced production of autoantibodies and development of murine lupus nephritis. Arthritis Rheum. 58, 1107–1115 (2008).CrossRefPubMed
88.
Pawar, R. D. et al. Inhibition of Toll-like receptor-7 (TLR-7) or TLR-7 plus TLR-9 attenuates glomerulonephritis and lung injury in experimental lupus. J. Am. Soc. Nephrol. 18, 1721–1731 (2007).CrossRefPubMed
89.
Pawar, R. D. et al. Toll-like receptor-7 modulates immune complex glomerulonephritis. J. Am. Soc. Nephrol. 17, 141–149 (2006).CrossRefPubMed
90.
Subramanian, S. et al. A TLR7 translocation accelerates systemic autoimmunity in murine lupus. Proc. Natl Acad. Sci. USA 103, 9970–9975 (2006).CrossRefPubMedPubMedCentral
91.
Ramirez-Ortiz, Z. G. et al. The receptor TREML4 amplifies TLR7-mediated signaling during antiviral responses and autoimmunity. Nat. Immunol. 16, 495–504 (2015).CrossRefPubMedPubMedCentral
92.
Papadimitraki, E. D. et al. Expansion of Toll-like receptor 9-expressing B cells in active systemic lupus erythematosus: implications for the induction and maintenance of the autoimmune process. Arthritis Rheum. 54, 3601–3611 (2006).CrossRefPubMed
93.
Christensen, S. R. et al. Toll-like receptor 9 controls anti-DNA autoantibody production in murine lupus. J. Exp. Med. 202, 321–331 (2005).CrossRefPubMedPubMedCentral
94.
Fukui, R. et al. Unc93B1 restricts systemic lethal inflammation by orchestrating Toll-like receptor 7 and 9 trafficking. Immunity 35, 69–81 (2011).CrossRefPubMed
95.
Ishikawa, H. & Barber, G. N. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature 455, 674–678 (2008).CrossRefPubMedPubMedCentral
96.
Schlee, M. & Hartmann, G. Discriminating self from non-self in nucleic acid sensing. Nat. Rev. Immunol. 16, 566–580 (2016).CrossRefPubMedPubMedCentral
97.
Molineros, J. E. et al. Admixture mapping in lupus identifies multiple functional variants within IFIH1 associated with apoptosis, inflammation, and autoantibody production. PLoS Genet. 9, e1003222 (2013).CrossRefPubMedPubMedCentral
98.
Hornung, V. et al. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 458, 514–518 (2009).CrossRefPubMedPubMedCentral
99.
Choubey, D. Interferon-inducible Ifi200-family genes as modifiers of lupus susceptibility. Immunol. Lett. 147, 10–17 (2012).CrossRefPubMedPubMedCentral
100.
Crow, Y. J. & Manel, N. Aicardi–Goutières syndrome and the type I interferonopathies. Nat. Rev. Immunol. 15, 429–440 (2015).CrossRefPubMed
101.
Cuadrado, E. et al. Aicardi–Goutières syndrome harbours abundant systemic and brain-reactive autoantibodies. Ann. Rheum. Dis. 74, 1931–1939 (2015).CrossRefPubMed
102.
Munroe, M. E. et al. Altered type II interferon precedes autoantibody accrual and elevated type I interferon activity prior to systemic lupus erythematosus classification. Ann. Rheum. Dis. 75, 2014–2021 (2016).CrossRefPubMed
103.
Lu, R. et al. Dysregulation of innate and adaptive serum mediators precedes systemic lupus erythematosus classification and improves prognostic accuracy of autoantibodies. J. Autoimmun. 74, 182–193 (2016).CrossRefPubMedPubMedCentral
104.
Weckerle, C. E. et al. Large-scale analysis of tumor necrosis factor α levels in systemic lupus erythematosus. Arthritis Rheum. 64, 2947–2952 (2012).CrossRefPubMedPubMedCentral
105.
Yarilina, A., Park-Min, K. H., Antoniv, T., Hu, X. & Ivashkiv, L. B. TNF activates an IRF1-dependent autocrine loop leading to sustained expression of chemokines and STAT1-dependent type I interferon-response genes. Nat. Immunol. 9, 378–387 (2008).CrossRefPubMed
106.
Liu, Z. & Davidson, A. IFNα inducible models of murine SLE. Front. Immunol. 4, 306 (2013).PubMedPubMedCentral
107.
Castellano, G. et al. Local synthesis of interferon-α in lupus nephritis is associated with type I interferons signature and LMP7 induction in renal tubular epithelial cells. Arthritis Res. Ther. 17, 72 (2015).CrossRefPubMedPubMedCentral
108.
Farkas, L., Beiske, K., Lund-Johansen, F., Brandtzaeg, P. & Jahnsen, F. L. Plasmacytoid dendritic cells (natural interferon-α/β-producing cells) accumulate in cutaneous lupus erythematosus lesions. Am. J. Pathol. 159, 237–243 (2001).CrossRefPubMedPubMedCentral
109.
Fairhurst, A. M. et al. Systemic IFN-α drives kidney nephritis in B6.Sle123 mice. Eur. J. Immunol. 38, 1948–1960 (2008).CrossRefPubMedPubMedCentral
110.
Liu, Z. et al. Interferon-α accelerates murine systemic lupus erythematosus in a T cell-dependent manner. Arthritis Rheum. 63, 219–229 (2011).CrossRefPubMedPubMedCentral
111.
Rudloff, I. et al. Brief report: interleukin-38 exerts antiinflammatory functions and is associated with disease activity in systemic lupus erythematosus. Arthritis Rheumatol. 67, 3219–3225 (2015).CrossRefPubMed
112.
Wang, D., Drenker, M., Eiz-Vesper, B., Werfel, T. & Wittmann, M. Evidence for a pathogenetic role of interleukin-18 in cutaneous lupus erythematosus. Arthritis Rheum. 58, 3205–3215 (2008).CrossRefPubMed
113.
Talaat, R. M., Mohamed, S. F., Bassyouni, I. H. & Raouf, A. A. TH1/TH2/TH17/TReg cytokine imbalance in systemic lupus erythematosus (SLE) patients: correlation with disease activity. Cytokine 72, 146–153 (2015).CrossRefPubMed
114.
Kyttaris, V. C., Juang, Y. T., Tenbrock, K., Weinstein, A. & Tsokos, G. C. Cyclic adenosine 5′-monophosphate response element modulator is responsible for the decreased expression of c-fos and activator protein-1 binding in T cells from patients with systemic lupus erythematosus. J. Immunol. 173, 3557–3563 (2004).CrossRefPubMed
115.
Solomou, E. E., Juang, Y. T., Gourley, M. F., Kammer, G. M. & Tsokos, G. C. Molecular basis of deficient IL-2 production in T cells from patients with systemic lupus erythematosus. J. Immunol. 166, 4216–4222 (2001).CrossRefPubMed
116.
Kyttaris, V. C., Kampagianni, O. & Tsokos, G. C. Treatment with anti-interleukin 23 antibody ameliorates disease in lupus-prone mice. Biomed. Res. Int. 2013, 861028 (2013).CrossRefPubMedPubMedCentral
117.
Pers, J. O. et al. BAFF overexpression is associated with autoantibody production in autoimmune diseases. Ann. NY Acad. Sci. 1050, 34–39 (2005).CrossRefPubMed
118.
Stohl, W. et al. BAFF overexpression and accelerated glomerular disease in mice with an incomplete genetic predisposition to systemic lupus erythematosus. Arthritis Rheum. 52, 2080–2091 (2005).CrossRefPubMed
119.
Liu, Z. & Davidson, A. BAFF and selection of autoreactive B cells. Trends Immunol. 32, 388–394 (2011).CrossRefPubMedPubMedCentral
120.
Carter, L. M., Isenberg, D. A. & Ehrenstein, M. R. Elevated serum BAFF levels are associated with rising anti-double-stranded DNA antibody levels and disease flare following B cell depletion therapy in systemic lupus erythematosus. Arthritis Rheum. 65, 2672–2679 (2013).PubMed
121.
Ledford, H. After half-century's wait, approval paves path for new lupus drugs. Nat. Med. 17, 400 (2011).CrossRefPubMed
122.
Furie, R. et al. A phase III, randomized, placebo-controlled study of belimumab, a monoclonal antibody that inhibits B lymphocyte stimulator, in patients with systemic lupus erythematosus. Arthritis Rheum. 63, 3918–3930 (2011).CrossRefPubMedPubMedCentral
123.
Navarra, S. V. et al. Efficacy and safety of belimumab in patients with active systemic lupus erythematosus: a randomised, placebo-controlled, phase 3 trial. Lancet 377, 721–731 (2011).CrossRefPubMed
124.
Jin, O. et al. Systemic lupus erythematosus patients have increased number of circulating plasmacytoid dendritic cells, but decreased myeloid dendritic cells with deficient CD83 expression. Lupus 17, 654–662 (2008).CrossRefPubMed
125.
Batteux, F., Palmer, P., Daeron, M., Weill, B. & Lebon, P. FcγRII (CD32)-dependent induction of interferon-α by serum from patients with lupus erythematosus. Eur. Cytokine Netw. 10, 509–514 (1999).PubMed
126.
Mozaffarian, N., Wiedeman, A. E. & Stevens, A. M. Active systemic lupus erythematosus is associated with failure of antigen-presenting cells to express programmed death ligand-1. Rheumatology (Oxford) 47, 1335–1341 (2008).CrossRef
127.
Leonard, D. et al. Activated T cells enhance interferon-α production by plasmacytoid dendritic cells stimulated with RNA-containing immune complexes. Ann. Rheum. Dis. 75, 1728–1734 (2015).CrossRefPubMed
128.
Celhar, T. et al. RNA sensing by conventional dendritic cells is central to the development of lupus nephritis. Proc. Natl Acad. Sci. USA 112, E6195–E6204 (2015).CrossRefPubMedPubMedCentral
129.
Wu, S. A. et al. Impaired phagocytosis and susceptibility to infection in pediatric-onset systemic lupus erythematosus. Lupus 22, 279–288 (2013).CrossRefPubMed
130.
Bengtsson, A. A. et al. Low production of reactive oxygen species in granulocytes is associated with organ damage in systemic lupus erythematosus. Arthritis Res. Ther. 16, R120 (2014).CrossRefPubMedPubMedCentral
131.
De Ravin, S. S. et al. Chronic granulomatous disease as a risk factor for autoimmune disease. J. Allergy Clin. Immunol. 122, 1097–1103 (2008).CrossRefPubMedPubMedCentral
132.
Magnani, A. et al. Inflammatory manifestations in a single-center cohort of patients with chronic granulomatous disease. J. Allergy Clin. Immunol. 134, 655–662 (2014).CrossRefPubMed
133.
Campbell, A. M., Kashgarian, M. & Shlomchik, M. J. NADPH oxidase inhibits the pathogenesis of systemic lupus erythematosus. Sci. Transl Med. 4, 157ra141 (2012).CrossRefPubMedPubMedCentral
134.
Kelkka, T. et al. Reactive oxygen species deficiency induces autoimmunity with type 1 interferon signature. Antioxid. Redox Signal. 21, 2231–2245 (2014).CrossRefPubMedPubMedCentral
135.
Lood, C. et al. Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease. Nat. Med. 22, 146–153 (2016).CrossRefPubMedPubMedCentral
136.
Sanford, A. N., Suriano, A. R., Herche, D., Dietzmann, K. & Sullivan, K. E. Abnormal apoptosis in chronic granulomatous disease and autoantibody production characteristic of lupus. Rheumatology (Oxford) 45, 178–181 (2006).CrossRef
137.
Villanueva, E. et al. Netting neutrophils induce endothelial damage, infiltrate tissues, and expose immunostimulatory molecules in systemic lupus erythematosus. J. Immunol. 187, 538–552 (2011).CrossRefPubMed
138.
Smith, C. K. & Kaplan, M. J. The role of neutrophils in the pathogenesis of systemic lupus erythematosus. Curr. Opin. Rheumatol. 27, 448–453 (2015).CrossRefPubMed
139.
Garcia-Romo, G. S. et al. Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus. Sci. Transl Med. 3, 73ra20 (2011).CrossRefPubMedPubMedCentral
140.
Lande, R. et al. Neutrophils activate plasmacytoid dendritic cells by releasing self-DNA-peptide complexes in systemic lupus erythematosus. Sci. Transl Med. 3, 73ra19 (2011).CrossRefPubMedPubMedCentral
141.
O'Gorman, W. E. et al. Single-cell systems-level analysis of human Toll-like receptor activation defines a chemokine signature in patients with systemic lupus erythematosus. J. Allergy Clin. Immunol. 136, 1326–1336 (2015).CrossRefPubMedPubMedCentral
142.
Hill, G. S. et al. Predictive power of the second renal biopsy in lupus nephritis: significance of macrophages. Kidney Int. 59, 304–316 (2001).CrossRefPubMed
143.
Asanuma, Y. et al. Premature coronary-artery atherosclerosis in systemic lupus erythematosus. N. Engl. J. Med. 349, 2407–2415 (2003).CrossRefPubMed
144.
Li, J., Liu, C. H., Xu, D. L. & Gao, B. Significance of CD163-positive macrophages in proliferative glomerulonephritis. Am. J. Med. Sci. 350, 387–392 (2015).CrossRefPubMed
145.
Masek-Hammerman, K. et al. Monoclonal antibody against macrophage colony-stimulating factor suppresses circulating monocytes and tissue macrophage function but does not alter cell infiltration/activation in cutaneous lesions or clinical outcomes in patients with cutaneous lupus erythematosus. Clin. Exp. Immunol. 183, 258–270 (2016).CrossRefPubMed
146.
Chen, Y., Cuda, C. & Morel, L. Genetic determination of T cell help in loss of tolerance to nuclear antigens. J. Immunol. 174, 7692–7702 (2005).CrossRefPubMed
147.
Chavele, K. M. & Ehrenstein, M. R. Regulatory T-cells in systemic lupus erythematosus and rheumatoid arthritis. FEBS Lett. 585, 3603–3610 (2011).CrossRefPubMed
148.
Juang, Y. T. et al. Systemic lupus erythematosus serum IgG increases CREM binding to the IL-2 promoter and suppresses IL-2 production through CaMKIV. J. Clin. Invest. 115, 996–1005 (2005).CrossRefPubMedPubMedCentral
149.
Enyedy, E. J. et al. Fc ε receptor type I γ chain replaces the deficient T cell receptor ζ chain in T cells of patients with systemic lupus erythematosus. Arthritis Rheum. 44, 1114–1121 (2001).CrossRefPubMed
150.
Liossis, S. N., Ding, X. Z., Dennis, G. J. & Tsokos, G. C. Altered pattern of TCR/CD3-mediated protein-tyrosyl phosphorylation in T cells from patients with systemic lupus erythematosus. Deficient expression of the T cell receptor ζ chain. J. Clin. Invest. 101, 1448–1457 (1998).CrossRefPubMedPubMedCentral
151.
Fernandez, D. R. et al. Activation of mammalian target of rapamycin controls the loss of TCRζ in lupus T cells through HRES-1/Rab4-regulated lysosomal degradation. J. Immunol. 182, 2063–2073 (2009).CrossRefPubMed
152.
Crispin, J. C. et al. Expanded double negative T cells in patients with systemic lupus erythematosus produce IL-17 and infiltrate the kidneys. J. Immunol. 181, 8761–8766 (2008).CrossRefPubMed
153.
Liu, Y. et al. Increased expression of TLR2 in CD4+ T cells from SLE patients enhances immune reactivity and promotes IL-17 expression through histone modifications. Eur. J. Immunol. 45, 2683–2693 (2015).CrossRefPubMed
154.
Apostolidis, S. A., Crispin, J. C. & Tsokos, G. C. IL-17-producing T cells in lupus nephritis. Lupus 20, 120–124 (2011).CrossRefPubMed
155.
Crispin, J. C. & Tsokos, G. C. Human TCR-αβ+ CD4 CD8 T cells can derive from CD8+ T cells and display an inflammatory effector phenotype. J. Immunol. 183, 4675–4681 (2009).CrossRefPubMed
156.
Shivakumar, S., Tsokos, G. C. & Datta, S. K. T cell receptor α/β expressing double-negative (CD4/CD8) and CD4+ T helper cells in humans augment the production of pathogenic anti-DNA autoantibodies associated with lupus nephritis. J. Immunol. 143, 103–112 (1989).PubMed
157.
Mandik-Nayak, L. et al. MRL-lpr/lpr mice exhibit a defect in maintaining developmental arrest and follicular exclusion of anti-double-stranded DNA B cells. J. Exp. Med. 189, 1799–1814 (1999).CrossRefPubMedPubMedCentral
158.
Sinai, P. et al. T/B-cell interactions are more transient in response to weak stimuli in SLE-prone mice. Eur. J. Immunol. 44, 3522–3531 (2014).CrossRefPubMedPubMedCentral
159.
Mietzner, B. et al. Autoreactive IgG memory antibodies in patients with systemic lupus erythematosus arise from nonreactive and polyreactive precursors. Proc. Natl Acad. Sci. USA 105, 9727–9732 (2008).CrossRefPubMedPubMedCentral
160.
Keszei, M. et al. Expansion of an osteopontin-expressing T follicular helper cell subset correlates with autoimmunity in B6.Sle1b mice and is suppressed by the H1-isoform of the Slamf6 receptor. FASEB J. 27, 3123–3131 (2013).CrossRefPubMedPubMedCentral
161.
Yang, X. et al. T follicular helper cells mediate expansion of regulatory B cells via IL-21 in lupus-prone MRL/lpr mice. PLoS ONE 8, e62855 (2013).CrossRefPubMedPubMedCentral
162.
Choi, J. Y. et al. Circulating follicular helper-like T cells in systemic lupus erythematosus: association with disease activity. Arthritis Rheumatol. 67, 988–999 (2015).CrossRefPubMedPubMedCentral
163.
Szabo, K., Papp, G., Szanto, A., Tarr, T. & Zeher, M. A comprehensive investigation on the distribution of circulating follicular T helper cells and B cell subsets in primary Sjögren's syndrome and systemic lupus erythematosus. Clin. Exp. Immunol. (2015).
164.
Le Coz, C. et al. Circulating TFH subset distribution is strongly affected in lupus patients with an active disease. PLoS ONE 8, e75319 (2013).CrossRefPubMedPubMedCentral
165.
Liarski, V. M. et al. Cell distance mapping identifies functional T follicular helper cells in inflamed human renal tissue. Sci. Transl Med. 6, 230ra46 (2014).CrossRefPubMedPubMedCentral
166.
Simpson, N. et al. Expansion of circulating T cells resembling follicular helper T cells is a fixed phenotype that identifies a subset of severe systemic lupus erythematosus. Arthritis Rheum. 62, 234–244 (2010).CrossRefPubMed
167.
Jacquemin, C. et al. OX40 ligand contributes to human lupus pathogenesis by promoting T follicular helper response. Immunity 42, 1159–1170 (2015).CrossRefPubMedPubMedCentral
168.
von Spee-Mayer, C. et al. Low-dose interleukin-2 selectively corrects regulatory T cell defects in patients with systemic lupus erythematosus. Ann. Rheum. Dis. (2015).
169.
Dörner, T., Jacobi, A. M., Lee, J. & Lipsky, P. E. Abnormalities of B cell subsets in patients with systemic lupus erythematosus. J. Immunol. Methods 363, 187–197 (2011).CrossRefPubMed
170.
Guerrier, T., Youinou, P., Pers, J. O. & Jamin, C. TLR9 drives the development of transitional B cells towards the marginal zone pathway and promotes autoimmunity. J. Autoimmun. 39, 173–179 (2012).CrossRefPubMed
171.
Thien, M. et al. Excess BAFF rescues self-reactive B cells from peripheral deletion and allows them to enter forbidden follicular and marginal zone niches. Immunity 20, 785–798 (2004).CrossRefPubMed
172.
Lesley, R. et al. Reduced competitiveness of autoantigen-engaged B cells due to increased dependence on BAFF. Immunity 20, 441–453 (2004).CrossRefPubMed
173.
Mackay, F. et al. Mice transgenic for BAFF develop lymphocytic disorders along with autoimmune manifestations. J. Exp. Med. 190, 1697–1710 (1999).CrossRefPubMedPubMedCentral
174.
Arbuckle, M. R. et al. Development of autoantibodies before the clinical onset of systemic lupus erythematosus. N. Engl. J. Med. 349, 1526–1533 (2003).CrossRefPubMed
175.
Wardemann, H. et al. Predominant autoantibody production by early human B cell precursors. Science 301, 1374–1377 (2003).CrossRefPubMed
176.
Odendahl, M. et al. Disturbed peripheral B lymphocyte homeostasis in systemic lupus erythematosus. J. Immunol. 165, 5970–5979 (2000).CrossRefPubMed
177.
Gao, N. et al. Impaired suppressive capacity of activation-induced regulatory B cells in systemic lupus erythematosus. Arthritis Rheumatol. 66, 2849–2861 (2014).CrossRefPubMed
178.
Pillai, S., Mattoo, H. & Cariappa, A. B cells and autoimmunity. Curr. Opin. Immunol. 23, 721–731 (2011).CrossRefPubMedPubMedCentral
179.
Koscec, M. et al. Autoantibodies to ribosomal P proteins penetrate into live hepatocytes and cause cellular dysfunction in culture. J. Immunol. 159, 2033–2041 (1997).PubMed
180.
Hung, T. et al. The Ro60 autoantigen binds endogenous retroelements and regulates inflammatory gene expression. Science 350, 455–459 (2015).CrossRefPubMedPubMedCentral
181.
Kaur, K. et al. High affinity antibodies against influenza characterize the plasmablast response in SLE patients after vaccination. PLoS ONE 10, e0125618 (2015).CrossRefPubMedPubMedCentral
182.
Dema, B. et al. Autoreactive IgE is prevalent in systemic lupus erythematosus and is associated with increased disease activity and nephritis. PLoS ONE 9, e90424 (2014).CrossRefPubMedPubMedCentral
183.
Henault, J. et al. Self-reactive IgE exacerbates interferon responses associated with autoimmunity. Nat. Immunol. 17, 196–203 (2016).CrossRefPubMed
184.
Liphaus, B. L., Jesus, A. A., Silva, C. A., Coutinho, A. & Carneiro-Sampaio, M. Increased IgE serum levels are unrelated to allergic and parasitic diseases in patients with juvenile systemic lupus erythematosus. Clinics (São Paulo) 67, 1275–1280 (2012).CrossRef
185.
Charles, N., Hardwick, D., Daugas, E., Illei, G. G. & Rivera, J. Basophils and the T helper 2 environment can promote the development of lupus nephritis. Nat. Med. 16, 701–707 (2010).CrossRefPubMedPubMedCentral
186.
Charles, N. et al. Lyn kinase controls basophil GATA-3 transcription factor expression and induction of TH2 cell differentiation. Immunity 30, 533–543 (2009).CrossRefPubMedPubMedCentral
187.
Dema, B. et al. Immunoglobulin E plays an immunoregulatory role in lupus. J. Exp. Med. 211, 2159–2168 (2014).CrossRefPubMedPubMedCentral
188.
Ge, Y. et al. Cgnz1 allele confers kidney resistance to damage preventing progression of immune complex-mediated acute lupus glomerulonephritis. J. Exp. Med. 210, 2387–2401 (2013).CrossRefPubMedPubMedCentral
189.
Watkins, A. A. et al. IRF5 deficiency ameliorates lupus but promotes atherosclerosis and metabolic dysfunction in a mouse model of lupus-associated atherosclerosis. J. Immunol. 194, 1467–1479 (2015).CrossRefPubMed
190.
Cervera, R. et al. Morbidity and mortality in systemic lupus erythematosus during a 5-year period. A multicenter prospective study of 1,000 patients. European Working Party on Systemic Lupus Erythematosus. Medicine (Baltimore) 78, 167–175 (1999).CrossRef
191.
Flower, C., Hennis, A., Hambleton, I. R. & Nicholson, G. Lupus nephritis in an Afro-Caribbean population: renal indices and clinical outcomes. Lupus 15, 689–694 (2006).CrossRefPubMed
192.
Chung, S. A. et al. Lupus nephritis susceptibility loci in women with systemic lupus erythematosus. J. Am. Soc. Nephrol. 25, 2859–2870 (2014).CrossRefPubMedPubMedCentral
193.
Matsuda, M. et al. Gene expression of PDGF and PDGF receptor in various forms of glomerulonephritis. Am. J. Nephrol. 17, 25–31 (1997).CrossRefPubMed
194.
Ostendorf, T. et al. Antagonism of PDGF-D by human antibody CR002 prevents renal scarring in experimental glomerulonephritis. J. Am. Soc. Nephrol. 17, 1054–1062 (2006).CrossRefPubMed
195.
Ichii, O. et al. Decreased miR-26a expression correlates with the progression of podocyte injury in autoimmune glomerulonephritis. PLoS ONE 9, e110383 (2014).CrossRefPubMedPubMedCentral
196.
Flur, K. et al. Viral RNA induces type I interferon-dependent cytokine release and cell death in mesangial cells via melanoma-differentiation-associated gene-5: implications for viral infection-associated glomerulonephritis. Am. J. Pathol. 175, 2014–2022 (2009).CrossRefPubMedPubMedCentral
197.
Ichinose, K. et al. Cutting edge: calcium/calmodulin-dependent protein kinase type IV is essential for mesangial cell proliferation and lupus nephritis. J. Immunol. 187, 5500–5504 (2011).CrossRefPubMed
198.
Ichinose, K. et al. Lupus nephritis IgG induction of calcium/calmodulin-dependent kinase type IV expression in podocytes and alteration of their function. Arthritis Rheumatol. 68, 944–952 (2016).CrossRefPubMedPubMedCentral
199.
Ichinose, K., Juang, Y. T., Crispin, J. C., Kis-Toth, K. & Tsokos, G. C. Suppression of autoimmunity and organ pathology in lupus-prone mice upon inhibition of calcium/calmodulin-dependent protein kinase type IV. Arthritis Rheum. 63, 523–529 (2011).CrossRefPubMedPubMedCentral
200.
Tshilela, K. A. et al. Glomerular cytokine expression in murine lupus nephritis. Clin. Exp. Nephrol. 20, 23–29 (2016).CrossRefPubMed
201.
Espinosa, A. et al. Loss of the lupus autoantigen Ro52/Trim21 induces tissue inflammation and systemic autoimmunity by disregulating the IL-23–TH17 pathway. J. Exp. Med. 206, 1661–1671 (2009).CrossRefPubMedPubMedCentral
202.
Oke, V. et al. High Ro52 expression in spontaneous and UV-induced cutaneous inflammation. J. Invest. Dermatol. 129, 2000–2010 (2009).CrossRefPubMed
203.
Fabini, G., Rutjes, S. A., Zimmermann, C., Pruijn, G. J. & Steiner, G. Analysis of the molecular composition of Ro ribonucleoprotein complexes: identification of novel Y RNA-binding proteins. Eur. J. Biochem. 267, 2778–2789 (2000).CrossRefPubMed
204.
Ho, R. C. et al. Genetic variants that are associated with neuropsychiatric systemic lupus erythematosus. J. Rheumatol. 43, 541–551 (2016).CrossRefPubMed
205.
Namjou, B. et al. Evaluation of the TREX1 gene in a large multi-ancestral lupus cohort. Genes Immun. 12, 270–279 (2011).CrossRefPubMedPubMedCentral
206.
Jacob, A. et al. Inhibition of C5a receptor alleviates experimental CNS lupus. J. Neuroimmunol. 221, 46–52 (2010).CrossRefPubMedPubMedCentral
207.
Jacob, A. et al. C5a alters blood–brain barrier integrity in experimental lupus. FASEB J. 24, 1682–1688 (2010).CrossRefPubMedPubMedCentral
208.
Ho, R. C. et al. A meta-analysis of serum and cerebrospinal fluid autoantibodies in neuropsychiatric systemic lupus erythematosus. Autoimmun. Rev. 15, 124–138 (2016).CrossRefPubMed
209.
Wen, J. et al. Neuropsychiatric disease in murine lupus is dependent on the TWEAK/Fn14 pathway. J. Autoimmun. 43, 44–54 (2013).CrossRefPubMedPubMedCentral
210.
Pondman, K. W., Stoop, J. W., Cormane, R. H. & Hannema, A. J. Abnormal C1 in a patient with systemic lupus erythematosus. J. Immunol. 101, 811 (1968).
211.
Kallel-Sellami, M. et al. Pediatric systemic lupus erythematosus with C1q deficiency. Ann. NY Acad. Sci. 1108, 193–196 (2007).CrossRefPubMed
212.
Wu, Y. L., Brookshire, B. P., Verani, R. R., Arnett, F. C. & Yu, C. Y. Clinical presentations and molecular basis of complement C1r deficiency in a male African-American patient with systemic lupus erythematosus. Lupus 20, 1126–1134 (2011).CrossRefPubMed
213.
Suzuki, Y., Ogura, Y., Otsubo, O., Akagi, K. & Fujita, T. Selective deficiency of C1s associated with a systemic lupus erythematosus-like syndrome. Report of a case. Arthritis Rheum. 35, 576–579 (1992).CrossRefPubMed
214.
Kemp, M. E., Atkinson, J. P., Skanes, V. M., Levine, R. P. & Chaplin, D. D. Deletion of C4A genes in patients with systemic lupus erythematosus. Arthritis Rheum. 30, 1015–1022 (1987).CrossRefPubMed
215.
Wahl, R. et al. C2 deficiency and a lupus erythematosus-like illness: family re-evaluation. Ann. Intern. Med. 90, 717–718 (1979).CrossRefPubMed
216.
Pussell, B. A., Bourke, E., Nayef, M., Morris, S. & Peters, D. K. Complement deficiency and nephritis: a report of a family. Lancet 1, 675–677 (1980).PubMed
217.
Battersby, A. C., Cale, A. M., Goldblatt, D. & Gennery, A. R. Clinical manifestations of disease in X-linked carriers of chronic granulomatous disease. J. Clin. Immunol. 33, 1276–1284 (2013).CrossRefPubMed
218.
Klar, A. et al. Prolidase deficiency: it looks like systemic lupus erythematosus but it is not. Eur. J. Pediatr. 169, 727–732 (2010).CrossRefPubMed
219.
Urushihara, M. et al. Sisters with α-mannosidosis and systemic lupus erythematosus. Eur. J. Pediatr. 163, 192–195 (2004).CrossRefPubMed
220.
Lee-Kirsch, M. A. et al. Familial chilblain lupus, a monogenic form of cutaneous lupus erythematosus, maps to chromosome 3p. Am. J. Hum. Genet. 79, 731–737 (2006).CrossRefPubMedPubMedCentral
221.
Rice, G. et al. Heterozygous mutations in TREX1 cause familial chilblain lupus and dominant Aicardi–Goutières syndrome. Am. J. Hum. Genet. 80, 811–815 (2007).CrossRefPubMedPubMedCentral
222.
Yasutomo, K. et al. Mutation of DNASE1 in people with systemic lupus erythematosus. Nat. Genet. 28, 313–314 (2001).CrossRefPubMed
223.
Ramantani, G. et al. Aicardi–Goutières syndrome and systemic lupus erythematosus (SLE) in a 12-year-old boy with SAMHD1 mutations. J. Child Neurol. 26, 1425–1428 (2011).CrossRefPubMed
224.
Briggs, T. A. et al. Tartrate-resistant acid phosphatase deficiency causes a bone dysplasia with autoimmunity and a type I interferon expression signature. Nat. Genet. 43, 127–131 (2011).CrossRefPubMed
225.
Crow, Y. J. et al. Characterization of human disease phenotypes associated with mutations in TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, ADAR, and IFIH1. Am. J. Med. Genet. A 167A, 296–312 (2015).CrossRefPubMed
226.
Rice, G. I. et al. Mutations in ADAR1 cause Aicardi–Goutières syndrome associated with a type I interferon signature. Nat. Genet. 44, 1243–1248 (2012).CrossRefPubMedPubMedCentral
227.
Jang, M. A. et al. Mutations in DDX58, which encodes RIG-I, cause atypical Singleton–Merten syndrome. Am. J. Hum. Genet. 96, 266–274 (2015).CrossRefPubMedPubMedCentral
228.
Liu, Y. et al. Activated STING in a vascular and pulmonary syndrome. N. Engl. J. Med. 371, 507–518 (2014).CrossRefPubMedPubMedCentral
229.
Zhang, X. et al. Human intracellular ISG15 prevents interferon-α/β over-amplification and auto-inflammation. Nature 517, 89–93 (2015).CrossRefPubMed
230.
Brehm, A. et al. Additive loss-of-function proteasome subunit mutations in CANDLE/PRAAS patients promote type I IFN production. J. Clin. Invest. 125, 4196–4211 (2015).CrossRefPubMedPubMedCentral
231.
Wu, J. et al. Fas ligand mutation in a patient with systemic lupus erythematosus and lymphoproliferative disease. J. Clin. Invest. 98, 1107–1113 (1996).CrossRefPubMedPubMedCentral
232.
Xiang, N., Li, X. M., Wang, G. S., Tao, J. H. & Li, X. P. Association of FAS gene polymorphisms with systemic lupus erythematosus: a meta-analysis. Mol. Biol. Rep. 40, 407–415 (2013).CrossRefPubMed
233.
Rieux-Laucat, F. et al. Mutations in FAS associated with human lymphoproliferative syndrome and autoimmunity. Science 268, 1347–1349 (1995).CrossRefPubMed
234.
Bader-Meunier, B. et al. Are RASopathies new monogenic predisposing conditions to the development of systemic lupus erythematosus? Case report and systematic review of the literature. Semin. Arthritis Rheum. 43, 217–219 (2013).CrossRefPubMed
235.
Chen, K. et al. Autoimmunity due to RAG deficiency and estimated disease incidence in RAG1/2 mutations. J. Allergy Clin. Immunol. 133, 880–882. e810 (2014).CrossRefPubMedPubMedCentral
236.
Walter, J. E. et al. Impaired receptor editing and heterozygous RAG2 mutation in a patient with systemic lupus erythematosus and erosive arthritis. J. Allergy Clin. Immunol. 135, 272–273 (2014).CrossRefPubMedPubMedCentral