Skip to main content
Top

06-07-2016 | Systemic lupus erythematosus | Review | Article

Clinical Pharmacokinetics and Pharmacodynamics of Biologic Therapeutics for Treatment of Systemic Lupus Erythematosus

Journal: Clinical Pharmacokinetics

Authors: Tian Yu, Elena Y. Enioutina, Hermine I. Brunner, Alexander A. Vinks, Catherine M. Sherwin

Publisher: Springer International Publishing

Abstract

Systemic lupus erythematosus (SLE) is a multifactorial autoimmune disease with potentially severe clinical manifestation that mainly affects women of child-bearing age. Patients who do not respond to standard-of-care therapies, such as corticosteroids and immunosuppressants, require biologic therapeutics that specifically target a single or multiple SLE pathogenesis pathways. This review summarizes the clinical pharmacokinetic and pharmacodynamic characteristics of biologic agents that are approved, used off-label, or in the active pipeline of drug development for SLE patients. Depending on the type of target, the interacting biologics may exhibit linear (non-specific) or non-linear (target-mediated) disposition profiles, with terminal half-lives varying from approximately 1 week to 1 month. Biologics given by subcutaneous administration, which offers dosing flexibility over intravenous administration, demonstrated a relatively slow absorption with a time to maximum concentration of approximately 1 day to 2 weeks and a variable bioavailability of 30–82 %. The population pharmacokinetics of monoclonal antibodies were best described by a two-compartment model with central clearance and steady-state volume of distribution ranging from 0.176 to 0.215 L/day and 3.60–5.29 L, respectively. The between-subject variability in pharmacokinetic parameters were moderate (20–79 %) and could be partially explained by body size. The development of linked pharmacokinetic-pharmacodynamic models incorporating SLE disease biomarkers are an attractive strategy for use in dosing regimen simulation and optimization. The relationship between efficacy/adverse events and biologic concentration should be evaluated to improve clinical trial outcomes, especially for biologics in the advanced phase of drug development. New strategies, such as model-based precision dosing dashboards, could be utilized to incorporate information collected from therapeutic drug monitoring into pharmacokinetic/pharmacodynamic models to enable individualized dosing in real time.
Literature
1.
Lupus Foundation of America. Statistics on lupus. http://​www.​lupus.​org/​about/​statistics-on-lupus. Accessed Nov 2015.
2.
Guidelines for referral and management of systemic lupus erythematosus in adults. American College of Rheumatology Ad Hoc Committee on Systemic Lupus Erythematosus Guidelines. Arthritis Rheum. 1999;42(9):1785–96. doi:10.1002/1529-0131(199909)42:9<1785::AID-ANR1>3.0.CO;2-#.
3.
Hahn BH. Belimumab for systemic lupus erythematosus. N Engl J Med. 2013;368(16):1528–35. doi:10.​1056/​NEJMct1207259.CrossRefPubMed
4.
Morais SA, Vilas-Boas A, Isenberg DA. B-cell survival factors in autoimmune rheumatic disorders. Ther Adv Musculoskelet Dis. 2015;7(4):122–51. doi:10.​1177/​1759720X15586782​.CrossRefPubMedPubMedCentral
5.
Hochberg MC. Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum. 1997;40(9):1725. doi:10.​1002/​1529-0131(199709)40:​9<1725:​AID-ART29>3.​0.​CO;2-Y.CrossRefPubMed
6.
Furie RA, Petri MA, Wallace DJ, Ginzler EM, Merrill JT, Stohl W, et al. Novel evidence-based systemic lupus erythematosus responder index. Arthritis Rheum. 2009;61(9):1143–51. doi:10.​1002/​art.​24698.CrossRefPubMedPubMedCentral
7.
Buyon JP, Petri MA, Kim MY, Kalunian KC, Grossman J, Hahn BH, et al. The effect of combined estrogen and progesterone hormone replacement therapy on disease activity in systemic lupus erythematosus: a randomized trial. Ann Intern Med. 2005;142(12 Pt 1):953–62.CrossRefPubMed
8.
Hay EM, Bacon PA, Gordon C, Isenberg DA, Maddison P, Snaith ML, et al. The BILAG index: a reliable and valid instrument for measuring clinical disease activity in systemic lupus erythematosus. Q J Med. 1993;86(7):447–58.PubMed
9.
Delves PJ, Martin SJ, Burton DR, Roitt IM. Roitt’s essential immunology. 12th ed. Chichester: Wiley-Blackwell Publishing; 2011.
10.
Edelman GM. Antibody structure and molecular immunology. Science. 1973;180(4088):830–40.CrossRefPubMed
11.
Telleman P, Junghans RP. The role of the Brambell receptor (FcRB) in liver: protection of endocytosed immunoglobulin G (IgG) from catabolism in hepatocytes rather than transport of IgG to bile. Immunology. 2000;100(2):245–51.CrossRefPubMedPubMedCentral
12.
Isenberg D, Gordon C, Licu D, Copt S, Rossi CP, Wofsy D. Efficacy and safety of atacicept for prevention of flares in patients with moderate-to-severe systemic lupus erythematosus (SLE): 52-week data (APRIL-SLE randomised trial). Ann Rheum Dis. 2015;74(11):2006–15. doi:10.​1136/​annrheumdis-2013-205067.CrossRefPubMed
13.
Scheinberg MA, Srinivasan D, Martin RS. The potential role of blisibimod for the treatment of systemic lupus erythematosus. Int J Clin Rheumatol. 2014;9(2):121–34.CrossRef
14.
Tocoian A, Buchan P, Kirby H, Soranson J, Zamacona M, Walley R, et al. First-in-human trial of the safety, pharmacokinetics and immunogenicity of a PEGylated anti-CD40L antibody fragment (CDP7657) in healthy individuals and patients with systemic lupus erythematosus. Lupus. 2015;. doi:10.​1177/​0961203315574558​.PubMed
15.
Supersaxo A, Hein WR, Steffen H. Effect of molecular weight on the lymphatic absorption of water-soluble compounds following subcutaneous administration. Pharm Res. 1990;7(2):167–9.CrossRefPubMed
16.
Dirks NL, Meibohm B. Population pharmacokinetics of therapeutic monoclonal antibodies. Clin Pharmacokinet. 2010;49(10):633–59. doi:10.​2165/​11535960-000000000-00000.CrossRefPubMed
17.
Tabrizi M, Bornstein GG, Suria H. Biodistribution mechanisms of therapeutic monoclonal antibodies in health and disease. AAPS J. 2010;12(1):33–43. doi:10.​1208/​s12248-009-9157-5.CrossRefPubMed
18.
Fronton L, Pilari S, Huisinga W. Monoclonal antibody disposition: a simplified PBPK model and its implications for the derivation and interpretation of classical compartment models. J Pharmacokinet Pharmacodyn. 2014;41(2):87–107. doi:10.​1007/​s10928-014-9349-1.CrossRefPubMed
19.
Levy G. Pharmacologic target-mediated drug disposition. Clin Pharmacol Ther. 1994;56(3):248–52.CrossRefPubMed
20.
Mager DE, Jusko WJ. General pharmacokinetic model for drugs exhibiting target-mediated drug disposition. J Pharmacokinet Pharmacodyn. 2001;28(6):507–32.CrossRefPubMed
21.
Struemper H, Chen C, Cai W. Population pharmacokinetics of belimumab following intravenous administration in patients with systemic lupus erythematosus. J Clin Pharmacol. 2013;53(7):711–20. doi:10.​1002/​jcph.​104.CrossRefPubMed
22.
Chen P, Vu T, Narayanan A, Sohn W, Wang J, Boedigheimer M, et al. Pharmacokinetic and pharmacodynamic relationship of AMG 811, an anti-IFN-gamma IgG1 monoclonal antibody, in patients with systemic lupus erythematosus. Pharm Res. 2015;32(2):640–53. doi:10.​1007/​s11095-014-1492-2.CrossRefPubMed
23.
Gibiansky L, Gibiansky E, Kakkar T, Ma P. Approximations of the target-mediated drug disposition model and identifiability of model parameters. J Pharmacokinet Pharmacodyn. 2008;35(5):573–91. doi:10.​1007/​s10928-008-9102-8.CrossRefPubMed
24.
Gibiansky L, Gibiansky E. Target-mediated drug disposition model: approximations, identifiability of model parameters and applications to the population pharmacokinetic-pharmacodynamic modeling of biologics. Expert Opin Drug Metab Toxicol. 2009;5(7):803–12. doi:10.​1517/​1742525090299290​1.CrossRefPubMed
25.
Koutsokeras T, Healy T. Systemic lupus erythematosus and lupus nephritis. Nat Rev Drug Discov. 2014;13(3):173–4. doi:10.​1038/​nrd4227.CrossRefPubMed
26.
Ternant D, Bejan-Angoulvant T, Passot C, Mulleman D, Paintaud G. Clinical pharmacokinetics and pharmacodynamics of monoclonal antibodies approved to treat rheumatoid arthritis. Clin Pharmacokinet. 2015;54(11):1107–23. doi:10.​1007/​s40262-015-0296-9.CrossRefPubMed
27.
Leone A, Sciascia S, Kamal A, Khamashta M. Biologicals for the treatment of systemic lupus erythematosus: current status and emerging therapies. Expert Rev Clin Immunol. 2015;11(1):109–16. doi:10.​1586/​1744666X.​2015.​994508.CrossRefPubMed
28.
Andreoli L, Reggia R, Pea L, Frassi M, Zanola A, Cartella S, et al. Belimumab for the treatment of refractory systemic lupus erythematosus: real-life experience in the first year of use in 18 Italian patients. Isr Med Assoc J. 2014;16(10):651–3.PubMed
29.
Gatto M, Kiss E, Naparstek Y, Doria A. In-/off-label use of biologic therapy in systemic lupus erythematosus. BMC Med. 2014;12:30. doi:10.​1186/​1741-7015-12-30.CrossRefPubMedPubMedCentral
30.
Squatrito D, Emmi G, Silvestri E, Ciucciarelli L, D’Elios MM, Prisco D, et al. Pathogenesis and potential therapeutic targets in systemic lupus erythematosus: from bench to bedside. Auto Immun Highlights. 2014;5(2):33–45. doi:10.​1007/​s13317-014-0058-y.CrossRefPubMedPubMedCentral
31.
Lauwerys BR, Ducreux J, Houssiau FA. Type I interferon blockade in systemic lupus erythematosus: where do we stand? Rheumatology (Oxford). 2014;53(8):1369–76. doi:10.​1093/​rheumatology/​ket403.CrossRefPubMed
32.
Kirou KA, Gkrouzman E. Anti-interferon alpha treatment in SLE. Clin Immunol. 2013;148(3):303–12. doi:10.​1016/​j.​clim.​2013.​02.​013.CrossRefPubMed
33.
Peng L, Oganesyan V, Wu H, Dall’Acqua WF, Damschroder MM. Molecular basis for antagonistic activity of anifrolumab, an anti-interferon-alpha receptor 1 antibody. MAbs. 2015;7(2):428–39. doi:10.​1080/​19420862.​2015.​1007810.CrossRefPubMedPubMedCentral
34.
Furie R, Merrill J, Werth V, Khamashta M, Kalunian K, Brohawn P, et al. Anifrolumab, an anti-interferon alpha receptor monoclonal antibody, in moderate to severe systemic lupus erythematosus [abstract no. 3223]. Arthritis Rheumatol. 2015;67(suppl 10). http://​acrabstracts.​org/​abstract/​anifrolumab-an-anti-interferon-alpha-receptor-monoclonal-antibody-in-moderate-to-severe-systemic-lupus-erythematosus-sle/​. Accessed 6 Jun 2016.
35.
Brohawn P, Santiago L, Morehouse C, Higgs B, Illei G, Ranade K. Target modulation of a type I interferon gene signature and pharmacokinetics of anifrolumab in a phase IIb study of patients with moderate to severe systemic lupus erythematosus [abstract no. 1828]. Arthritis Rheumatol. 2015;67(suppl 10). http://​acrabstracts.​org/​abstract/​target-modulation-of-a-type-i-interferon-gene-signature-and-pharmacokinetics​-of-anifrolumab-in-a-phase-iib-study-of-patients-with-moderate-to-severe-systemic-lupus-erythematosus/​. Accessed 6 Jun 2016.
36.
Morehouse C, Chang L, Wang L, Brohawn P, Ueda S, Illei G, et al. Target modulation of a type I interferon (IFN) gene signature with Sifalimumab or Anifrolumab in systemic lupus erythematosus (SLE) patients in two open label phase 2 Japanese trials [abstract no. 719]. 2014 ACR/ARHP Annual Meeting; 14–19 Nov 2014; Boston.
37.
Yang BB, Lum P, Chen A, Arends R, Roskos L, Smith B, et al. Pharmacokinetic and pharmacodynamic perspectives on the clinical drug development of panitumumab. Clin Pharmacokinet. 2010;49(11):729–40. doi:10.​2165/​11535970-000000000-00000.CrossRefPubMed
38.
Sheremata WA, Vollmer TL, Stone LA, Willmer-Hulme AJ, Koller M. A safety and pharmacokinetic study of intravenous natalizumab in patients with MS. Neurology. 1999;52(5):1072–4.CrossRefPubMed
39.
Constantinescu SN, Croze E, Wang C, Murti A, Basu L, Mullersman JE, et al. Role of interferon alpha/beta receptor chain 1 in the structure and transmembrane signaling of the interferon alpha/beta receptor complex. Proc Natl Acad Sci USA. 1994;91(20):9602–6.CrossRefPubMedPubMedCentral
40.
Baccala R, Gonzalez-Quintial R, Schreiber RD, Lawson BR, Kono DH, Theofilopoulos AN. Anti-IFN-alpha/beta receptor antibody treatment ameliorates disease in lupus-predisposed mice. J Immunol. 2012;189(12):5976–84. doi:10.​4049/​jimmunol.​1201477.CrossRefPubMedPubMedCentral
41.
Cogollo E, Silva MA, Isenberg D. Profile of atacicept and its potential in the treatment of systemic lupus erythematosus. Drug Des Devel Ther. 2015;9:1331–9. doi:10.​2147/​DDDT.​S71276.PubMedPubMedCentral
42.
Kheirallah S, Caron P, Gross E, Quillet-Mary A, Bertrand-Michel J, Fournie JJ, et al. Rituximab inhibits B-cell receptor signaling. Blood. 2010;115(5):985–94. doi:10.​1182/​blood-2009-08-237537.CrossRefPubMed
43.
Golay J, Semenzato G, Rambaldi A, Foa R, Gaidano G, Gamba E, et al. Lessons for the clinic from rituximab pharmacokinetics and pharmacodynamics. MAbs. 2013;5(6):826–37. doi:10.​4161/​mabs.​26008.CrossRefPubMedPubMedCentral
44.
Looney RJ, Anolik JH, Campbell D, Felgar RE, Young F, Arend LJ, et al. B cell depletion as a novel treatment for systemic lupus erythematosus: a phase I/II dose-escalation trial of rituximab. Arthritis Rheum. 2004;50(8):2580–9. doi:10.​1002/​art.​20430.CrossRefPubMed
45.
McLaughlin P, Grillo-Lopez AJ, Link BK, Levy R, Czuczman MS, Williams ME, et al. Rituximab chimeric anti-CD20 monoclonal antibody therapy for relapsed indolent lymphoma: half of patients respond to a four-dose treatment program. J Clin Oncol. 1998;16(8):2825–33.PubMed
46.
Getts DR, Getts MT, McCarthy DP, Chastain EM, Miller SD. Have we overestimated the benefit of human(ized) antibodies? MAbs. 2010;2(6):682–94.CrossRefPubMedPubMedCentral
47.
Merrill JT, Neuwelt CM, Wallace DJ, Shanahan JC, Latinis KM, Oates JC, et al. Efficacy and safety of rituximab in moderately-to-severely active systemic lupus erythematosus: the randomized, double-blind, phase II/III systemic lupus erythematosus evaluation of rituximab trial. Arthritis Rheum. 2010;62(1):222–33. doi:10.​1002/​art.​27233.CrossRefPubMedPubMedCentral
48.
Ruiz-Irastorza G, Danza A, Khamashta M. Treatment of systemic lupus erythematosus: myths, certainties and doubts [in Spanish]. Med Clin (Barc). 2013;141(12):533–42. doi:10.​1016/​j.​medcli.​2013.​02.​014.CrossRefPubMed
49.
Navarra SV, Guzman RM, Gallacher AE, Hall S, Levy RA, Jimenez RE, et al. BLISS-52 Study Group. Efficacy and safety of belimumab in patients with active systemic lupus erythematosus: a randomised, placebo-controlled, phase 3 trial. Lancet. 2011;377(9767):721–31. doi:10.​1016/​S0140-6736(10)61354-2.CrossRefPubMed
50.
Furie R, Petri M, Zamani O, Cervera R, Wallace DJ, Tegzova D, et al. A phase III, randomized, placebo-controlled study of belimumab, a monoclonal antibody that inhibits B lymphocyte stimulator, in patients with systemic lupus erythematosus. Arthritis Rheum. 2011;63(12):3918–30. doi:10.​1002/​art.​30613.CrossRefPubMedPubMedCentral
51.
Hui-Yuen JS, Li XQ, Askanase AD. Belimumab in systemic lupus erythematosus: a perspective review. Ther Adv Musculoskelet Dis. 2015;7(4):115–21. doi:10.​1177/​1759720X15588514​.CrossRefPubMedPubMedCentral
52.
Furie R, Stohl W, Ginzler EM, Becker M, Mishra N, Chatham W, et al. Biologic activity and safety of belimumab, a neutralizing anti-B-lymphocyte stimulator (BLyS) monoclonal antibody: a phase I trial in patients with systemic lupus erythematosus. Arthritis Res Ther. 2008;10(5):R109. doi:10.​1186/​ar2506.CrossRefPubMedPubMedCentral
53.
Cai WW, Fiscella M, Chen C, Zhong ZJ, Freimuth WW, Subich DC. Bioavailability, pharmacokinetics, and safety of belimumab administered subcutaneously in healthy subjects. Clin Pharmacol Drug Dev. 2013;2(4):349–57.CrossRefPubMed
55.
Shida Y, Takahashi N, Sakamoto T, Ino H, Endo A, Hirama T. The pharmacokinetics and safety profiles of belimumab after single subcutaneous and intravenous doses in healthy Japanese volunteers. J Clin Pharm Ther. 2014;39(1):97–101. doi:10.​1111/​jcpt.​12101.CrossRefPubMed
56.
GSK announces positive results from phase III BLISS-SC study of Benlysta® (belimumab) administered subcutaneously in patients with systemic lupus erythematosus. 2015. https://​www.​gsk.​com/​en-gb/​media/​press-releases/​2015/​gsk-announces-positive-results-from-phase-iii-bliss-sc-study-of-benlysta-belimumab-administered-subcutaneously-in-patients-with-systemic-lupus-erythematosus/​. Accessed Nov 2015.
57.
Scheinberg MA, Srinivasan D, Martin RS. The potential role of blisibimod for the treatment of systemic lupus erythematosus. Int J Clin Rheumatol. 2014;9(2):121–34.CrossRef
58.
Furie RA, Leon G, Thomas M, Petri MA, Chu AD, Hislop C, et al. A phase 2, randomised, placebo-controlled clinical trial of blisibimod, an inhibitor of B cell activating factor, in patients with moderate-to-severe systemic lupus erythematosus, the PEARL-SC study. Ann Rheum Dis. 2015;74(9):1667–75. doi:10.​1136/​annrheumdis-2013-205144.CrossRefPubMed
59.
Stohl W, Merrill JT, Looney RJ, Buyon J, Wallace DJ, Weisman MH, et al. Treatment of systemic lupus erythematosus patients with the BAFF antagonist “peptibody” blisibimod (AMG 623/A-623): results from randomized, double-blind phase 1a and phase 1b trials. Arthritis Res Ther. 2015;17:215. doi:10.​1186/​s13075-015-0741-z.CrossRefPubMedPubMedCentral
60.
Pena-Rossi C, Nasonov E, Stanislav M, Yakusevich V, Ershova O, Lomareva N, et al. An exploratory dose-escalating study investigating the safety, tolerability, pharmacokinetics and pharmacodynamics of intravenous atacicept in patients with systemic lupus erythematosus. Lupus. 2009;18(6):547–55. doi:10.​1177/​0961203309102803​.CrossRefPubMedPubMedCentral
61.
Nestorov I, Papasouliotis O, Pena Rossi C, Munafo A. Pharmacokinetics and immunoglobulin response of subcutaneous and intravenous atacicept in patients with systemic lupus erythematosus. J Pharm Sci. 2010;99(1):524–38. doi:10.​1002/​jps.​21839.CrossRefPubMed
62.
Merrill JT. Co-stimulatory molecules as targets for treatment of lupus. Clin Immunol. 2013;148(3):369–75. doi:10.​1016/​j.​clim.​2013.​04.​012.CrossRefPubMed
63.
Tackey E, Lipsky PE, Illei GG. Rationale for interleukin-6 blockade in systemic lupus erythematosus. Lupus. 2004;13(5):339–43.CrossRefPubMedPubMedCentral
64.
Linker-Israeli M, Deans RJ, Wallace DJ, Prehn J, Ozeri-Chen T, Klinenberg JR. Elevated levels of endogenous IL-6 in systemic lupus erythematosus. A putative role in pathogenesis. J Immunol. 1991;147(1):117–23.PubMed
65.
Grondal G, Gunnarsson I, Ronnelid J, Rogberg S, Klareskog L, Lundberg I. Cytokine production, serum levels and disease activity in systemic lupus erythematosus. Clin Exp Rheumatol. 2000;18(5):565–70.PubMed
66.
Pollard KM, Cauvi DM, Toomey CB, Morris KV, Kono DH. Interferon-gamma and systemic autoimmunity. Discov Med. 2013;16(87):123–31.PubMedPubMedCentral
67.
Sullivan B, Tsuji WH, Chindalore VL, Geppert TD, Rudinskaya A, Pardo P, et al. Administration of AMG 557, a human anti-B7RP-1 (ICOSL) antibody, leads to the selective inhibition of anti-KLH IgG responses in subjects with SLE: results of a phase 1 randomized, double-blind, placebo-controlled, sequential, rising, multiple-dose study [abstract]. 2013 American College of Rheumatology/Association of Rheumatology Health Professionals Annual Meeting; 25–30 Oct 2013; San Diego.
68.
Funauchi M, Sugishima H, Minoda M, Horiuchi A. Serum level of interferon-gamma in autoimmune diseases. Tohoku J Exp Med. 1991;164(4):259–67.CrossRefPubMed
69.
Narumi S, Takeuchi T, Kobayashi Y, Konishi K. Serum levels of ifn-inducible PROTEIN-10 relating to the activity of systemic lupus erythematosus. Cytokine. 2000;12(10):1561–5. doi:10.​1006/​cyto.​2000.​0757.CrossRefPubMed
70.
Bauer JW, Petri M, Batliwalla FM, Koeuth T, Wilson J, Slattery C, et al. Interferon-regulated chemokines as biomarkers of systemic lupus erythematosus disease activity: a validation study. Arthritis Rheum. 2009;60(10):3098–107. doi:10.​1002/​art.​24803.CrossRefPubMedPubMedCentral
71.
Martin DA, Welcher A, Boedigheimer M, Amoura Z, Kivitz A, Buyon JP, et al. AMG 811 (anti-IFN-gamma) treatment leads to a reduction in the whole blood IFN-signature and serum CXCL10 in subjects with systemic lupus erythematosus: results of two phase I studies [abstract]. Arthritis Rheum. 2013;65(Suppl 10):1609.
72.
Welcher AA, Boedigheimer M, Kivitz AJ, Amoura Z, Buyon J, Rudinskaya A, et al. Blockade of interferon-gamma normalizes interferon-regulated gene expression and serum CXCL10 levels in patients with systemic lupus erythematosus. Arthritis Rheumatol. 2015;67(10):2713–22. doi:10.​1002/​art.​39248.CrossRefPubMedPubMedCentral
73.
Miles A, Pope JE. A comparison of rheumatoid arthritis and systemic lupus erythematosus trial design: a commentary on ways to improve the number of positive trials in SLE. Clin Exp Rheumatol. 2015;33(5):671–80.PubMed
74.
Sieger N, Fleischer SJ, Mei HE, Reiter K, Shock A, Burmester GR, et al. CD22 ligation inhibits downstream B cell receptor signaling and Ca(2+) flux upon activation. Arthritis Rheum. 2013;65(3):770–9. doi:10.​1002/​art.​37818.CrossRefPubMed
75.
Yamamoto J, Lledo-Garcia R, Tsuru T, Tanaka Y, Koike T. Safety, pharmacokinetics, and pharmacodynamics of Epratuzumab in Japanese patients with moderate-to-severe systemic lupus erythematosus: results from a phase 1/2 study [abstract]. Ann Rheum Dis. 2014;73(Suppl2):526.
76.
Wallace DJ, Kalunian K, Petri MA, Strand V, Houssiau FA, Pike M, et al. Efficacy and safety of epratuzumab in patients with moderate/severe active systemic lupus erythematosus: results from EMBLEM, a phase IIb, randomised, double-blind, placebo-controlled, multicentre study. Ann Rheum Dis. 2014;73(1):183–90. doi:10.​1136/​annrheumdis-2012-202760.CrossRefPubMed
77.
Drug R&D Insight. Concerns on UCB/Immunomedics’ phase III lupus trials. https://​yixiblog.​wordpress.​com/​2015/​03/​22/​concerns-on-immunomedics-phase-iii-lupus-trials/​. 2015. Accessed Nov 2015.
78.
UCB. UCB announces phase 3 clinical trial program for epratuzumab in systemic lupus erythematosus did not meet primary endpoint. http://​www.​ucb.​com/​presscenter/​News/​article/​UCB-announces-Phase-3-clinical-trial-program-for-epratuzumab-in-Systemic-Lupus-Erythematosus-did-not-meet-primary-endpoint-nbsp. 2015. Accessed Nov 2015.
79.
McBride JM, Jiang J, Abbas AR, Morimoto A, Li J, Maciuca R, et al. Safety and pharmacodynamics of rontalizumab in patients with systemic lupus erythematosus: results of a phase I, placebo-controlled, double-blind, dose-escalation study. Arthritis Rheum. 2012;64(11):3666–76. doi:10.​1002/​art.​34632.CrossRefPubMed
80.
Kalunian KC, Merrill JT, Maciuca R, McBride JM, Townsend MJ, Wei X, et al. A phase II study of the efficacy and safety of rontalizumab (rhuMAb interferon-alpha) in patients with systemic lupus erythematosus (ROSE). Ann Rheum Dis. 2016;75(1):196–202. doi:10.​1136/​annrheumdis-2014-206090.CrossRefPubMed
81.
Merrill JT, Wallace DJ, Petri M, Kirou KA, Yao Y, White WI, et al. Safety profile and clinical activity of sifalimumab, a fully human anti-interferon alpha monoclonal antibody, in systemic lupus erythematosus: a phase I, multicentre, double-blind randomised study. Ann Rheum Dis. 2011;70(11):1905–13. doi:10.​1136/​ard.​2010.​144485.CrossRefPubMed
82.
Petri M, Wallace DJ, Spindler A, Chindalore V, Kalunian K, Mysler E, et al. Sifalimumab, a human anti-interferon-alpha monoclonal antibody, in systemic lupus erythematosus: a phase I randomized, controlled, dose-escalation study. Arthritis Rheum. 2013;65(4):1011–21. doi:10.​1002/​art.​37824.CrossRefPubMedPubMedCentral
83.
Narwal R, Roskos LK, Robbie GJ. Population pharmacokinetics of sifalimumab, an investigational anti-interferon-alpha monoclonal antibody, in systemic lupus erythematosus. Clin Pharmacokinet. 2013;52(11):1017–27. doi:10.​1007/​s40262-013-0085-2.CrossRefPubMedPubMedCentral
84.
Khamashta M, Merrill JT, Werth VP, Furie R, Kalunian K, Illei GG, et al. Safety and efficacy of sifalimumab, an anti IFN-alpha monoclonal antibody, in a phase 2b study of moderate to severe systemic lupus erythematosus [abstract no. L4]. 2014 ACR/ARHP Annual Meeting; 14–19 Nov 2014; Boston.
85.
Chaigne B, Watier H. Monoclonal antibodies in excess: a simple way to avoid immunogenicity in patients? J Allergy Clin Immunol. 2015;136(3):814–6. doi:10.​1016/​j.​jaci.​2015.​03.​013.CrossRefPubMed
86.
Ducourau E, Mulleman D, Paintaud G, Miow Lin DC, Lauferon F, Ternant D, et al. Antibodies toward infliximab are associated with low infliximab concentration at treatment initiation and poor infliximab maintenance in rheumatic diseases. Arthritis Res Ther. 2011;13(3):R105. doi:10.​1186/​ar3386.CrossRefPubMedPubMedCentral
87.
Ordas I, Mould DR, Feagan BG, Sandborn WJ. Anti-TNF monoclonal antibodies in inflammatory bowel disease: pharmacokinetics-based dosing paradigms. Clin Pharmacol Ther. 2012;91(4):635–46. doi:10.​1038/​clpt.​2011.​328.CrossRefPubMed
88.
Mould DR. Why therapeutic drug monitoring is needed for monoclonal antibodies and how do we implement this? Clin Pharmacol Ther. 2016;99(4):351–4. doi:10.​1002/​cpt.​278.CrossRefPubMed
89.
Pouw MF, Krieckaert CL, Nurmohamed MT, van der Kleij D, Aarden L, Rispens T, et al. Key findings towards optimising adalimumab treatment: the concentration-effect curve. Ann Rheum Dis. 2015;74(3):513–8. doi:10.​1136/​annrheumdis-2013-204172.CrossRefPubMed
90.
Vital EM, Dass S, Buch MH, Henshaw K, Pease CT, Martin MF, et al. B cell biomarkers of rituximab responses in systemic lupus erythematosus. Arthritis Rheum. 2011;63(10):3038–47. doi:10.​1002/​art.​30466.CrossRefPubMed
91.
Molad Y, Borkowski T, Monselise A, Ben-Haroush A, Sulkes J, Hod M, et al. Maternal and fetal outcome of lupus pregnancy: a prospective study of 29 pregnancies. Lupus. 2005;14(2):145–51.CrossRefPubMed
92.
Auyeung-Kim DJ, Devalaraja MN, Migone TS, Cai W, Chellman GJ. Developmental and peri-postnatal study in cynomolgus monkeys with belimumab, a monoclonal antibody directed against B-lymphocyte stimulator. Reprod Toxicol. 2009;28(4):443–55. doi:10.​1016/​j.​reprotox.​2009.​07.​002.CrossRefPubMed
93.
Danve A, Perry L, Deodhar A. Use of belimumab throughout pregnancy to treat active systemic lupus erythematosus: a case report. Semin Arthritis Rheum. 2014;44(2):195–7. doi:10.​1016/​j.​semarthrit.​2014.​05.​006.CrossRefPubMed
94.
Mould DR, Dubinsky MC. Dashboard systems: pharmacokinetic/pharmacodynamic mediated dose optimization for monoclonal antibodies. J Clin Pharmacol. 2015;55(Suppl 3):S51–9. doi:10.​1002/​jcph.​370.CrossRefPubMed
95.
Mould DR, Upton RN, Wojciechowski J. Dashboard systems: implementing pharmacometrics from bench to bedside. AAPS J. 2014;16(5):925–37. doi:10.​1208/​s12248-014-9632-5.CrossRefPubMedPubMedCentral