Skip to main content
Top

03-05-2018 | Systemic lupus erythematosus | Review | Article

New Trials in Lupus and where Are we Going

Journal: Current Rheumatology Reports

Authors: Aikaterini Thanou, Joan T. Merrill

Publisher: Springer US

Abstract

Purpose of Review

To review progress in the field of clinical trials for SLE.

Recent Findings

Treatment development for SLE has been marked by failures of many later phase studies, representing billions of dollars of lost research and development funding. Recently, more successful Phase II trials have tested reductions in background medications, novel stringent endpoints, and identification of informative immunologic subsets to achieve greater treatment effects. A large number of agents with promising novel biologic mechanisms have continued to enter clinical development, and momentum is building to capitalize on newer strategies for trial designs.

Summary

Widespread SLE drug development is proceeding despite setbacks and controversies. Approaches focusing on patients with high disease activity, reduction of background polypharmacy, or increased endpoint stringency provide strategies that might improve interpretation of trial results. Pharmacodynamics of immune-modulation is a field in its infancy, but ripe for development.
Literature
1.
Guerreiro Castro S, Isenberg DA. Belimumab in systemic lupus erythematosus (SLE): evidence-to-date and clinical usefulness. Ther Adv Musculoskelet Dis. 2017;9(3):75–85. https://​doi.​org/​10.​1177/​1759720X17690474​.CrossRefPubMedPubMedCentral
2.
Carter EE, Barr SG, Clarke AE. The global burden of SLE: prevalence, health disparities and socioeconomic impact. Nat Rev Rheumatol. 2016;12(10):605–20. https://​doi.​org/​10.​1038/​nrrheum.​2016.​137.CrossRefPubMed
3.
Bird AK, Meednu N, Anolik JH. New insights into B cell biology in systemic lupus erythematosus and Sjogren’s syndrome. Curr Opin Rheumatol. 2015;27(5):461–7. https://​doi.​org/​10.​1097/​BOR.​0000000000000201​.CrossRefPubMedPubMedCentral
4.
Merrill JT, Neuwelt CM, Wallace DJ, Shanahan JC, Latinis KM, Oates JC, et al. Efficacy and safety of rituximab in moderately-to-severely active systemic lupus erythematosus: the randomized, double-blind, phase II/III systemic lupus erythematosus evaluation of rituximab trial. Arthritis Rheum. 2010;62(1):222–33. https://​doi.​org/​10.​1002/​art.​27233.
5.
Rovin BH, Furie R, Latinis K, Looney RJ, Fervenza FC, Sanchez-Guerrero J, et al. Efficacy and safety of rituximab in patients with active proliferative lupus nephritis: the Lupus Nephritis Assessment with Rituximab study. Arthritis Rheum. 2012;64(4):1215–26. https://​doi.​org/​10.​1002/​art.​34359.
6.
• Md Yusof MY, Shaw D, El-Sherbiny YM, Dunn E, Rawstron AC, Emery P, et al. Predicting and managing primary and secondary non-response to rituximab using B-cell biomarkers in systemic lupus erythematosus. Ann Rheum Dis. 2017;76(11):1829–36. https://​doi.​org/​10.​1136/​annrheumdis-2017-211191. Assessment of predictors of primary and secondary non-response to rituximab in patients with SLE including validation of B cell depletion and of management of 2ndary nonresponse by alternative anti-CD20 agents. CrossRefPubMedPubMedCentral
7.
Mendez LG, Cascino M, Garg J, Brunetta P, Dall’Era M, Dragone L. SAT0242 Measures of peripheral blood b-cell depletion predict renal response in patients with lupus nephritis treated with rituximab. Ann Rheum Dis. 2017;76(Suppl 2):865. https://​doi.​org/​10.​1136/​annrheumdis-2017-eular.​5412.CrossRef
8.
Reddy V, Klein C, Isenberg DA, Glennie MJ, Cambridge G, Cragg MS, et al. Obinutuzumab induces superior B-cell cytotoxicity to rituximab in rheumatoid arthritis and systemic lupus erythematosus patient samples. Rheumatology (Oxford). 2017;56(7):1227–37. https://​doi.​org/​10.​1093/​rheumatology/​kex067.
9.
Cartron G, Watier H. Obinutuzumab: what is there to learn from clinical trials? Blood. 2017;130(5):581–9. https://​doi.​org/​10.​1182/​blood-2017-03-771832.CrossRefPubMed
10.
• Carter LM, Isenberg DA, Ehrenstein MR. Elevated serum BAFF levels are associated with rising anti-double-stranded DNA antibody levels and disease flare following B cell depletion therapy in systemic lupus erythematosus. Arthritis Rheum. 2013;65(10):2672–9. https://​doi.​org/​10.​1002/​art.​38074. Logitudinal clinical and serologic evaluation of SLE patients prior to B cell depletion and during remission or disease relapse that suggests a significant role of BAFF in driving disease flare following B cell repopulation. PubMedCrossRef
11.
Kraaij T, Huizinga TW, Rabelink TJ, Teng YK. Belimumab after rituximab as maintenance therapy in lupus nephritis. Rheumatology (Oxford). 2014;53(11):2122–4. https://​doi.​org/​10.​1093/​rheumatology/​keu369.CrossRef
12.
Gonzalez-Echavarri C, Ugarte A, Ruiz-Irastorza G. Rituximab-refractory lupus nephritis successfully treated with belimumab. Clin Exp Rheumatol. 2016;34(2):355–6.PubMed
13.
Simonetta F, Allali D, Roux-Lombard P, Chizzolini C. Successful treatment of refractory lupus nephritis by the sequential use of rituximab and belimumab. Joint Bone Spine. 2017;84(2):235–6. https://​doi.​org/​10.​1016/​j.​jbspin.​2016.​01.​008.CrossRefPubMed
14.
Kraaij T, Kamerling S, Ed R, Pv D, Bajema I, Bredewold O, et al. SAT0258 Synergetic b-cell immunomodulation with rituximab and belimumab is clinically effective in severe and refractory systemic lupus erythematosus—the synbiose proof-of-concept study. Ann Rheum Dis. 2017;76(Suppl 2):871. https://​doi.​org/​10.​1136/​annrheumdis-2017-eular.​2364.CrossRef
15.
Condon MB, Ashby D, Pepper RJ, Cook HT, Levy JB, Griffith M, et al. Prospective observational single-centre cohort study to evaluate the effectiveness of treating lupus nephritis with rituximab and mycophenolate mofetil but no oral steroids. Ann Rheum Dis. 2013;72(8):1280–6. https://​doi.​org/​10.​1136/​annrheumdis-2012-202844.
16.
Liu Z, Zou Y, Davidson A. Plasma cells in systemic lupus erythematosus: the long and short of it all. Eur J Immunol. 2011;41(3):588–91. https://​doi.​org/​10.​1002/​eji.​201041354.CrossRefPubMed
17.
Frohlich K, Holle JU, Aries PM, Gross WL, Moosig F. Successful use of bortezomib in a patient with systemic lupus erythematosus and multiple myeloma. Ann Rheum Dis. 2011;70(7):1344–5. https://​doi.​org/​10.​1136/​ard.​2010.​133256.CrossRefPubMed
18.
• de Groot KA, ASM T, Niewerth D, Cloos J, Blank JL, Niessen HW, et al. Pharmacodynamic monitoring of (immuno)proteasome inhibition during bortezomib treatment of a critically ill patient with lupus nephritis and myocarditis. Lupus Sci Med. 2015;2(1):e000121. https://​doi.​org/​10.​1136/​lupus-2015-000121. Feasibility of assessing the “molecular therapeutic efficacy” of bortezomib by measuring proteasome subunit inhibition, an approach that may help optimize dosing strategies in future clinical studies of this agent. CrossRefPubMedPubMedCentral
19.
Alexander T, Sarfert R, Klotsche J, Kuhl AA, Rubbert-Roth A, Lorenz HM, et al. The proteasome inhibitor bortezomib depletes plasma cells and ameliorates clinical manifestations of refractory systemic lupus erythematosus. Ann Rheum Dis. 2015;74(7):1474–8. https://​doi.​org/​10.​1136/​annrheumdis-2014-206016.CrossRefPubMedPubMedCentral
20.
Dorner T, Shock A, Goldenberg DM, Lipsky PE. The mechanistic impact of CD22 engagement with epratuzumab on B cell function: implications for the treatment of systemic lupus erythematosus. Autoimmun Rev. 2015;14(12):1079–86. https://​doi.​org/​10.​1016/​j.​autrev.​2015.​07.​013.CrossRefPubMed
21.
Wallace DJ, Kalunian K, Petri MA, Strand V, Houssiau FA, Pike M, et al. Efficacy and safety of epratuzumab in patients with moderate/severe active systemic lupus erythematosus: results from EMBLEM, a phase IIb, randomised, double-blind, placebo-controlled, multicentre study. Ann Rheum Dis. 2014;73(1):183–90. https://​doi.​org/​10.​1136/​annrheumdis-2012-202760.
22.
Clowse ME, Wallace DJ, Furie RA, Petri MA, Pike MC, Leszczynski P, et al. Efficacy and safety of epratuzumab in moderately to severely active systemic lupus erythematosus: results from two phase III randomized, double-blind, Placebo-Controlled Trials. Arthritis Rheum. 2017;69(2):362–75. https://​doi.​org/​10.​1002/​art.​39856.CrossRef
23.
Crofford LJ, Nyhoff LE, Sheehan JH, Kendall PL. The role of Bruton’s tyrosine kinase in autoimmunity and implications for therapy. Expert Rev Clin Immunol. 2016;12(7):763–73. https://​doi.​org/​10.​1586/​1744666X.​2016.​1152888.CrossRefPubMedPubMedCentral
24.
Hutcheson J, Vanarsa K, Bashmakov A, Grewal S, Sajitharan D, Chang BY, et al. Modulating proximal cell signaling by targeting Btk ameliorates humoral autoimmunity and end-organ disease in murine lupus. Arthritis Res Ther. 2012;14(6):R243. https://​doi.​org/​10.​1186/​ar4086.
25.
Katewa A, Wang Y, Hackney JA, Huang T, Suto E, Ramamoorthi N, et al. Btk-specific inhibition blocks pathogenic plasma cell signatures and myeloid cell-associated damage in IFNα-driven lupus nephritis. JCI Insight. 2017;2(7):e90111. https://​doi.​org/​10.​1172/​jci.​insight.​90111.
26.
Smith KG, Clatworthy MR. FcgammaRIIB in autoimmunity and infection: evolutionary and therapeutic implications. Nat Rev Immunol. 2010;10(5):328–43. https://​doi.​org/​10.​1038/​nri2762.CrossRefPubMedPubMedCentral
27.
Fan Y, Lu D. The Ikaros family of zinc-finger proteins. Acta Pharm Sin B. 2016;6(6):513–21. https://​doi.​org/​10.​1016/​j.​apsb.​2016.​06.​002.CrossRefPubMedPubMedCentral
28.
Ito T, Handa H. Cereblon and its downstream substrates as molecular targets of immunomodulatory drugs. Int J Hematol. 2016;104(3):293–9. https://​doi.​org/​10.​1007/​s12185-016-2073-4.CrossRefPubMed
29.
Nakayama Y, Kosek J, Capone L, Hur EM, Schafer PH, Ringheim GE. Aiolos overexpression in systemic lupus erythematosus B cell subtypes and BAFF-induced memory B cell differentiation are reduced by CC-220 modulation of cereblon activity. J Immunol. 2017;199(7):2388–407. https://​doi.​org/​10.​4049/​jimmunol.​1601725.CrossRefPubMedPubMedCentral
30.
Werth V, Furie R, Korish S, Weiswasser M, Azaryan A, Schafer P, et al. SAT0255 A randomized, placebo-controlled, double-blind, ascending-dose, safety study of CC-220 in subjects with systemic lupus erythematosus. Ann Rheum Dis. 2017;76(Suppl 2):870–1. https://​doi.​org/​10.​1136/​annrheumdis-2017-eular.​3546.CrossRef
31.
Stohl W, Schwarting A, Okada M, Scheinberg M, Doria A, Hammer AE, et al. Efficacy and safety of subcutaneous belimumab in systemic lupus erythematosus: a fifty-two-week randomized, double-blind, Placebo-Controlled Study. Arthritis Rheum. 2017;69(5):1016–27. https://​doi.​org/​10.​1002/​art.​40049.
32.
Navarra SV, Guzman RM, Gallacher AE, Hall S, Levy RA, Jimenez RE, et al. Efficacy and safety of belimumab in patients with active systemic lupus erythematosus: a randomised, placebo-controlled, phase 3 trial. Lancet. 2011;377(9767):721–31. https://​doi.​org/​10.​1016/​S0140-6736(10)61354-2.CrossRefPubMed
33.
Furie R, Petri M, Zamani O, Cervera R, Wallace DJ, Tegzova D, et al. A phase III, randomized, placebo-controlled study of belimumab, a monoclonal antibody that inhibits B lymphocyte stimulator, in patients with systemic lupus erythematosus. Arthritis Rheum. 2011;63(12):3918–30. https://​doi.​org/​10.​1002/​art.​30613.CrossRefPubMedPubMedCentral
34.
van Vollenhoven RF, Petri MA, Cervera R, Roth DA, Ji BN, Kleoudis CS, et al. Belimumab in the treatment of systemic lupus erythematosus: high disease activity predictors of response. Ann Rheum Dis. 2012;71(8):1343–9. https://​doi.​org/​10.​1136/​annrheumdis-2011-200937.
35.
Manzi S, Sanchez-Guerrero J, Merrill JT, Furie R, Gladman D, Navarra SV, et al. Effects of belimumab, a B lymphocyte stimulator-specific inhibitor, on disease activity across multiple organ domains in patients with systemic lupus erythematosus: combined results from two phase III trials. Ann Rheum Dis. 2012;71(11):1833–8. https://​doi.​org/​10.​1136/​annrheumdis-2011-200831.CrossRefPubMedPubMedCentral
36.
Isenberg DA, Petri M, Kalunian K, Tanaka Y, Urowitz MB, Hoffman RW, et al. Efficacy and safety of subcutaneous tabalumab in patients with systemic lupus erythematosus: results from ILLUMINATE-1, a 52-week, phase III, multicentre, randomised, double-blind, placebo-controlled study. Ann Rheum Dis. 2016;75(2):323–31. https://​doi.​org/​10.​1136/​annrheumdis-2015-207653.
37.
Merrill JT, van Vollenhoven RF, Buyon JP, Furie RA, Stohl W, Morgan-Cox M, et al. Efficacy and safety of subcutaneous tabalumab, a monoclonal antibody to B-cell activating factor, in patients with systemic lupus erythematosus: results from ILLUMINATE-2, a 52-week, phase III, multicentre, randomised, double-blind, placebo-controlled study. Ann Rheum Dis. 2016;75(2):332–40. https://​doi.​org/​10.​1136/​annrheumdis-2015-207654.
38.
Merrill J, Martin R, Shanahan W, Scheinberg M, Kalunian K, Wofsy D. SAT0240 Phase 3 trial results with blisibimod, a selective inhibitor of B-cell activating factor, in subjects with systemic lupus erythematosus (SLE). Ann Rheum Dis. 2017;76(Suppl 2):864. https://​doi.​org/​10.​1136/​annrheumdis-2017-eular.​2400.CrossRef
39.
Mackay F, Schneider P. Cracking the BAFF code. Nat Rev Immunol. 2009;9(7):491–502. https://​doi.​org/​10.​1038/​nri2572.CrossRefPubMed
40.
Ginzler EM, Wax S, Rajeswaran A, Copt S, Hillson J, Ramos E, et al. Atacicept in combination with MMF and corticosteroids in lupus nephritis: results of a prematurely terminated trial. Arthritis Res Ther. 2012;14(1):R33. https://​doi.​org/​10.​1186/​ar3738.
41.
Isenberg D, Gordon C, Licu D, Copt S, Rossi CP, Wofsy D. Efficacy and safety of atacicept for prevention of flares in patients with moderate-to-severe systemic lupus erythematosus (SLE): 52-week data (APRIL-SLE randomised trial). Ann Rheum Dis. 2015;74(11):2006–15. https://​doi.​org/​10.​1136/​annrheumdis-2013-205067.
42.
Merrill JT, Wallace DJ, Wax S, Kao A, Fraser P, Chin W, et al. Efficacy and safety of atacicept in patients with systemic lupus erythematosus: results of a 24-week randomized, placebo-controlled, phase IIb study [abstract]. Arthritis Rheumatol. 2016;68 (suppl 10).
43.
Merrill JT, Wallace DJ, Kao A, Mateo CV, Fraser PA, Chang P, et al. SAT0219 Efficacy and safety of atacicept in patients with high disease activity in a 24-week, randomized, placebo-controlled, phase iib study (ADDRESS II). Ann Rheum Dis. 2017;76(Suppl 2):856.1. https://​doi.​org/​10.​1136/​annrheumdis-2017-eular.​1512.CrossRef
44.
Lichtman EI, Helfgott SM, Kriegel MA. Emerging therapies for systemic lupus erythematosus—focus on targeting interferon-alpha. Clin Immunol. 2012;143(3):210–21. https://​doi.​org/​10.​1016/​j.​clim.​2012.​03.​005.CrossRefPubMedPubMedCentral
45.
Kirou KA, Lee C, George S, Louca K, Peterson MG, Crow MK. Activation of the interferon-alpha pathway identifies a subgroup of systemic lupus erythematosus patients with distinct serologic features and active disease. Arthritis Rheum. 2005;52(5):1491–503. https://​doi.​org/​10.​1002/​art.​21031.CrossRefPubMed
46.
Kalunian KC, Merrill JT, Maciuca R, McBride JM, Townsend MJ, Wei X, et al. A phase II study of the efficacy and safety of rontalizumab (rhuMAb interferon-alpha) in patients with systemic lupus erythematosus (ROSE). Ann Rheum Dis. 2016;75(1):196–202. https://​doi.​org/​10.​1136/​annrheumdis-2014-206090.CrossRefPubMed
47.
Khamashta M, Merrill JT, Werth VP, Furie R, Kalunian K, Illei GG, et al. Sifalimumab, an anti-interferon-alpha monoclonal antibody, in moderate to severe systemic lupus erythematosus: a randomised, double-blind, placebo-controlled study. Ann Rheum Dis. 2016;75(11):1909–16. https://​doi.​org/​10.​1136/​annrheumdis-2015-208562.
48.
• Furie R, Khamashta M, Merrill JT, Werth VP, Kalunian K, Brohawn P, et al. Anifrolumab, an anti-interferon-alpha receptor monoclonal antibody, in moderate-to-severe systemic lupus erythematosus. Arthritis Rheumatol. 2017;69(2):376–86. https://​doi.​org/​10.​1002/​art.​39962. Phase II study in SLE to date showing benefit of anifrolumab over placebo across multiple global and organ-specific disease activity measures, has been the most successful phase II study in SLE to date.
49.
Santiago L, Wang B, Brohawn P, Wang L, Illei G, Roskos L. SAT0243 Exposure-response (E-R) analysis for selection of optimal dosage regimen of anifrolumab in patients (PTS) with systemic lupus erythematosus (SLE). Ann Rheum Dis. 2017;76(Suppl 2):865–6. https://​doi.​org/​10.​1136/​annrheumdis-2017-eular.​3517.CrossRef
50.
Lauwerys BR, Hachulla E, Spertini F, Lazaro E, Jorgensen C, Mariette X, et al. Down-regulation of interferon signature in systemic lupus erythematosus patients by active immunization with interferon alpha-kinoid. Arthritis Rheum. 2013;65(2):447–56. https://​doi.​org/​10.​1002/​art.​37785.
51.
Ducreux J, Houssiau FA, Vandepapeliere P, Jorgensen C, Lazaro E, Spertini F, et al. Interferon alpha kinoid induces neutralizing anti-interferon alpha antibodies that decrease the expression of interferon-induced and B cell activation associated transcripts: analysis of extended follow-up data from the interferon alpha kinoid phase I/II study. Rheumatology (Oxford). 2016;55(10):1901–5. https://​doi.​org/​10.​1093/​rheumatology/​kew262.CrossRef
52.
Pellerin A, Otero K, Czerkowicz JM, Kerns HM, Shapiro RI, Ranger AM, et al. Anti-BDCA2 monoclonal antibody inhibits plasmacytoid dendritic cell activation through Fc-dependent and Fc-independent mechanisms. EMBO Mol Med. 2015;7(4):464–76. https://​doi.​org/​10.​15252/​emmm.​201404719.
53.
Furie R, Werth V, Merola J, Reynolds T, Stevenson L, Wang W, et al. SAT0222 BIIB059, a monoclonal antibody targeting BDCA2, shows evidence of biological activity and early clinical proof of concept in subjects with active cutaneous le. Ann Rheum Dis. 2017;76(Suppl 2):857. https://​doi.​org/​10.​1136/​annrheumdis-2017-eular.​6259.CrossRef
54.
Mozes E, Sharabi A. A novel tolerogenic peptide, hCDR1, for the specific treatment of systemic lupus erythematosus. Autoimmun Rev. 2010;10(1):22–6. https://​doi.​org/​10.​1016/​j.​autrev.​2010.​07.​004.CrossRefPubMed
55.
Urowitz MB, Isenberg DA, Wallace DJ. Safety and efficacy of hCDR1 (Edratide) in patients with active systemic lupus erythematosus: results of phase II study. Lupus Sci Med. 2015;2(1):e000104. https://​doi.​org/​10.​1136/​lupus-2015-000104.CrossRefPubMedPubMedCentral
56.
Zimmer R, Wallace DJ, Muller S. Randomized, double-blind, placebo-controlled studies of P140 peptide in mannitol (Lupuzor) and trehalose (Forigerimod) in patients with SLE. Arthritis Rheum. 2012;64(Suppl 10):S1110.
57.
Maueröder C, Schall N, Meyer F, Mahajan A, Garnier B, Hahn J, et al. Capability of neutrophils to form NETs is not directly influenced by a CMA-targeting peptide. Front Immunol. 2017;8:16. https://​doi.​org/​10.​3389/​fimmu.​2017.​00016.
58.
Schwartz DM, Bonelli M, Gadina M, O'Shea JJ. Type I/II cytokines, JAKs, and new strategies for treating autoimmune diseases. Nat Rev Rheumatol. 2016;12(1):25–36. https://​doi.​org/​10.​1038/​nrrheum.​2015.​167.CrossRefPubMed
59.
Markham A. Baricitinib: first global approval. Drugs. 2017;77(6):697–704. https://​doi.​org/​10.​1007/​s40265-017-0723-3.CrossRefPubMed
60.
Kahl L, Patel J, Layton M, Binks M, Hicks K, Leon G, et al. Safety, tolerability, efficacy and pharmacodynamics of the selective JAK1 inhibitor GSK2586184 in patients with systemic lupus erythematosus. Lupus. 2016;25(13):1420–30. https://​doi.​org/​10.​1177/​0961203316640910​.
61.
Deng GM, Kyttaris VC, Tsokos GC. Targeting Syk in autoimmune rheumatic diseases. Front Immunol. 2016;7:78. https://​doi.​org/​10.​3389/​fimmu.​2016.​00078.CrossRefPubMedPubMedCentral
62.
Scott IC, Scott DL. Spleen tyrosine kinase inhibitors for rheumatoid arthritis: where are we now? Drugs. 2014;74(4):415–22. https://​doi.​org/​10.​1007/​s40265-014-0193-9.CrossRefPubMed
63.
Macian F. NFAT proteins: key regulators of T-cell development and function. Nat Rev Immunol. 2005;5(6):472–84. https://​doi.​org/​10.​1038/​nri1632.CrossRefPubMed
64.
Faul C, Donnelly M, Merscher-Gomez S, Chang YH, Franz S, Delfgaauw J, et al. The actin cytoskeleton of kidney podocytes is a direct target of the antiproteinuric effect of cyclosporine A. Nat Med. 2008;14(9):931–8. https://​doi.​org/​10.​1038/​nm.​1857.
65.
• Kraaij T, Bredewold OW, Trompet S, Huizinga TW, Rabelink TJ, de Craen AJ, et al. TAC-TIC use of tacrolimus-based regimens in lupus nephritis. Lupus Sci Med. 2016;3(1):e000169. https://​doi.​org/​10.​1136/​lupus-2016-000169. Comprehensive metanalysis of tacrolimus-based regimens for lupus nephritis. CrossRefPubMedPubMedCentral
66.
Mok CC, Ying KY, Yim CW, Siu YP, Tong KH, To CH, et al. Tacrolimus versus mycophenolate mofetil for induction therapy of lupus nephritis: a randomised controlled trial and long-term follow-up. Ann Rheum Dis. 2016;75(1):30–6. https://​doi.​org/​10.​1136/​annrheumdis-2014-206456.CrossRefPubMed
67.
Dobronravov V, Dooley M, Haq S, Adzerikho I, Bugrova O, Isenberg D, et al. LB0002 48 week complete remission of active lupus nephritis with voclosporin. Ann Rheum Dis. 2017;76(Suppl 2):153. https://​doi.​org/​10.​1136/​annrheumdis-2017-eular.​7079.CrossRef
68.
Lightfoot YL, Blanco LP, Kaplan MJ. Metabolic abnormalities and oxidative stress in lupus. Curr Opin Rheumatol. 2017;29(5):442–9. https://​doi.​org/​10.​1097/​BOR.​0000000000000413​.CrossRefPubMedPubMedCentral
69.
Oaks Z, Winans T, Huang N, Banki K, Perl A. Activation of the mechanistic target of rapamycin in SLE: explosion of evidence in the last five years. Curr Rheumatol Rep. 2016;18(12):73. https://​doi.​org/​10.​1007/​s11926-016-0622-8.CrossRefPubMedPubMedCentral
70.
Fernandez D, Bonilla E, Mirza N, Niland B, Perl A. Rapamycin reduces disease activity and normalizes T cell activation-induced calcium fluxing in patients with systemic lupus erythematosus. Arthritis Rheum. 2006;54(9):2983–8. https://​doi.​org/​10.​1002/​art.​22085.CrossRefPubMedPubMedCentral
71.
Lai ZW, Hanczko R, Bonilla E, Caza TN, Clair B, Bartos A, et al. N-acetylcysteine reduces disease activity by blocking mammalian target of rapamycin in T cells from systemic lupus erythematosus patients: a randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 2012;64(9):2937–46. https://​doi.​org/​10.​1002/​art.​34502.
72.
Morel L. Immunometabolism in systemic lupus erythematosus. Nat Rev Rheumatol. 2017;13(5):280–90. https://​doi.​org/​10.​1038/​nrrheum.​2017.​43.CrossRefPubMed
73.
Zhao W, Berthier CC, Lewis EE, McCune WJ, Kretzler M, Kaplan MJ. The peroxisome-proliferator activated receptor-gamma agonist pioglitazone modulates aberrant T cell responses in systemic lupus erythematosus. Clin Immunol. 2013;149(1):119–32. https://​doi.​org/​10.​1016/​j.​clim.​2013.​07.​002.CrossRefPubMedPubMedCentral
74.
Merrill JT. Co-stimulatory molecules as targets for treatment of lupus. Clin Immunol. 2013;148(3):369–75. https://​doi.​org/​10.​1016/​j.​clim.​2013.​04.​012.CrossRefPubMed
75.
Michel NA, Zirlik A, Wolf D. CD40L and its receptors in atherothrombosis—an update. Front Cardiovasc Med. 2017;4:40. https://​doi.​org/​10.​3389/​fcvm.​2017.​00040.CrossRefPubMedPubMedCentral
76.
Sansom DM. CD28, CTLA-4 and their ligands: who does what and to whom? Immunology. 2000;101(2):169–77.CrossRefPubMedPubMedCentral
77.
Merrill JT, Burgos-Vargas R, Westhovens R, Chalmers A, D'Cruz D, Wallace DJ, et al. The efficacy and safety of abatacept in patients with non-life-threatening manifestations of systemic lupus erythematosus: results of a twelve-month, multicenter, exploratory, phase IIb, randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 2010;62(10):3077–87. https://​doi.​org/​10.​1002/​art.​27601.
78.
Furie R, Nicholls K, Cheng TT, Houssiau F, Burgos-Vargas R, Chen SL, et al. Efficacy and safety of abatacept in lupus nephritis: a twelve-month, randomized, double-blind study. Arthritis Rheumatol. 2014;66(2):379–89. https://​doi.​org/​10.​1002/​art.​38260.
79.
Group AT. Treatment of lupus nephritis with abatacept: the abatacept and cyclophosphamide combination efficacy and safety study. Arthritis Rheumatol. 2014;66(11):3096–104. https://​doi.​org/​10.​1002/​art.​38790.CrossRef
80.
Wofsy D, Hillson JL, Diamond B. Comparison of alternative primary outcome measures for use in lupus nephritis clinical trials. Arthritis Rheum. 2013;65(6):1586–91. https://​doi.​org/​10.​1002/​art.​37940.CrossRefPubMedPubMedCentral
81.
Tyrsin D, Chuvpilo S, Matskevich A, Nemenov D, Romer PS, Tabares P, et al. From TGN1412 to TAB08: the return of CD28 superagonist therapy to clinical development for the treatment of rheumatoid arthritis. Clin Exp Rheumatol. 2016;34(4 Suppl 98):45–8.PubMed
82.
Suntharalingam G, Perry MR, Ward S, Brett SJ, Castello-Cortes A, Brunner MD, et al. Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. N Engl J Med. 2006;355(10):1018–28. https://​doi.​org/​10.​1056/​NEJMoa063842.
83.
Tabares P, Berr S, Romer PS, Chuvpilo S, Matskevich AA, Tyrsin D, et al. Human regulatory T cells are selectively activated by low-dose application of the CD28 superagonist TGN1412/TAB08. Eur J Immunol. 2014;44(4):1225–36. https://​doi.​org/​10.​1002/​eji.​201343967.CrossRefPubMed
84.
Weinstein JS, Bertino SA, Hernandez SG, Poholek AC, Teplitzky TB, Nowyhed HN, et al. B cells in T follicular helper cell development and function: separable roles in delivery of ICOS ligand and antigen. J Immunol. 2014;192(7):3166–79. https://​doi.​org/​10.​4049/​jimmunol.​1302617.
85.
Gensous N, Schmitt N, Richez C, Ueno H, Blanco P. T follicular helper cells, interleukin-21 and systemic lupus erythematosus. Rheumatology (Oxford). 2017;56(4):516–23. https://​doi.​org/​10.​1093/​rheumatology/​kew297.CrossRef
86.
Cheng L, Amoura Z, Cheah B, Hiepe F, Sullivan B, Zhou L, et al. OP0234 Clinical and biologic effects of icosl blockade by amg 557 in subjects with lupus arthritis. Ann Rheum Dis. 2017;76(Suppl 2):151–2. https://​doi.​org/​10.​1136/​annrheumdis-2017-eular.​1127.CrossRef
87.
Davies R, Choy E. Clinical experience of IL-6 blockade in rheumatic diseases—implications on IL-6 biology and disease pathogenesis. Semin Immunol. 2014;26(1):97–104. https://​doi.​org/​10.​1016/​j.​smim.​2013.​12.​002.CrossRefPubMed
88.
Wallace DJ, Strand V, Merrill JT, Popa S, Spindler AJ, Eimon A, et al. Efficacy and safety of an interleukin 6 monoclonal antibody for the treatment of systemic lupus erythematosus: a phase II dose-ranging randomised controlled trial. Ann Rheum Dis. 2017;76(3):534–42. https://​doi.​org/​10.​1136/​annrheumdis-2016-209668.
89.
Rovin BH, van Vollenhoven RF, Aranow C, Wagner C, Gordon R, Zhuang Y, et al. A multicenter, randomized, double-blind, placebo-controlled study to evaluate the efficacy and safety of treatment with sirukumab (CNTO 136) in patients with active lupus nephritis. Arthritis Rheumatol. 2016;68(9):2174–83. https://​doi.​org/​10.​1002/​art.​39722.
90.
Saxena A, Khosraviani S, Noel S, Mohan D, Donner T, Hamad AR. Interleukin-10 paradox: a potent immunoregulatory cytokine that has been difficult to harness for immunotherapy. Cytokine. 2015;74(1):27–34. https://​doi.​org/​10.​1016/​j.​cyto.​2014.​10.​031.CrossRefPubMed
91.
Llorente L, Richaud-Patin Y, Garcia-Padilla C, Claret E, Jakez-Ocampo J, Cardiel MH, et al. Clinical and biologic effects of anti-interleukin-10 monoclonal antibody administration in systemic lupus erythematosus. Arthritis Rheum. 2000;43(8):1790–800. https://​doi.​org/​10.​1002/​1529-0131(200008)43:​8<1790:​:​AID-ANR15>3.​0.​CO;2-2.CrossRefPubMed
92.
Klatzmann D, Abbas AK. The promise of low-dose interleukin-2 therapy for autoimmune and inflammatory diseases. Nat Rev Immunol. 2015;15(5):283–94. https://​doi.​org/​10.​1038/​nri3823.CrossRefPubMed
93.
Comte D, Karampetsou MP, Kis-Toth K, Yoshida N, Bradley SJ, Kyttaris VC, et al. Brief report: CD4+ T cells from patients with systemic lupus erythematosus respond poorly to exogenous interleukin-2. Arthritis Rheumatol. 2017;69(4):808–13. https://​doi.​org/​10.​1002/​art.​40014.
94.
Koga T, Ichinose K, Mizui M, Crispin JC, Tsokos GC. Calcium/calmodulin-dependent protein kinase IV suppresses IL-2 production and regulatory T cell activity in lupus. J Immunol. 2012;189(7):3490–6. https://​doi.​org/​10.​4049/​jimmunol.​1201785.CrossRefPubMedPubMedCentral
95.
He J, Zhang X, Wei Y, Sun X, Chen Y, Deng J, et al. Low-dose interleukin-2 treatment selectively modulates CD4+ T cell subsets in patients with systemic lupus erythematosus. Nat Med. 2016;22(9):991–3. https://​doi.​org/​10.​1038/​nm.​4148.
96.
Suarez-Fueyo A, Bradley SJ, Tsokos GC. T cells in systemic lupus erythematosus. Curr Opin Immunol. 2016;43:32–8. https://​doi.​org/​10.​1016/​j.​coi.​2016.​09.​001.CrossRefPubMedPubMedCentral
97.
van den Berg WB, McInnes IB. Th17 cells and IL-17 a—focus on immunopathogenesis and immunotherapeutics. Semin Arthritis Rheum. 2013;43(2):158–70. https://​doi.​org/​10.​1016/​j.​semarthrit.​2013.​04.​006.CrossRefPubMed
98.
• Dai H, He F, Tsokos GC, Kyttaris VC. IL-23 limits the production of IL-2 and promotes autoimmunity in lupus. J Immunol. 2017;199(3):903–10. https://​doi.​org/​10.​4049/​jimmunol.​1700418. Preclinical evalution of the mutliple role of IL-23 in lupus autoimmunity in support for development of therapies targeting this pathway. CrossRefPubMedPubMedCentral
99.
van Vollenhoven RF, Hahn BH, Tsokos GC, Wagner C, Lipsky PE, Hsu B et al. Efficacy and safety of ustekinumab, an interleukin 12/23 inhibitor, in patients with active systemic lupus erythematosus: results of a phase 2, randomized placebo-controlled study Arthritis Rheumatol. 2017;69 (suppl 10).
100.
Proia RL, Hla T. Emerging biology of sphingosine-1-phosphate: its role in pathogenesis and therapy. J Clin Invest. 2015;125(4):1379–87. https://​doi.​org/​10.​1172/​JCI76369.CrossRefPubMedPubMedCentral
101.
Zurier RB, Burstein SH. Cannabinoids, inflammation, and fibrosis. FASEB J. 2016;30(11):3682–9. https://​doi.​org/​10.​1096/​fj.​201600646R.CrossRefPubMed
102.
Burge DJ, Eisenman J, Byrnes-Blake K, Smolak P, Lau K, Cohen SB, et al. Safety, pharmacokinetics, and pharmacodynamics of RSLV-132, an RNase-Fc fusion protein in systemic lupus erythematosus: a randomized, double-blind, placebo-controlled study. Lupus. 2017;26(8):825–34. https://​doi.​org/​10.​1177/​0961203316678675​.
103.
Thanou A, Merrill JT. Top 10 things to know about lupus activity measures. Curr Rheumatol Rep. 2013;15(6):334. https://​doi.​org/​10.​1007/​s11926-013-0334-2.CrossRefPubMed
104.
Kim M, Merrill J, Kalunian K, Hahn B, Roach A, Izmirly P, et al. Brief report: longitudinal patterns of response to standard of care therapy for systemic lupus erythematosus: implications for clinical trial design. Arthritis Rheumatol. 2017;69(4):785–90. https://​doi.​org/​10.​1002/​art.​40013.
105.
• Merrill JT, Immermann F, Whitley M, Zhou T, Hill A, O’Toole M, et al. The biomarkers of lupus disease study: a bold approach may mitigate interference of background immunosuppressants in clinical trials. Arthritis Rheumatol. 2017;69(6):1257–66. https://​doi.​org/​10.​1002/​art.​40086. Evaluation of the safety and efficacy of novel clinical trial design incorporating withdrawal of background immune suppression and brief steroid rescue in SLE.
106.
Buyon JP, Cohen P, Merrill JT, Gilkeson G, Kaplan M, James J, et al. A highlight from the LUPUS 2014 meeting: eight great ideas. Lupus Sci Med. 2015;2(1):e000087. https://​doi.​org/​10.​1136/​lupus-2015-000087.
107.
Sinicato NA, Postal M, Appenzeller S, Niewold TB. Defining biological subsets in systemic lupus erythematosus: progress toward personalized therapy. Pharmaceut Med. 2017;31(2):81–8. https://​doi.​org/​10.​1007/​s40290-017-0178-6.PubMedPubMedCentralCrossRef