Skip to main content
Top

08-09-2016 | Vasculitis | Review | Article

TNF and IL-1 Targeted Treatment in Kawasaki Disease

Journal: Current Treatment Options in Rheumatology

Authors: Florence A. Aeschlimann, MD, Rae S. M. Yeung, MD, PhD

Publisher: Springer International Publishing

Abstract

Kawasaki disease (KD) is a multisystemic vasculitis affecting young children and the most common cause of acquired heart disease in children in the developed world. Current treatment recommendations for acute KD include IVIG and aspirin, but there are no evidence-based guidelines for children who do not respond to IVIG treatment. Widely applicable risk stratification algorithms to identify patients at high-risk of treatment failure and poor coronary artery outcome are not available. Over the past few years, increasing knowledge of the pathophysiology of disease have resulted in the identification of key inflammatory mediators and the use of biologic pathway targeting agents such as TNF and IL-1 inhibitors for children with IVIG-resistant disease. However, despite considerable efforts, adequately powered, randomized, controlled and prospective trials are lacking. In this review, we summarize the recent advances in our understanding of disease pathobiology and provide an overview of the currently available studies on anti-TNF and IL-1 therapy in KD.
Literature
1.•
Newburger JW, Takahashi M, Gerber MA, Gewitz MH, Tani LY, Burns JC, et al. Diagnosis, treatment, and long-term management of Kawasaki disease: a statement for health professionals from the Committee on Rheumatic Fever, Endocarditis, and Kawasaki Disease, Council on Cardiovascular Disease in the Young, American Heart Association. Pediatrics. 2004;4(6):1708–33. Most recent American Heart Association Guidelines
2.
Luca NJ, Yeung RS. Epidemiology and management of Kawasaki disease. Drugs. 2012;72(8):1029–38.CrossRefPubMed
3.
Uehara R, Belay ED. Epidemiology of Kawasaki disease in Asia, Europe, and the United States. J Epidemiol. 2012;22(2):79–85.CrossRefPubMedPubMedCentral
4.
Burgner D, Harnden A. Kawasaki disease: what is the epidemiology telling us about the etiology? Int J Infect Dis. 2005;9(4):185–94.CrossRefPubMed
5.
Leung DY, Meissner HC, Fulton DR, Murray DL, Kotzin BL, Schlievert PM. Toxic shock syndrome toxin-secreting Staphylococcus aureus in Kawasaki syndrome. Lancet. 1993;342(8884):1385–8.CrossRefPubMed
6.
Yeung RSM. The etiology of Kawasaki disease: a superantigen-mediated process. Prog Pediatr Cardiol. 2004;19:115–22.CrossRef
7.
Principi N, Rigante D, Esposito S. The role of infection in Kawasaki syndrome. J Infect. 2013;67(1):1–10.CrossRefPubMed
8.
Greco A, De Virgilio A, Rizzo MI, Tombolini M, Gallo A, Fusconi M, et al. Kawasaki disease: an evolving paradigm. Autoimmun Rev. 2015;14(8):703–9.CrossRefPubMed
9.
Leung DY, Geha RS, Newburger JW, Burns JC, Fiers W, Lapierre LA, et al. Two monokines, interleukin 1 and tumor necrosis factor, render cultured vascular endothelial cells susceptible to lysis by antibodies circulating during Kawasaki syndrome. J Exp Med. 1986;164(6):1958–72.CrossRefPubMed
10.•
Tremoulet AH, Jain S, Jaggi P, Jimenez-Fernandez S, Pancheri JM, Sun X, et al. Infliximab for intensification of primary therapy for Kawasaki disease: a phase 3 randomised, double-blind, placebo-controlled trial. Lancet. 2014;383(9930):1731–8. Recent RCT of TNF inhibition in KD.CrossRefPubMed
11.
Ashouri N, Takahashi M, Dorey F, Mason W. Risk factors for nonresponse to therapy in Kawasaki disease. J Pediatr. 2008;153(3):365–8.CrossRefPubMed
12.
Burns JC, Capparelli EV, Brown JA, Newburger JW, Glode MP. Intravenous gamma-globulin treatment and retreatment in Kawasaki disease. US/Canadian Kawasaki Syndrome Study Group. Pediatr Infect Dis J. 1998;17(12):1144–8.CrossRefPubMed
13.
Wei M, Huang M, Chen S, Huang G, Huang M, Qiu D, et al. A multicenter study of intravenous immunoglobulin non-response in Kawasaki disease. Pediatr Cardiol. 2015;36(6):1166–72.CrossRefPubMed
14.
Harada K. Intravenous gamma-globulin treatment in Kawasaki disease. Acta Paediatr Jpn. 1991;33(6):805–10.CrossRefPubMed
15.
Iwasa M, Sugiyama K, Ando T, Nomura H, Katoh T, Wada Y. Selection of high-risk children for immunoglobulin therapy in Kawasaki disease. Prog Clin Biol Res. 1987;250:543–4.PubMed
16.
Kobayashi T, Inoue Y, Takeuchi K, Okada Y, Tamura K, Tomomasa T, et al. Prediction of intravenous immunoglobulin unresponsiveness in patients with Kawasaki disease. Circulation. 2006;113(22):2606–12.CrossRefPubMed
17.
Davies S, Gold-von SG. Should infliximab be used as an adjuvant to IVIG in the treatment of children with Kawasaki disease who are at high risk for resistance to conventional therapy? Pediatr Cardiol. 2013;34(7):1756.CrossRefPubMedPubMedCentral
18.
Mearns BM. Vasculitis syndromes: phase III trial of infliximab in Kawasaki disease. Nat Rev Rheumatol. 2014;10(4):198.CrossRefPubMed
19.••
Kobayashi T, Saji T, Otani T, Takeuchi K, Nakamura T, Arakawa H, et al. Efficacy of immunoglobulin plus prednisolone for prevention of coronary artery abnormalities in severe Kawasaki disease (RAISE study): a randomised, open-label, blinded-endpoints trial. Lancet. 2012;379(9826):1613–20. One of the largest trials of any therapeutic agent in KD with good data on steroid use in KD.
20.
Maury CP, Salo E, Pelkonen P. Circulating interleukin-1 beta in patients with Kawasaki disease. N Engl J Med. 1988;319(25):1670–1.CrossRefPubMed
21.
de Jager W, Bourcier K, Rijkers GT, Prakken BJ, Seyfert-Margolis V. Prerequisites for cytokine measurements in clinical trials with multiplex immunoassays. BMC Immunol. 2009;10:52.CrossRefPubMedPubMedCentral
22.
Friebe A, Volk HD. Stability of tumor necrosis factor alpha, interleukin 6, and interleukin 8 in blood samples of patients with systemic immune activation. Arch Pathol Lab Med. 2008;132(11):1802–6.PubMed
23.
Matheson LA, Duong TT, Rosenberg AM, Yeung RS. Assessment of sample collection and storage methods for multicenter immunologic research in children. J Immunol Methods. 2008;339(1):82–9.CrossRefPubMed
24.
Furukawa S, Matsubara T, Umezawa Y, Okumura K, Yabuta K. Serum levels of p60 soluble tumor necrosis factor receptor during acute Kawasaki disease. J Pediatr. 1994;124(5 Pt 1):721–5.CrossRefPubMed
25.
Lang BA, Silverman ED, Laxer RM, Rose V, Nelson DL, Rubin LA. Serum-soluble interleukin-2 receptor levels in Kawasaki disease. J Pediatr. 1990;116(4):592–6.CrossRefPubMed
26.
Matsubara T, Furukawa S, Yabuta K. Serum levels of tumor necrosis factor, interleukin 2 receptor, and interferon-gamma in Kawasaki disease involved coronary-artery lesions. Clin Immunol Immunopathol. 1990;56(1):29–36.CrossRefPubMed
27.
Wang Y, Wang W, Gong F, Fu S, Zhang Q, Hu J, et al. Evaluation of intravenous immunoglobulin resistance and coronary artery lesions in relation to Th1/Th2 cytokine profiles in patients with Kawasaki disease. Arthritis Rheum. 2013;65(3):805–14.CrossRefPubMed
28.
Hui-Yuen JS, Duong TT, Yeung RS. TNF-alpha is necessary for induction of coronary artery inflammation and aneurysm formation in an animal model of Kawasaki disease. J Immunol. 2006;176(10):6294–301.CrossRefPubMed
29.
Lau AC, Duong TT, Ito S, Yeung RS. Matrix metalloproteinase 9 activity leads to elastin breakdown in an animal model of Kawasaki disease. Arthritis Rheum. 2008;58(3):854–63.CrossRefPubMed
30.
Lau AC, Duong TT, Ito S, Wilson GJ, Yeung RS. Inhibition of matrix metalloproteinase-9 activity improves coronary outcome in an animal model of Kawasaki disease. Clin Exp Immunol. 2009;157(2):300–9.CrossRefPubMedPubMedCentral
31.
Lau AC, Duong TT, Ito S, Yeung RS. Intravenous immunoglobulin and salicylate differentially modulate pathogenic processes leading to vascular damage in a model of Kawasaki disease. Arthritis Rheum. 2009;60(7):2131–41.CrossRefPubMed
32.
Andreakos ET, Foxwell BM, Brennan FM, Maini RN, Feldmann M. Cytokines and anti-cytokine biologicals in autoimmunity: present and future. Cytokine Growth Factor Rev. 2002;13(4-5):299–313.CrossRefPubMed
33.
Biedermann BC. Vascular endothelium: checkpoint for inflammation and immunity. News Physiol Sci. 2001;16:84–8.PubMed
34.
Rios-Navarro C, de Pablo C, Collado-Diaz V, Orden S, Blas-Garcia A, Martinez-Cuesta MA, et al. Differential effects of anti-TNF-alpha and anti-IL-12/23 agents on human leukocyte-endothelial cell interactions. Eur J Pharmacol. 2015;765:355–65.CrossRefPubMed
35.
Choi J, Enis DR, Koh KP, Shiao SL, Pober JS. T lymphocyte-endothelial cell interactions. Annu Rev Immunol. 2004;22:683–709.CrossRefPubMed
36.
Furukawa S, Imai K, Matsubara T, Yone K, Yachi A, Okumura K, et al. Increased levels of circulating intercellular adhesion molecule 1 in Kawasaki disease. Arthritis Rheum. 1992;35(6):672–7.CrossRefPubMed
37.
Wong M, Silverman ED, Fish EN. Evidence for RANTES, monocyte chemotactic protein-1, and macrophage inflammatory protein-1 beta expression in Kawasaki disease. J Rheumatol. 1997;24(6):1179–85.PubMed
38.
Sakata K, Hamaoka K, Ozawa S, Niboshi A, Yahata T, Fujii M, et al. Matrix metalloproteinase-9 in vascular lesions and endothelial regulation in Kawasaki disease. Circ J. 2010;74(8):1670–5.CrossRefPubMed
39.
Gavin PJ, Crawford SE, Shulman ST, Garcia FL, Rowley AH. Systemic arterial expression of matrix metalloproteinases 2 and 9 in acute Kawasaki disease. Arterioscler Thromb Vasc Biol. 2003;23(4):576–81.CrossRefPubMed
40.
Stringer E, Yeung RSM. Pathogenesis of Kawasaki disease: the central role of TNF-a. Futur Rheumatol. 2008;3:69–77.CrossRef
41.
Chan WC, Duong TT, Yeung RS. Presence of IFN-gamma does not indicate its necessity for induction of coronary arteritis in an animal model of Kawasaki disease. J Immunol. 2004;173(5):3492–503.CrossRefPubMed
42.
Dinarello CA. A clinical perspective of IL-1beta as the gatekeeper of inflammation. Eur J Immunol. 2011;41(5):1203–17.CrossRefPubMed
43.
Martinon F, Aksentijevich I. New players driving inflammation in monogenic autoinflammatory diseases. Nat Rev Rheumatol. 2015;11(1):11–20.CrossRefPubMed
44.
Russo RA, Brogan PA. Monogenic autoinflammatory diseases. Rheumatology (Oxford). 2014;53(11):1927–39.CrossRef
45.
Dinarello CA. The many worlds of reducing interleukin-1. Arthritis Rheum. 2005;52(7):1960–7.CrossRefPubMed
46.
Thornberry NA, Bull HG, Calaycay JR, Chapman KT, Howard AD, Kostura MJ, et al. A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature. 1992;356(6372):768–74.CrossRefPubMed
47.
Popper SJ, Shimizu C, Shike H, Kanegaye JT, Newburger JW, Sundel RP, et al. Gene-expression patterns reveal underlying biological processes in Kawasaki disease. Genome Biol. 2007;8(12):R261.CrossRefPubMedPubMedCentral
48.
Fury W, Tremoulet AH, Watson VE, Best BM, Shimizu C, Hamilton J, et al. Transcript abundance patterns in Kawasaki disease patients with intravenous immunoglobulin resistance. Hum Immunol. 2010;71(9):865–73.CrossRefPubMedPubMedCentral
49.
Weng KP, Hsieh KS, Ho TY, Huang SH, Lai CR, Chiu YT, et al. IL-1B polymorphism in association with initial intravenous immunoglobulin treatment failure in Taiwanese children with Kawasaki disease. Circ J. 2010;74(3):544–51.CrossRefPubMed
50.
Leung DY, Cotran RS, Kurt-Jones E, Burns JC, Newburger JW, Pober JS. Endothelial cell activation and high interleukin-1 secretion in the pathogenesis of acute Kawasaki disease. Lancet. 1989;2(8675):1298–302.CrossRefPubMed
51.
Suzuki H, Uemura S, Tone S, Iizuka T, Koike M, Hirayama K, et al. Effects of immunoglobulin and gamma-interferon on the production of tumour necrosis factor-alpha and interleukin-1 beta by peripheral blood monocytes in the acute phase of Kawasaki disease. Eur J Pediatr. 1996;155(4):291–6.CrossRefPubMed
52.
Okitsu-Negishi S, Furusawa S, Kawa Y, Hashira S, Ito S, Hiruma F, et al. Suppressive effect of intravenous immunoglobulins on the activity of interleukin-1. Immunol Res. 1994;13(1):49–55.CrossRefPubMed
53.
Onouchi Y, Ozaki K, Burns JC, Shimizu C, Terai M, Hamada H, et al. A genome-wide association study identifies three new risk loci for Kawasaki disease. Nat Genet. 2012;44(5):517–21.CrossRefPubMed
54.
Alphonse MP, Duong TT, Shimizu C, Hoang LT, McCrindle BW, Franco A, et al. Abstract O.21: Inositol 1,4,5, triphosphate 3-kinase c regulates nlrp3 inflammasome activation in kawasaki disease. Circulation. 2015;131(Suppl 2):AO21-AO21.
55.
Horng T. Calcium signaling and mitochondrial destabilization in the triggering of the NLRP3 inflammasome. Trends Immunol. 2014;35(6):253–61.CrossRefPubMedPubMedCentral
56.
Lou J, Xu S, Zou L, Zhong R, Zhang T, Sun Y, et al. A functional polymorphism, rs28493229, in ITPKC and risk of Kawasaki disease: an integrated meta-analysis. Mol Biol Rep. 2012;39(12):11137–44.CrossRefPubMed
57.•
Hoang LT, Shimizu C, Ling L, Naim AN, Khor CC, Tremoulet AH, et al. Global gene expression profiling identifies new therapeutic targets in acute Kawasaki disease. Genome Med. 2014;6(11):541. IL-1β gene expresssion signature in children with KD.CrossRefPubMedPubMedCentral
58.
Lee Y, Schulte DJ, Shimada K, Chen S, Crother TR, Chiba N, et al. Interleukin-1beta is crucial for the induction of coronary artery inflammation in a mouse model of Kawasaki disease. Circulation. 2012;125(12):1542–50.CrossRefPubMedPubMedCentral
59.
Lee Y, Wakita D, Dagvadorj J, Shimada K, Chen S, Huang G, et al. IL-1 signaling is critically required in stromal cells in Kawasaki disease vasculitis mouse model: role of both IL-1alpha and IL-1beta. Arterioscler Thromb Vasc Biol. 2015;35(12):2605–16.CrossRefPubMed
60.
Dinarello CA. Biologic basis for interleukin-1 in disease. Blood. 1996;87(6):2095–147.PubMed
61.
Hoffman HM, Rosengren S, Boyle DL, Cho JY, Nayar J, Mueller JL, et al. Prevention of cold-associated acute inflammation in familial cold autoinflammatory syndrome by interleukin-1 receptor antagonist. Lancet. 2004;364(9447):1779–85.CrossRefPubMedPubMedCentral
62.
Bujak M, Frangogiannis NG. The role of IL-1 in the pathogenesis of heart disease. Arch Immunol Ther Exp (Warsz). 2009;57(3):165–76.CrossRef
63.
Cohen S, Tacke CE, Straver B, Meijer N, Kuipers IM, Kuijpers TW. A child with severe relapsing Kawasaki disease rescued by IL-1 receptor blockade and extracorporeal membrane oxygenation. Ann Rheum Dis. 2012;71(12):2059–61.CrossRefPubMed
64.
Shafferman A, Birmingham JD, Cron RQ. High dose Anakinra for treatment of severe neonatal Kawasaki disease: a case report. Pediatr Rheumatol Online J. 2014;12:26.CrossRefPubMedPubMedCentral
65.
Son MB, Gauvreau K, Burns JC, Corinaldesi E, Tremoulet AH, Watson VE, et al. Infliximab for intravenous immunoglobulin resistance in Kawasaki disease: a retrospective study. J Pediatr. 2011;158(4):644–9. e1.CrossRefPubMed
66.
Burns JC, Best BM, Mejias A, Mahony L, Fixler DE, Jafri HS, et al. Infliximab treatment of intravenous immunoglobulin-resistant Kawasaki disease. J Pediatr. 2008;153(6):833–8.CrossRefPubMedPubMedCentral
67.
Burns JC, Mason WH, Hauger SB, Janai H, Bastian JF, Wohrley JD, et al. Infliximab treatment for refractory Kawasaki syndrome. J Pediatr. 2005;146(5):662–7.CrossRefPubMed
68.
Mori M, Imagawa T, Hara R, Kikuchi M, Hara T, Nozawa T, et al. Efficacy and limitation of infliximab treatment for children with Kawasaki disease intractable to intravenous immunoglobulin therapy: report of an open-label case series. J Rheumatol. 2012;39(4):864–7.CrossRefPubMed
69.
Hirono K, Kemmotsu Y, Wittkowski H, Foell D, Saito K, Ibuki K, et al. Infliximab reduces the cytokine-mediated inflammation but does not suppress cellular infiltration of the vessel wall in refractory Kawasaki disease. Pediatr Res. 2009;65(6):696–701.CrossRefPubMed
70.
Masuda H, Abe J, Oana S, Ishiguro A, Tsuchida N, Sakai H, et al. Abstract O.51: Effects of anti-TNF-alpha antibody therapy on IVIG-resistant patients with Kawasaki disease. Circulation. 2015;131(Suppl 2):AO51-AO51.
71.
Choueiter NF, Olson AK, Shen DD, Portman MA. Prospective open-label trial of etanercept as adjunctive therapy for kawasaki disease. J Pediatr. 2010;157(6):960–6. e1.CrossRefPubMedPubMedCentral
72.
Benseler SM, McCrindle BW, Silverman ED, Tyrrell PN, Wong J, Yeung RS. Infections and Kawasaki disease: implications for coronary artery outcome. Pediatrics. 2005;116(6):e760–6.CrossRefPubMed
73.
Kanai T, Ishiwata T, Kobayashi T, Sato H, Takizawa M, Kawamura Y, et al. Ulinastatin, a urinary trypsin inhibitor, for the initial treatment of patients with Kawasaki disease: a retrospective study. Circulation. 2011;124(25):2822–8.CrossRefPubMed
74.•
Research Committee of the Japanese Society of Pediatric C, Cardiac Surgery Committee for Development of Guidelines for Medical Treatment of Acute Kawasaki D. Guidelines for medical treatment of acute Kawasaki disease: report of the Research Committee of the Japanese Society of Pediatric Cardiology and Cardiac Surgery (2012 revised version). Pediatr Int. 2014;56(2):135–58. Japanese guidelines for treatment of KD.CrossRef
75.
Tremoulet AH. The role of statins in inflammatory vasculitides. Autoimmunity. 2015;48(3):177–80.CrossRefPubMed
76.
Blankier S, McCrindle BW, Ito S, Yeung RS. The role of atorvastatin in regulating the immune response leading to vascular damage in a model of Kawasaki disease. Clin Exp Immunol. 2011;164(2):193–201.CrossRefPubMedPubMedCentral
77.
Dinarello CA, Simon A, van der Meer JW. Treating inflammation by blocking interleukin-1 in a broad spectrum of diseases. Nat Rev Drug Discov. 2012;11(8):633–52.CrossRefPubMedPubMedCentral
78.
Federici S, Martini A, Gattorno M. The central role of anti-IL-1 blockade in the treatment of monogenic and multi-factorial autoinflammatory diseases. Front Immunol. 2013;4:351.CrossRefPubMedPubMedCentral
79.
Jesus AA, Goldbach-Mansky R. IL-1 blockade in autoinflammatory syndromes. Annu Rev Med. 2014;65:223–44.CrossRefPubMedPubMedCentral