Skip to main content

Structural Considerations of the Sclera

  • Chapter
  • First Online:
The Sclera

Abstract

Almost all of the sclera is of neural crest origin, except a small temporal portion formed from mesoderm. The developmental process of the sclera is directed from anterior to posterior and from inside to outside. Human fetal and adult sclera is formed by the collagen types I, III, IV, V, VI, and VIII, by the glycosaminoglycans dermatan sulfate, chondroitin sulfate, hyaluronic acid, and heparan sulfate, and by the glycoproteins fibronectin, vitronectin, and laminin. Gross anatomical studies show that the scleral shell is an incomplete sphere averaging 22 mm in diameter that terminates anteriorly at the anterior scleral foramen surrounding the cornea and posteriorly at the posterior scleral foramen surrounding the optic nerve canal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Noden DM. Periocular mesenchyme: neural crest and mesodermal interactions. In: Tassman W, Jaeger EA, editors. Duane’s foundations of clinical ophthalmology. Philadelphia, PA: Lippincott; 1991. p. 1–23.

    Google Scholar 

  2. Ozanics V, Jakobiec FA. Prenatal development of the eye and its anexa. In: Tassman W, Jaeger EA, editors. Duane’s foundations of clinical ophthalmology. Philadelphia, PA: Lippincott; 1982. p. 1–93.

    Google Scholar 

  3. Snell RS, Lemp MA. Clinical anatomy of the Eye. 1st ed. Boston, MA: Blackwell Scientific Publications; 1989.

    Google Scholar 

  4. Johnston MC, Noden DM, Hazelton RD, Conlombre JL, Conlombre AJ. Origins of avian ocular and periocular tissues. Exp Eye Res. 1979;29:27.

    Article  PubMed  CAS  Google Scholar 

  5. Ozanics F, Rayborn M, Sagun D. Some aspects of ­corneal and scleral differentiation of the primate. Exp Eye Res. 1976;22:305.

    Article  PubMed  CAS  Google Scholar 

  6. Newsome DA. Cartilage induction by retinal pigmented epithelium of the chick embryo. Dev Biol. 1972;27:575.

    Article  PubMed  CAS  Google Scholar 

  7. Stewart PA, McCallion DJ. Establishment of the scleral cartilage in the chick. Dev Biol. 1975;46:383.

    Article  PubMed  CAS  Google Scholar 

  8. Duke-Elder S, Cook CH. Normal and abnormal development. In: Duke-Elder S, editor. System of ophthalmology, Vol 3, part 1. Mosby: C.V. St Louis; 1963. p. 1–77.

    Google Scholar 

  9. Weale RA. A biography of the eye. London: Lewis; 1982.

    Google Scholar 

  10. Sellheyer K, Spitznas M. Development of the human sclera. A morphological study. Graefe’s Arch Clin Exp Ophthalmol. 1988;226:89.

    Article  CAS  Google Scholar 

  11. Tamura Y, Konomi H, Sawada H, et al. Tissue distribution of type VIII collagen in human adult and fetal eyes. Invest Ophthalmol Vis Sci. 1991;32:2636.

    PubMed  CAS  Google Scholar 

  12. Sugrue SP. Immunolocalization of type XII collagen at the corneoscleral angle of the embryonic avian eye. Invest Ophthalmol Vis Sci. 1991;32:1876.

    PubMed  CAS  Google Scholar 

  13. Spencer WH. Sclera. In: Spencer WH, editor. Ophthalmic pathology. 3rd ed. Philadelphia, PA: W.B. Saunders; 1985. p. 389–422.

    Google Scholar 

  14. Broekhuyse RM, Kuhlmann ED. Lipids in tissues of the eye. VI. Sphingomyelins and cholesterol esters in human sclera. Exp Eye Res. 1972;14:111.

    Article  PubMed  CAS  Google Scholar 

  15. Broekhyse RM. The lipid composition of aging sclera and cornea. Ophthalmologica. 1975;171:82.

    Article  Google Scholar 

  16. Cogan DG, Kuwabara T. Focal senile translucency of the sclera. Arch Ophthalmol. 1959;62:604.

    Article  PubMed  CAS  Google Scholar 

  17. Vannas S, Teir H. Observations on structure and age changes in the human sclera. Acta Ophthalmol. 1960;38:268.

    CAS  Google Scholar 

  18. Moses RA, Grodzki Jr WJ. The scleral spur and scleral roll. Invest Ophthalmol Vis Sci. 1977;16:925.

    PubMed  CAS  Google Scholar 

  19. Anderson DR. Ultrastructure of human and monkey lamina cribrosa and optic nerve head. Arch Ophthalmol. 1969;82:800.

    Article  PubMed  CAS  Google Scholar 

  20. Leber T. Die cirkulations-und Ernährungsverhältnisse des Auges. In: Saemisch T, editor. Graefe-Saemisch Handbuch der Gesamten Augenheilkunde. 2nd ed. Leipzig: Wilhelm Engelmann; 1903. p. 1–101.

    Google Scholar 

  21. Kiss F. Der Blutkreislauf der Auges. Ophthalmologica. 1943;106:225.

    Article  Google Scholar 

  22. Ashton N. Anatomical study of Schlemm’s canal and aqueous veins by means of neoprene casts. Br J Ophthalmol. 1951;35:291.

    Article  PubMed  CAS  Google Scholar 

  23. Ashton N. Anatomical study of Schlemm’s canal and aqueous veins by means of neoprene casts. Part II: aqueous veins. Br J Ophthalmol. 1952;36:265.

    Article  PubMed  CAS  Google Scholar 

  24. Ashton N, Smith R. Anatomical study of Sclemm’s canal and aqueous veins by means of neoprene casts. III. Arterial relations of Schlemm’s canal. Br J Ophthalmol. 1953;37:577.

    Article  PubMed  CAS  Google Scholar 

  25. Van Buskirk EM. The canine eye: the vessels of aqueous drainage. Invest Ophthalmol Vis Sci. 1979;18:223.

    PubMed  Google Scholar 

  26. Morrison JC, Van Buskirk EM. Anterior collateral ­circulation in the primate eye. Ophthalmology. 1983;90:707.

    PubMed  CAS  Google Scholar 

  27. Fryczkowski AW, Sherman MD, Walker J. Observations on the lobular organization of the human choriocapillaris. Intern Ophthalmol. 1991; 15:109.

    Article  CAS  Google Scholar 

  28. Hayreh SS, Scott WE. Fluorescein iris angiography. II Disturbances in iris circulation following strabismus operation on the various recti. Arch Ophthalmol. 1978;96:1390.

    Article  PubMed  CAS  Google Scholar 

  29. Virdi PS, Hayreh SS. Anterior segment ischemia after recession of various recti: an experimental study. Ophthalmology. 1987;94:1258.

    PubMed  CAS  Google Scholar 

  30. Bron AJ, Easty DL. Fluorescein angiography of the globe and anterior segment. Trans Ophthalmol Soc UK. 1970;90:339.

    PubMed  CAS  Google Scholar 

  31. Ikegami M. Fluorescein angiography of the anterior ocular segment. I. Hemodynamics in the anterior ciliary arteries. Acta Soc Ophthalmol Jpn. 1974;78:39.

    Google Scholar 

  32. Talusan ED, Swartz B. Fluorescein angiography; demonstration of flow pattern of anterior ciliary arteries. Arch Ophthalmol. 1981;99:1074.

    Article  PubMed  CAS  Google Scholar 

  33. Meyer PA, Watson PG. Low dose fluorescein angiography of the conjunctiva and episclera. Br J Ophthalmol. 1987;71:2.

    Article  PubMed  CAS  Google Scholar 

  34. Meyer PA. Patterns of blood flow in episcleral vessels studied by low-dose fluorescein videoangiography. Eye. 1988;2:533.

    Article  PubMed  Google Scholar 

  35. Ormerod LD, Fariza E, Hughes GW, Doane MG, Webb RH. Anterior segment fluorescein videoangiography with a scanning angiographic microscope. Ophthalmology. 1990;97:745.

    PubMed  CAS  Google Scholar 

  36. Norn MS. Topography of scleral emissaries and sclera-perforating blood vessels. Acta Ophthalmol (Copenhagen). 1985;63:320.

    Article  CAS  Google Scholar 

  37. Torczynski E. Sclera. In: Jakobiec FA, editor. Ocular anatomy, embryology, and teratology. Philadelphia, PA: Harper & Row; 1982. p. 587–99.

    Google Scholar 

  38. Brancato R, Frosini R, Boshi M. L’Angiografia superficiale a fluorescein del bulbo oculare. Ann Ottal Clin Ocul. 1969;95:433.

    CAS  Google Scholar 

  39. Laatikainen L. Perilimbal vasculature in glaucomatous eyes. Acta Ophthalmol. 1971;111(suppl):54.

    Google Scholar 

  40. Raitta C, Vannas S. Fluorescein angiographic features of the limbus and perilimbal vessels. Ear Nose Throat J. 1971;50:58.

    Google Scholar 

  41. Shimizu K, Ujie K. Structure of ocular vessels. Tokyo: Igaku-Shoin; 1978.

    Google Scholar 

  42. Watson PG, Bovey E. Anterior segment fluorescein angiography in the diagnosis of scleral inflammation. Ophthalmology. 1985;92:1.

    PubMed  CAS  Google Scholar 

  43. Meyer PA. The circulation of the human limbus. Eye. 1989;3:121.

    Article  PubMed  Google Scholar 

  44. Amalric P, Rebière P, Jourdes JC. Nouvelles indications de l’angiographie fluoresceinique du segment anterieur de l’oeil. Ann Ocul. 1971;204:455.

    CAS  Google Scholar 

  45. Crandall AS, Yanoff M, Schaffer DB. Intrascleral nerve loop mistakenly identified as a foreign body. Arch Ophthalmol. 1977;95:497.

    Article  PubMed  CAS  Google Scholar 

  46. Fine BS, Yanoff M. 76 cornea and sclera. In: Hagerstown MD, editor. Ocular hystology. 2nd ed. Philadelphia, PA: Harper & Row; 1979. p. 161–93.

    Google Scholar 

  47. Hogan MJ, Alvarado JA, Weddell JE. Histology of the human Eye. Philadelphia, PA: W. B. Saunders; 1971.

    Google Scholar 

  48. Jakus MA. Ocular fine structure: selected electron micrographs. Boston, MA: Little & Brown; 1964.

    Google Scholar 

  49. Komai Y, Ushiki T. The three-dimensional organization of collagen fibrils in the human cornea and sclera. Invest Ophthalmol Vis Sci. 1991;32:2244.

    PubMed  CAS  Google Scholar 

  50. Curtin BJ, Iwamoto T, Renaldo DP. Normal and staphylomatous sclera of high myopia. Arch Ophthalmol. 1979;97:912.

    Article  PubMed  CAS  Google Scholar 

  51. Kanai A, Kaufman HE. Electron microscopic studies of the elastic fiber in human sclera. Invest Ophthalmol Vis Sci. 1972;11:816.

    CAS  Google Scholar 

  52. Young RD. The ultrastructural organization of proteoglycans and collagen in human and rabbit scleral matrix. J Cell Sci. 1985;74:95.

    PubMed  CAS  Google Scholar 

  53. Raviola G. Conjunctival and episcleral blood vessels are permeable to blood–borne horseradish peroxidase. Invest Ophthalmol Vis Sci. 1983;24:725.

    PubMed  CAS  Google Scholar 

  54. Cole DF, Monro PAG. The use of fluorescein-labelled dextrans in investigation of aqueous humor outflow in the rabbit. Exp Eye Res. 1976;23:571.

    Article  PubMed  CAS  Google Scholar 

  55. Dische J. Biochemistry of connective tissues of the vertebrate eye. Int Rev Connect Tissue Res. 1970;5:209.

    PubMed  CAS  Google Scholar 

  56. Keeley FW, Morin JD, Vesely S. Characterization of collagen from normal human sclera. Exp Eye Res. 1984;39:533.

    Article  PubMed  CAS  Google Scholar 

  57. Lee RE, Davidson PF. Collagen composition and turnover in ocular tissues of the rabbit. Exp Eye Res. 1981;32:737.

    Article  PubMed  CAS  Google Scholar 

  58. Tengroth B, Rehnberg M, Amitzboll T. A comparative analysis of the collagen type and distribution in the trabecular meshwork, sclera, lamina cribrosa and the optic nerve in the human eye. Acta Ophthalmol Copenhagen. 1985;63 suppl 173:91.

    Google Scholar 

  59. Moses RA, Grodzki WJ, Starcherd BC, Galione MJ. Elastic content of the scleral spur, trabecular meshwork, and sclera. Invest Ophthalmol Vis Sci. 1978;17:817.

    PubMed  CAS  Google Scholar 

  60. Borcherding MS, Blacik LJ, Sittig RA, Bizzell JW, Breen M, Weinstein HG. Proteoglycans and collagen fiber organization in human cornescleral tissue. Exp Eye Res. 1975;21:59.

    Article  PubMed  CAS  Google Scholar 

  61. Trier K, Olsen EB, Ammitzbøll T. Regional glycosaminoglycan composition of the human sclera. Acta Ophthalmol (Copenhagen). 1990;68:304.

    Article  CAS  Google Scholar 

  62. St Helen R, McEwen WK. Rheology of the human sclera. I. Anelastic behavior. Am J Ophthalmol. 1961;52:539.

    Google Scholar 

  63. Richards RD, Tittel PG. Corneal and scleral distensibility ratio on enucleated human eyes. Invest Ophthalmol Vis Sci. 1973;12:145.

    CAS  Google Scholar 

  64. Curtin BJ. Physiopathologic aspects of scleral stress-strain. Trans Am Ophthalmol Soc. 1969;67:417.

    PubMed  CAS  Google Scholar 

  65. Friberg TR, Lace JW. A comparison of the elastic properties of human choroid and sclera. Exp Eye Res. 1988;47:429.

    Article  PubMed  CAS  Google Scholar 

  66. Bettelhein FA, Ehrlich SH. Water vapor sorption of mucopolysaccharides. J Physiol Chem. 1963;67:1948.

    Article  Google Scholar 

  67. Loewi G, Meyer K. The acid mucopolysaccharides of embryonic skin. Biochim Biophys Acta. 1958; 27:456.

    Article  Google Scholar 

  68. Gregory JD, Damle SP, Covington HI, Citron C. Developmental changes in proteoglycans of rabbit corneal stroma. Invest Ophthalmol Vis Sci. 1988;29:1413.

    PubMed  CAS  Google Scholar 

  69. Caparas VL, Cintrom C, Hernandez-Neufeld MR. Immunohistochemistry of proteoglycans in human lamina cribrosa. Am J Ophthalmol. 1991;112:489.

    PubMed  CAS  Google Scholar 

  70. Watson PG, Hazelman BL. The sclera and systemic disorders. London: W. B. Saunders; 1976.

    Google Scholar 

  71. Edelhauser HF, Van Horn DL, Records RE. Cornea and sclera. In: Duane TD, Jaeger EA, editors. Biomedical foundations of ophthalmology, vol. 2. Philadelphia, PA: Harper & Row; 1982. p. 1–26.

    Google Scholar 

  72. Kivirikko KI, Myllyla R. Biosynthesis of collagens. In: Piez KA, Reddi AH, editors. Extracellular matrix biochemistry. New York, NY: Elsevier; 1984. p. 83–112.

    Google Scholar 

  73. Postlethwaite AE, Kang AH. Fibroblasts. In: Gallin JI, Goldstein IM, Snyderman R, editors. Inflammation: basic principles and clinical correlates. New York, NY: Raven; 1988. p. 747–74.

    Google Scholar 

  74. Chu ML, De Wet W, Bernard M, Ding JF, Morabito M, Myers J, Williams C, Ramirez F. Human pro-α1(I) collagen gene structure reveals evolutionary conservation of a pattern of introns and exons. Nature (London). 1984;310:337.

    Article  CAS  Google Scholar 

  75. Chu ML, De Wet W, Bernard M, Ramirez F. Isolation of cDNA and genomic clones encoding human pro-α1(III) collagen. J Biol Chem. 1985;260:2315.

    PubMed  CAS  Google Scholar 

  76. Chu ML, Weil D, De Wet W, Bernard M, Sippola M, Ramirez F. Isolation of cDNA and genomic clones encoding human pro-α1 (III) collagen. Partial characterization of the 3′ end regionof the gene. J Biol Chem. 1985;260:4357.

    PubMed  CAS  Google Scholar 

  77. Seyer JM, Kang AH. Structural proteins: collagen, elastin and fibronectin. In: Kelley WN, Harris Jr E, Ruddy S, Sledge CB, editors. Textbook of rheumatology. Philadelphia, PA: W. B. Saunders; 1985.

    Google Scholar 

  78. Tresltad RL, Birk DE, Silver FH. Collagen fibrillogenesis in tissues, in solution, and from modeling: a synthesis. J Invest Dermatol. 1982;79:109.

    Article  Google Scholar 

  79. Watson PG, Hazelman B, Pavesio C, Green WR. The sclera and systemic disorders. 2nd ed. Edinburg: Butterworth Heinemann; 2004. p. 29.

    Google Scholar 

  80. Brandt KD. Glycosaminoglycans. In: Kelley WN, Harris Jr E, Ruddy S, Sledge CB, editors. Textbook of rheumatology. Philadelphia, PA: W. B. Saunders; 1985.

    Google Scholar 

  81. Heinegard D, Paulson M. Structure and metabolism of proteoglycans. In: Piez KA, Reddi AH, editors. Extracellular matrix biochemistry. New York, NY: Elsevier; 1984. p. 277–322.

    Google Scholar 

  82. Mathews MB, Deckers L. The effect of acid mucopolysaccharide proteins on fibril formation from collagen solutions. Biochem J. 1969;109:517.

    Google Scholar 

  83. Toole BP, Lowther D. Dermatan sulphate protein: isolation from and interaction with collagen. Arch Biochem. 1968;128:567.

    Article  PubMed  CAS  Google Scholar 

  84. Trelstad RL, Hayashi K, Toole BP. Epithelial collagens and glycosaminoglycans in the embryonic ­cornea: macromolecular order and morphogenesis in the basement membrane. J Cell Biol. 1974;62:815.

    Article  PubMed  CAS  Google Scholar 

  85. Gelman RA, Blackwell J. Collagen-mucopoly­saccharide interactions at acid pH. Biochim Biophys Acta. 1974;342:254.

    PubMed  CAS  Google Scholar 

  86. Ruoslahti E, Yamaguchi Y. Proteoglycans as modulators of growth factor activities. Cell. 1991;64:867.

    Article  PubMed  CAS  Google Scholar 

  87. Ruoslahti E. Proteoglycans in cell regulation. J Biol Chem. 1989;264:13369.

    PubMed  CAS  Google Scholar 

  88. Hynes R. Molecular biology of fibronectin. Annu Rev Cell Biol. 1985;1:67.

    Article  PubMed  CAS  Google Scholar 

  89. Kleinman HK, Klebe RJ, Martin GR. Role of collagenous matrices in adhesion and growth of cells. J Cell Biol. 1981;88:473.

    Article  PubMed  CAS  Google Scholar 

  90. Yamada KM, Kennedy DW, Kimata K, Pratt PM. Characteristics of fibronectin interactions with glycosaminoglycans and identification of active proteolytic fragments. J Biol Chem. 1980;255:6055.

    PubMed  CAS  Google Scholar 

  91. McDonald JA, Kelley DG, Broekelmann TJ. Role of fibronectin in collagen deposition: Fab’ to the gelatin-binding domain of fibronectin inhibits both fibronectin and collagen organization in fibroblast extracellular matrix. J Cell Biol. 1982;92:485.

    Article  PubMed  CAS  Google Scholar 

  92. Kuusela P. Fibronectin binds to Staphylococcus aureus. Nature. 1978;276:719.

    Article  Google Scholar 

  93. Menzel EJ, Smolen JS, Liotta L, Reid KBM. Interaction of fibronectin with C1q and its collagen-like fragment. FEBS Lett. 1981;129:188.

    Article  PubMed  CAS  Google Scholar 

  94. Zardi L, Siri A, Carnemolla B, Santi L, Bardner WD, Hoch SO. Fibronectin: a chromatrin-associated protein? Cell. 1979;18:649.

    Article  PubMed  CAS  Google Scholar 

  95. Kornblihtt AR, Vibe-Pedersen K, Baralle FE. Isolation and characterization of cDNA clones for human and bovine fibronectins. Proc Natl Acad Sci USA. 1983;80:3218.

    Article  PubMed  CAS  Google Scholar 

  96. Tamkun JW, Schwarzbauer JE, Hynes RO. A single rat fibronectin gene generates three different mRNAs by alternative splicing of a complex exon. Proc Natl Acad Sci USA. 1984;81:5140.

    Article  PubMed  CAS  Google Scholar 

  97. Vibe-Pedersen K, Kornblihtt AR, Petersen TE. Expression of a human α-globulin/fibronectin gene hybrid generates two mRNA by alternative splicing. EMBO J. 1984;3:2511.

    PubMed  CAS  Google Scholar 

  98. Mecham RP. Receptor for laminin on mammalian cells. FASEB J. 1991;5:2538.

    PubMed  CAS  Google Scholar 

  99. Albelda SM, Buck CA. Integrins and other cell adhesion molecules. FASEB J. 1990;4:2868.

    PubMed  CAS  Google Scholar 

  100. Kleinman HK, Cannon FB, Laurie GW. Biological activities of laminin. J Cell Biochem. 1987;27:317.

    Article  Google Scholar 

  101. Wooley DE. Mammalian collagenases. In: Piez KA, Reddi AH, editors. Extracellular matrix biochemistry. New York, NY: Elsevier; 1984. p. 119–51.

    Google Scholar 

  102. Gosline JM, Rosenbloom J. Elastin. In: Piez KA, Reddi AH, editors. Extracellular matrix biochemistry. New York, NY: Elsevier; 1984. p. 191–226.

    Google Scholar 

  103. Sandy JD, Brown HLG, Lowther DA. Degradation of proteoglycan in articular cartilage. Biochim Biophys Acta. 1978;543:536.

    Article  PubMed  CAS  Google Scholar 

  104. Hakomori S, Fukuda M, Sekiguchi K, Carter WB. Fibronectin, laminin, and other extracellular glycoproteins. In: Piez KA, Reddi AH, editors. Extracellular matrix biochemistry. New York, NY: Elsevier; 1984.

    Google Scholar 

  105. Scher CD, Shepard RC, Antoniades HN, Stiles CD. Platelet-derived growth factor and the regulation of the mammalian fibroblast cell cycle. Biochim Biophys Acta. 1979;560:212.

    Google Scholar 

  106. Stiles CD, Capone GT, Scher CD, Antoniades HN, Van Wyk JJ, Pledger WJ. Dual control of cell growth by somatomedins and platelet-derived growth factor. Proc Natl Acad Sci USA. 1979;76:L279.

    Article  Google Scholar 

  107. Moses AC, Nissley SP, Rechler MM, Short A, Podskalny JM. The purification and characterization of multiplication stimulating activity (MSA) from media conditioned by a rat liver cell line. In: Geordano G, Van Wyk JJ, Minuto F, editors. Somatomedins and growth. New York, NY: Academic; 1979. p. 45–59.

    Google Scholar 

  108. Postlethwaite AE, Lachman LB, Kang AH. Induction of fibroblast proliferation by interleukin-1 derived from human monocytic leukemia cells. Arthritis Rheum. 1984;27:995.

    Article  PubMed  CAS  Google Scholar 

  109. Schmidt JA, Mizel SB, Cohen D, Green I. Interleukin 1, a potential regulator of fibroblast proliferation. J Immunol. 1982;128:2177.

    PubMed  CAS  Google Scholar 

  110. Postlethwaite AE, Kang AH. Induction of fibroblast proliferation by human mononuclear derived proteins. Arthritis Rheum. 1983;26:22.

    Article  PubMed  CAS  Google Scholar 

  111. Wahl SM, Wahl LM, McCarthy JB. Lymphocyte-mediated activation of fibroblast proliferation and collagen production. J Immunol. 1978;121:942.

    PubMed  CAS  Google Scholar 

  112. Brinkerhoff CE, Guyre PM. Increased proliferation of human synovial fibroblasts treated with recombinant immune interferon. J Immunol. 1985;134:3142.

    Google Scholar 

  113. Duncan MR, Berman D. Gamma interferon is the lymphokine and beta interferon the monokine responsible for inhibition of fibroblast collagen production and late but not early fibroblast proliferation. J Exp Med. 1985;162:516.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maite Sainz de la Maza MD, PhD .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

de la Maza, M.S., Tauber, J., Foster, C.S. (2012). Structural Considerations of the Sclera. In: The Sclera. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-6502-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-6502-8_1

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-6501-1

  • Online ISBN: 978-1-4419-6502-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics