Skip to main content

Contribution of the Intestinal Microbiota to Human Health: From Birth to 100 Years of Age

  • Chapter
  • First Online:
Between Pathogenicity and Commensalism

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 358))

Abstract

Our intestinal tract is colonized since birth by multiple microbial species that show a characteristic succession in time. Notably the establishment of the microbiota in early life is important as it appears to impact later health. While apparently stable in healthy adults, the intestinal microbiota is changing significantly during aging. After 100 years of symbiosis marked changes have been observed that may relate to an increased level of intestinal inflammation. There is considerable interest in the microbiota in health and disease as it may provide functional biomarkers, the possibility to differentiate subjects, and avenues for interventions. This chapter reviews the present state of the art on the research to investigate the contribution of the intestinal microbiota to human health. Specific attention will be given to the healthy microbiota and aberrations due to disturbances such as celiac disease, irritable bowel syndrome, inflammatory bowel disease, obesity and diabetes, and non-alcoholic fatty liver disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BF:

Breast feeding

FF:

Formula feeding

CeD:

Celiac disease

TLRs:

Toll-like receptors

NOD:

Nucleotide-binding oligomerization domain containing

IBS:

Irritable bowel syndrome

HCs:

Healthy controls

IBD:

Inflammatory bowel diease

UC:

Ulcerative colitis

CD:

Crohn’s disease

TNBS:

2,4,6-trinitrobenzenesulphonic acid

SCFA:

Short chain fatty acid

BMI:

Body mass index

FIAF:

Fasting-induced adipose factor

LPS:

Lipopolysaccharide

T1D:

Type 1 diabetes

T2D:

Type 2 diabetes

DGGE:

Denaturing gradient gel electrophoresis

NAFLD:

Non-alcoholic fatty liver disease

NASH:

Non-alcoholic steatohepatitis

SIBO:

Small intestinal bacterial overgrowth

LGG:

Lactobacillus rhamnosus GG

References

  • Abu-Shanab A, Quigley EMM (2010) The role of the gut microbiota in nonalcoholic fatty liver disease. Nat Rev Gastroenterol Hepatol 7:691–701

    PubMed  Google Scholar 

  • Adlerberth I, Wold AE (2009) Establishment of the gut microbiota in Western infants. Acta Paediatr 98:229–238

    PubMed  CAS  Google Scholar 

  • Adlerberth I, Lindberg E, Aberg N et al (2006) Reduced enterobacterial and increased staphylococcal colonization of the infantile bowel: an effect of hygienic lifestyle? Pediatr Res 59:96–101

    PubMed  Google Scholar 

  • Adlerberth I, Strachan DP, Matricardi PM et al (2007) Gut microbiota and development of atopic eczema in 3 European birth cohorts. J Allergy Clin Immunol 120:343–350

    PubMed  CAS  Google Scholar 

  • Andersson AF, Lindberg M, Jakobsson H et al (2008) Comparative analysis of human gut microbiota by barcoded pyrosequencing. PLoS One 3:e2836

    PubMed  Google Scholar 

  • Bäckhed F, Ding H, Wang T et al (2004) The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA 101:15718–15723

    PubMed  Google Scholar 

  • Bäckhed F, Manchester JK, Semenkovich CF et al (2007) Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci U S A 104:979–984

    PubMed  Google Scholar 

  • Bartosch S, Fite A, Macfarlane GT et al (2004) Characterization of bacterial communities in feces from healthy elderly volunteers and hospitalized elderly patients by using real-time PCR and effects of antibiotic treatment on the fecal microbiota. Appl Environ Microbiol 70:3575–3581

    PubMed  CAS  Google Scholar 

  • Biagi E, Nylund L, Candela M et al (2010) Through ageing, and beyond: gut microbiota and inflammatory status in seniors and centenarians. PLoS One 5:e10667

    PubMed  Google Scholar 

  • Buchman AL, Dubin MD, Moukarzel AA et al (1995) Choline deficiency: a cause of hepatic steatosis during parenteral nutrition that can be reversed with intravenous choline supplementation. Hepatol 22:1399–1403

    CAS  Google Scholar 

  • Bures J, Cyrany J, Kohoutova D et al (2010) Small intestinal bacterial overgrowth syndrome. World J Gastroenterol 16:2978–2990

    PubMed  CAS  Google Scholar 

  • Cani PD, Delzenne NM (2009) The role of the gut microbiota in energy metabolism and metabolic disease. Curr Pharma Des 15:1546–1558

    CAS  Google Scholar 

  • Cani PD, Bibiloni R, Knauf C et al (2008) Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 57:1470–1481

    PubMed  CAS  Google Scholar 

  • Cho JH (2008) The genetics and immunopathogenesis of inflammatory bowel disease. Nat Rev Immunol 8:458–466

    PubMed  CAS  Google Scholar 

  • Claesson MJ, Cusack S, O’Sullivan O et al (2010) Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc Natl Acad Sci U S A. doi:10.1073/pnas.1000097107

  • Collado MC, Donat E, Ribes-Koninckx C et al (2009) Specific duodenal and faecal bacterial groups associated with paediatric coeliac disease. J Clin Pathol 62:264–269

    PubMed  CAS  Google Scholar 

  • Collado MC, Isolauri E, Laitinen K et al (2010) Effect of mother’s weight on infant’s microbiota acquisition, composition, and activity during early infancy: a prospective follow-up study initiated in early pregnancy. Am J Clin Nutr 92:1023–1030

    PubMed  CAS  Google Scholar 

  • Daniels SR (2006) The consequences of childhood overweight and obesity. Future Child 16:47–67

    PubMed  Google Scholar 

  • De La Cochetière MF, Durand T, Lepage P et al (2005) Resilience of the dominant human fecal microbiota upon short-course antibiotic challenge. J Clin Microbiol 43:5588

    PubMed  Google Scholar 

  • De Palma G, Nadal I, Medina M et al (2010) Intestinal dysbiosis and reduced immunoglobulin-coated bacteria associated with coeliac disease in children. BMC Microbiol 10:63

    PubMed  Google Scholar 

  • Decker E, Engelmann G, Findeisen A et al (2010) Cesarean delivery is associated with celiac disease but not inflammatory bowel disease in children. Pediatrics 125:e1433–e1440

    PubMed  Google Scholar 

  • Dethlefsen L, Relman DA (2010) Microbes and health sackler colloquium: incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc Natl Acad Sci U S A. doi:10.1073/pnas.1000087107

  • Dethlefsen L, Huse S, Sogin ML et al (2008) The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol 6:e280

    PubMed  Google Scholar 

  • Diamant M, Blaak EE, De Vos WM (2010) DO nutrient-gut-microbiota interactions play a role in human obesity, insulin resistance and type 2 diabetes? Obes Rev 12:272–281

    PubMed  Google Scholar 

  • DiGiulio DB, Romero R, Amogan HP et al (2008) Microbial prevalence, diversity and abundance in amniotic fluid during preterm labor: a molecular and culture-based investigation. PLoS One 3:e3056

    PubMed  Google Scholar 

  • DiGiulio DB, Romero R, Kusanovic JP et al (2010) Prevalence and diversity of microbes in the amniotic fluid, the fetal inflammatory response, and pregnancy outcome in women with preterm pre-labor rupture of membranes. Am J Reprod Immunol. doi:10.1111/j.1600-0897.2010.00830.x

  • Dominguez-Bello MG, Costello EK, Contreras M et al (2010) Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci U S A 107:11971–11975

    PubMed  Google Scholar 

  • Donath MY, Schumann DM, Faulenbach M et al (2008) Islet inflammation in Type 2 Diabetes. Diabetes Care 31(Suppl 2):161–164

    Google Scholar 

  • Drossman DA (2000) The functional GI disorders and the Rome II process. In: Drossman DA et al (eds) The functional gastrointestinal disorders, 2nd edn. Degnon Associates, McLean

    Google Scholar 

  • Ducan SH, Lobley GE, Holtrop G et al (2008) Human colonic microbiota associated with diet, obesity and weight loss. Int J Obe (Lond) 32:1720–1724

    Google Scholar 

  • Eckburg PB, Bik EM, Bernstein CN et al (2005) Diversity of the human intestinal microbial flora. Science 308:1635–1638

    PubMed  Google Scholar 

  • Fallani M, Young D, Scott J et al (2010) Intestinal microbiota of 6-week-old infants across Europe: geographic influence beyond delivery mode, breast-feeding, and antibiotics. J Pediatr Gastroenterol Nutr 51:77–84

    PubMed  Google Scholar 

  • Favier CF, Vaughan EE, De Vos WM et al (2002) Molecular monitoring of succession of bacterial communities in human neonates. Appl Environ Microbiol 68:219–226

    PubMed  CAS  Google Scholar 

  • Frank DN, Amand AL, Feldman RA et al (2007) Molecualr-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. PNAS 104:13780–13785

    PubMed  CAS  Google Scholar 

  • Giongo A, Gano KA, Crabb DB et al (2011) Toward defining the autoimmune microbiome for type 1 diabetes. ISME J 5:82–91

    PubMed  CAS  Google Scholar 

  • Green PH, Jabri B (2006) Celiac disease. Annu Rev Med 57:207–221

    PubMed  CAS  Google Scholar 

  • Grönlund MM, Lehtonen OP, Eerola E et al (1999) Fecal microflora in healthy infants born by different methods of delivery: permanent changes in intestinal flora after cesarean delivery. Pediatr Gastroenterol Nutr 28:19–25

    Google Scholar 

  • Grönlund MM, Gueimonde M, Laitinen K et al (2007) Maternal breast-milk and intestinal bifidobacteria guide the compositional development of the Bifidobacterium microbiota in infants at risk of allergic disease. Clin Exp Allergy 37:1764–1772

    PubMed  Google Scholar 

  • Hanson LA, Korotkova M, Håversen L et al (2002) Breast-feeding, a complex support system for the offspring. Pediatr Int 44:347–352

    PubMed  Google Scholar 

  • Jalanka-Tuovinen J, Salonen A, Nikkilä J et al (2011) Intestinal microbiota in healthy adults: temporal analysis reveals individual and common core and relation to intestinal symptoms. PLoS One 6(7):e23035

    PubMed  CAS  Google Scholar 

  • Jiménez E, Fernández L, Marín ML et al (2005) Isolation of commensal bacteria from umbilical cord blood of healthy neonates born by cesarean section. Curr Microbiol 51:270–274

    PubMed  Google Scholar 

  • Jiménez E, Marín ML, Martín R et al (2008) Is meconium from healthy newborns actually sterile? Res Microbiol 159:187–193

    PubMed  Google Scholar 

  • Kadooka Y, Sato M, Imaizumi K et al (2010) Regulation of abdominal adiposity by probiotics (Lactobacillus gasseri SBT 2055) in adults with obese tendencies in a randomized controlled trial. Eur J Clin Nutr 64:636–643

    PubMed  CAS  Google Scholar 

  • Kajander K, Myllyluoma E, Rajilić-Stojanović M et al (2007) Clinical trial: multispecies probiotic supplementation alleviates the symptoms of irritable bowel syndrome and stabilizes intestinal microbiota. Aliment Pharmacol Ther 27:48–57

    PubMed  Google Scholar 

  • Kalliomäki M, Collado MC, Salminen S et al (2008) Early differences in fecal microbiota composition in children may predict overweight. Am J Clin Nutr 87:534–538

    PubMed  Google Scholar 

  • Kalliomäki M, Satokari R, Lähteenoja H et al (2011) Expression of toll-like receptors and local microbiota in the duodenum of children with celiac disease (Revised version submitted)

    Google Scholar 

  • Kassinen A, Krogius-Kurikka L, Mäkivuokko H et al (2007) The fecal microbiota of irritable bowel syndrome patients differs significantly from that of healthy subjects. Gastroenterology 133:24–33

    PubMed  CAS  Google Scholar 

  • Kerckhoffs AP, Samsom M, van der Rest ME et al (2009) Lower bifidobacteria counts in both duodenal mucosa-associated and fecal microbiota in irritable bowel syndrome patients. World J Gastroenterol 15(23):2887–2892

    PubMed  Google Scholar 

  • Knip M, Virtanen SM, Åkerblom HK (2010) Infant feeding and the risk of type 1 diabetes. Am J Clin Nutr 91(Suppl):1506S–1513S

    PubMed  Google Scholar 

  • Krogius-Kurikka L, Lyra A, Malinen E et al (2009) Microbial community analysis reveals high level phylogenetic alterations in the overall gastrointestinal microbiota of diarrhoea-predominant irritable bowel syndrome sufferers. BMC Gastroenterol. doi:10.1186/1471-230X-9-95

  • Kuitunen M, Kukkonen K, Juntunen-Backman K et al (2009) Probiotics prevent IgE-associated allergy until age 5 years in cesarean-delivered children but not in the total cohort. J Allergy Clin Immunol 123:335–341

    PubMed  Google Scholar 

  • Kunz C, Rudloff S (1993) Biological functions of oligosaccharides in human milk. Acta Paediatr 82:903–912

    PubMed  CAS  Google Scholar 

  • Laitinen K, Poussa T, Isolauri E et al (2009) Probiotics and dietary counseling contribute to glucose regulation during and after pregnancy: a randomized controlled trial. Br J Nutr 101:1679–1687

    PubMed  CAS  Google Scholar 

  • Larsen N, Vogensen FK, van den Berg FW et al (2010) Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One 5:1–10

    Google Scholar 

  • Lay C, Rigottier-Gois L, Holmstrøm K et al (2005) Colonic microbiota signatures across five northern European countries. Appl Environ Microbiol 71:4153–4155

    PubMed  CAS  Google Scholar 

  • Ley RE (2010) Obesity and the human microbiome. Curr Opin Gastroenterol 26:5–11

    PubMed  Google Scholar 

  • Ley RE, Bäckhed F, Turnbaugh P et al (2005) Obesity alters gut microbial ecology. PNAS 102:11070–11075

    PubMed  CAS  Google Scholar 

  • Ley RE, Turnbaugh PJ, Klein S et al (2006) Human gut microbes associated with obesity. Nature 444:1022–1023

    PubMed  CAS  Google Scholar 

  • Longstreth GF, Thompson WG, Chey WD et al (2006) Functional bowel disorders. Gastroenterology 130:1480–1491

    PubMed  Google Scholar 

  • Luoto R, Kalliomäki M, Laitinen K et al (2010) The impact of perinatal probiotic intervention on the development of overweight and obesity: follow-up study from birth to 10 years. Int J Obes (Lond) 34:1531–1537

    CAS  Google Scholar 

  • Lyra A, Rinttilä T, Nikkilä J et al (2009) Diarrhea-predominant irritable bowel syndrome distinguishable by 16S rRNA gene phylotype quantification. World J Gastroenterol 15:5936–5945

    PubMed  CAS  Google Scholar 

  • Lyra A, Krogius-Kurikka L, Nikkilä J et al (2010) Effect of a multispeicies probiotic supplement on quantity of irritable bowel syndrome-related intestinal microbioal phylotypes. BMC Gastroenterl. doi:10.1186/1471-230X-10-110

  • Mackie RI, Sghir A, Gaskins HR (1999) Developmental microbial ecology of the neonatal gastrointestinal tract. Am J Clin Nutr 69:1035S–1045S

    PubMed  CAS  Google Scholar 

  • Malinen E, Rinttilä T, Kajander K et al (2005) Analysis of the fecal microbiota of irritable bowel syndrome patients and healthy controls with real-time PCR. Am J Gastroenterol 100(2):373–382

    PubMed  CAS  Google Scholar 

  • Malinen E, Krogius-Kurikka L, Lyra A et al (2010) Association of symptoms with gastrointestinal microbiota in irritable bowel syndrome. World J Gastroenterol 16:4532–4540

    PubMed  CAS  Google Scholar 

  • Marshall JK, Thabane M, Garg AX et al (2006) Incidence and epidemiology of irritable bowel syndrome after a large waterborne outbreak of bacterial dysentery. Gastroenterology 131:445–450

    PubMed  Google Scholar 

  • Martín R, Langa S, Reviriego C et al (2003) Human milk is a source of lactic acid bacteria for the infant gut. J Pediatr 143:754–758

    PubMed  Google Scholar 

  • Martín R, Jiménez E, Heilig H et al (2009) Isolation of bifidobacteria from breast milk and assessment of the bifidobacterial population by PCR-denaturing gradient gel electrophoresis and quantitative real-time PCR. Appl Environ Microbiol 75:965–969

    PubMed  Google Scholar 

  • Maukonen J, Mättö J, Satokari R et al (2006) PCR DGGE and RT-PCR DGGE show diversity and short-term temporal stability in the Clostridium coccoides-Eubacterium rectale group in the human intestinal microbiota. FEMS Microbiol Ecol 58:517–528

    PubMed  CAS  Google Scholar 

  • Miele L, Valenza V, Torre GL et al (2009) Increased intestinal permeability and tight junction alterations in nonalcoholic fatty liver disease. Hepatology 49:1877–1887

    PubMed  CAS  Google Scholar 

  • Mueller S, Saunier K, Hanisch C et al (2006) Differences in fecal microbiota in different European study populations in relation to age, gender, and country: a cross-sectional study. Appl Environ Microbiol 72:1027–1033

    PubMed  CAS  Google Scholar 

  • Nadal I, Donat E, Ribes-Koninckx C et al (2007) Imbalance in the composition of the duodenal microbiota of children with coeliac disease. J Med Microbiol 56:1669–1674

    PubMed  CAS  Google Scholar 

  • Nell S, Suerbaum S, Josenhans C (2010) The impact of the microbiota on the pathogenesis of IBD: lessons from mouse infection models. Nature 8:564–574

    CAS  Google Scholar 

  • Nikkilä J, de Vos WM (2010) Advanced approaches to characterize the human intestinal microbiota by computational meta-analysis. J Clin Gastroenterol 44(Suppl 1):S2–S5

    PubMed  Google Scholar 

  • Nylund L, Satokari R, Nikkilä J et al Global phylogenetic analysis of intestinal microbiota reveals marked microbial aberrancy in young children developing atopy (in preparation)

    Google Scholar 

  • Ou G, Hedberg M, Hörstedt P et al (2009) Proximal small intestinal microbiota and identification of rod-shaped bacteria associated with childhood celiac disease. Am J Gastroenterol 104:3058–3067

    PubMed  Google Scholar 

  • Palmer C, Bik EM, DiGiulio DB et al (2007) Development of the human infant intestinal microbiota. PLoS Biol 5:e177

    PubMed  Google Scholar 

  • Penders J, Thijs C, Vink C et al (2006) Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics 118:511–521

    PubMed  Google Scholar 

  • Perez PF, Doré J, Leclerc M et al (2007) Bacterial imprinting of the neonatal immune system: lessons from maternal cells? Pediatrics 119:e724–e732

    PubMed  Google Scholar 

  • Petnicki-Ocwieja T, Hrncir T, Liu YJ et al (2009) Nod2 is required for the regulation of commensal microbiota in the intestine. PNAS 106:15813–15818

    PubMed  CAS  Google Scholar 

  • Pierdomenico M, Stronati L, Costanzo M et al (2011) New insights into the pathogenesis of inflammatory bowel disease: transcription factors analysis in bioptic tissues from pediatric patients. JPGN 52:271–278

    PubMed  CAS  Google Scholar 

  • Plot L, Amital H (2009) Infectious associations of celiac disease. Autoimmun Rev 8:316–319

    PubMed  CAS  Google Scholar 

  • Png CW, Linden SK, Gilshenan KS et al (2010) Mucolytic bacteria with increased prevalence in IBD mucosa augment in vitro utilization of mucin by other bacteria. Am J Gastroenterol 105:2420–2428

    PubMed  CAS  Google Scholar 

  • Qin J, Li R, Raes J et al (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65

    PubMed  CAS  Google Scholar 

  • Rajilić-Stojanović M (2007) Diversity of the human gastrointestinal microbiota—novel perspectives from high throughput analyses. PhD thesis, University of Wageningen, The Netherlands

    Google Scholar 

  • Rajilić-Stojanović M, Heilig HG, Molenaar D et al (2009) Development and application of the human intestinal tract chip, a phylogenetic microarray: analysis of universally conserved phylotypes in the abundant microbiota of young and elderly adults. Environ Microbiol 11:1736–1751

    PubMed  Google Scholar 

  • Rinne M, Gueimonde M, Kalliomäki M et al (2005) Similar bifidogenic effects of prebiotic-supplemented partially hydrolyzed infant formula and breastfeeding on infant gut microbiota. FEMS Immunol Med Micr 43:59–65

    CAS  Google Scholar 

  • Roesch LF, Lorca GL, Casella G et al (2009) Culture-independent identification of gut bacteria correlated with the onset of diabetes in a rat model. ISME J 5:536–548

    Google Scholar 

  • Roger LC, Costabile A, Holland DT et al (2010) Examination of faecal bifidobacterium populations in breast- and formula-fed infants during the first 18 months of life. Microbiology 156:3329–3341

    PubMed  CAS  Google Scholar 

  • Salonen A, De Vos WM, Palva A (2010) Gastrointestinal microbiota in irritable bowel syndrome: present state and perspectives. Microbiology 156:3205–3215

    PubMed  CAS  Google Scholar 

  • Sandberg-Bennich S, Dahlquist G, Källén B (2002) Coeliac disease is associated with intrauterine growth and neonatal infections. Acta Paediatr 91:30–33

    PubMed  CAS  Google Scholar 

  • Sanz Y, Sánchez E, Marzotto M et al (2007) Differences in faecal bacterial communities in coeliac and healthy children as detected by PCR and denaturing gradient gel electrophoresis. FEMS Immunol Med Microbiol 51:562–568

    PubMed  CAS  Google Scholar 

  • Sartor RB (2005) Does Mycobacterium avium subspeicies paratuberculosis cause Crohn’s disease? GUT 54:900–903

    Google Scholar 

  • Satokari RM, Vaughan EE, Akkermans AD et al (2001a) Polymerase chain reaction and denaturing gradient gel electrophoresis monitoring of fecal bifidobacterium populations in a prebiotic and probiotic feeding trial. Syst Appl Microbiol 24:227–231

    PubMed  CAS  Google Scholar 

  • Satokari RM, Vaughan EE, Akkermans AD et al (2001b) Bifidobacterial diversity in human feces detected by genus-specific PCR and denaturing gradient gel electrophoresis. Appl Environ Microbiol 67:504–513

    PubMed  CAS  Google Scholar 

  • Satokari RM, Vaughan EE, Favier CF et al (2002) Diversity of Bifidobacterium and Lactobacillus spp. in breast-fed and formula-fed infants as assessed by 16S rDNA sequence differences. Micr Ecol Health Dis 14:97–105

    CAS  Google Scholar 

  • Satokari R, Grönroos T, Laitinen K et al (2009) Bifidobacterium and Lactobacillus DNA in the human placenta. Lett Appl Microbiol 48:8–12

    PubMed  CAS  Google Scholar 

  • Schell MA, Karmirantzou M, Snel B et al (2002) The genome sequence of Bifidobacterium longum reflects its adaptation to the human gastrointestinal tract. Proc Natl Acad Sci U S A 99:14422–14427

    PubMed  CAS  Google Scholar 

  • Schippa S, Iebba V, Barbato M et al (2010) A distinctive ‘microbial signature’ in celiac pediatric patients. BMC Microbiol. doi:10.1186/1471-2180-10-175

  • Schwiertz A, Taras D, Schäfer K et al (2010) Microbiota and SCFA in lean and overweight healthy subjects. Obesity 18:190

    PubMed  Google Scholar 

  • Sela DA, Chapman J, Adeuya A et al (2008) The genome sequence of Bifidobacterium longum subsp. infantis reveals adaptations for milk utilization within the infant microbiome. Proc Natl Acad Sci U S A 105:18964–18969

    PubMed  CAS  Google Scholar 

  • Shkoporov AN, Khokhlova EV, Kulagina EV et al (2008) Application of several molecular techniques to study numerically predominant Bifidobacterium spp. and Bacteroidales order strains in the feces of healthy children. Biosci Biotechnol Biochem 72:742–748

    PubMed  CAS  Google Scholar 

  • Sokol H, Pigneur B, Watterlot L et al (2008) Faecalibacterium prausnitzii is an anti-flammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. PNAS 105:16731–16736

    PubMed  CAS  Google Scholar 

  • Talley NJ (2007) Functional gastrointestinal disorders: irritable bowel syndrome, dyspepsia, and noncardiac chest pain. In: Goldman L, Ausiello D (eds) Cecil medicine, 23rd edn. Saunders Elsevier, Philadelphia chap 139

    Google Scholar 

  • Tap J, Mondot S, Levenez F et al (2009) Towards the human intestinal microbiota phylogenetic core. Environ Microbiol 11:2574–2584

    PubMed  Google Scholar 

  • Tiihonen K, Tynkkynen S, Ouwehand A et al (2008) The effect of ageing with and without non-steroidal anti-inflammatory drugs on gastrointestinal microbiology and immunology. Br J Nutr 100(1):130–137

    PubMed  CAS  Google Scholar 

  • Trynka G, Wijmenga C, van Heel DA (2010) A genetic perspective on coeliac disease. Trends Mol Med 16:537–550

    PubMed  CAS  Google Scholar 

  • Tsai F, Coyle WJ (2009) The microbiome and obesity: is obesity linked to out gut flora? Curr Gastroenterol Rep 11:307–313

    PubMed  Google Scholar 

  • Turnbaugh PJ, Ley RE, Mahowald MA et al (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027–1031

    PubMed  Google Scholar 

  • Turnbaugh PJ, Hamady M, Ystsunenko T et al (2009) A core gut microbiome in obese and lean twins. Nature 457:480–484

    PubMed  CAS  Google Scholar 

  • Vaarala O, Atkinson MA, Neu J (2008) The “Perfect Storm” for type 1 diabetes- the complex interplay between intestinal microbiota, gut permeability, and mucosal immunity. Diabetes 57:2555–2562

    PubMed  CAS  Google Scholar 

  • Valladares R, Sankar D, Li N et al (2010) Lactobacillus johnsonii N6.2 mitigates the development of type 1 diabetes in BB-DP rats. PLoS One 5:1–9

    Google Scholar 

  • van der Aa LB, Heymans HS, van Aalderen WM et al (2010) Effect of a new synbiotic mixture on atopic dermatitis in infants: a randomized-controlled trial. Clin Exp Allergy 40:795–804

    PubMed  Google Scholar 

  • van Tongeren SP, Slaets JP, Harmsen HJ et al (2005) Fecal microbiota composition and frailty. Appl Environ Microbiol 71:6438–6442

    PubMed  Google Scholar 

  • Vijay-kumar M, Aitken JD, Carvalho FA et al (2010) Metabolic syndrome and altered gut microbiota in mice lacking toll-like receptor 5. Science 328:228–231

    PubMed  CAS  Google Scholar 

  • Wen L, Ley RE, Volchkov PY et al (2008) Innate immunity and intestinal microbiota in the development of type 1 diabetes. Nature 455:1109–1113

    PubMed  CAS  Google Scholar 

  • Wigg AJ, Roberts-Thomson IC, Dymock RB et al (2001) The role of small intestinal bacterial overgrowth, intestinal permeability, endotoxaemia, and tumour necrosis factor alpha in the pathogenesis of non alcoholic steatohepatitis. Gut 48:206–211

    PubMed  CAS  Google Scholar 

  • Wong VWS, Wong GLH, Choi PCL et al (2010) Disease progression of non-alcoholic fatty liver disease: aprospective study with paried liver biopsies at 3 years. Gut 59:969–974

    PubMed  Google Scholar 

  • Woodmansey EJ, McMurdo ME, Macfarlane GT et al (2004) Comparison of compositions and metabolic activities of fecal microbiotas in young adults and in antibiotic-treated and non-antibiotic-treated elderly subjects. Appl Environ Microbiol 70:6113–6122

    PubMed  CAS  Google Scholar 

  • Wu XK, Ma CF, Han L et al (2010) Molecular characterisation of the faecal microbiota in patients with type II diabetes. Curr Microbiol 61:69–78

    PubMed  CAS  Google Scholar 

  • Zhernakova A, Elbers CC, Ferwerda B, Finnish Celiac Disease Study Group, Joosten LA, Saavalainen P, van Heel DA, Catassi C, Netea MG, Wijmenga C (2010) Evolutionary and functional analysis of celiac risk loci reveals SH2B3 as a protective factor against bacterial infection. Am J Hum Genet 86:970–977

    PubMed  CAS  Google Scholar 

  • Zhou X, Brotman RM, Gajer P et al (2010) Recent advances in understanding the microbiology of the female reproductive tract and the causes of premature birth. Infect Dis Obstet Gynecol 2010:737425 doi:10.1155/2010/737425

  • Zivkovic AM, German JB, Lebrilla CB et al (2011) Human milk glycobiome and its impact on the infant gastrointestinal microbiota. Proc Natl Acad Sci U S A 108(Suppl 1):4653–4658

    PubMed  CAS  Google Scholar 

  • Zoetendal EG, Akkermans AD, de Vos WM (1998) Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals stable and host-specific communities of active bacteria. Appl Environ Microbiol 64(10):3854–3859

    PubMed  CAS  Google Scholar 

  • Zoetendal EG, Rajilic-Stojanovic M, de Vos WM (2008) High-throughput diversity and functionality analysis of the gastrointestinal tract microbiota. Gut 57:1605

    PubMed  CAS  Google Scholar 

  • Zucchelli M, Torkvist L, Bresso F et al (2009) PepT1 Oligopeptide Transporter (SLC15A1) Gene Polymorphism in Inflammatory Bowel Disease. Inflamm Bowel Dis 15:1562–1568

    PubMed  Google Scholar 

  • Zwielehner J, Liszt K, Handschur M et al (2009) Combined PCR-DGGE fingerprinting and quantitative-PCR indicates shifts in fecal population sizes and diversity of Bacteroides, bifidobacteria and Clostridium cluster IV in institutionalized elderly. Exp Gerontol 44:440–446

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by the Academy of Finland and The Finnish Funding Agency for Technology and Innovation (Tekes).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reetta Satokari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cheng, J., Palva, A.M., de Vos, W.M., Satokari, R. (2011). Contribution of the Intestinal Microbiota to Human Health: From Birth to 100 Years of Age. In: Dobrindt, U., Hacker, J., Svanborg, C. (eds) Between Pathogenicity and Commensalism. Current Topics in Microbiology and Immunology, vol 358. Springer, Berlin, Heidelberg. https://doi.org/10.1007/82_2011_189

Download citation

Publish with us

Policies and ethics