Skip to main content

The Role of Proteases in Pain

  • Chapter
Pain Control

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 227))

Abstract

Proteinase-activated receptors (PARs) are a family of G protein-coupled receptor that are activated by extracellular cleavage of the receptor in the N-terminal domain. This slicing of the receptor exposes a tethered ligand which binds to a specific docking point on the receptor surface to initiate intracellular signalling. PARs are expressed by numerous tissues in the body, and they are involved in various physiological and pathological processes such as food digestion, tissue remodelling and blood coagulation. This chapter will summarise how serine proteinases activate PARs leading to the development of pain in several chronic pain conditions. The potential of PARs as a drug target for pain relief is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham AA, Jenkins AL, Stone SR, Mackie EJ (1998) Expression of the thrombin receptor in developing bone and associated tissues. J Bone Miner Res 13(5):818–827

    CAS  PubMed  Google Scholar 

  • Abraham LA, MacKie EJ (1999) Modulation of osteoblast-like cell behavior by activation of protease-activated receptor-1. J Bone Miner Res 14:1320–1329

    CAS  PubMed  Google Scholar 

  • Afkhami-Goli A, Noorbakhsh F, Keller AJ, Vergnolle N, Westaway D, Jhamandas JH, Andrade-Gordon P, Hollenberg MD, Arab H, Dyck RH, Power C (2007) Proteinase-activated receptor-2 exerts protective and pathogenic cell type-specific effects in Alzheimer’s disease. J Immunol 179:5493–5503

    CAS  PubMed  Google Scholar 

  • Annahazi A, Dabek M, Gecse K, Salvador-Cartier C, Polizzi A, Rosztoczy A, Roka R, Theodorou V, Wittmann T, Bueno L, Eutamene H (2012) Proteinase-activated receptor-4 evoked colorectal analgesia in mice: an endogenously activated feed-back loop in visceral inflammatory pain. Neurogastroenterol Motil 24(1):76–85, e13

    CAS  PubMed  Google Scholar 

  • Annahazi A, Gecse K, Dabek M, Ait-Belgnaoui A, Rosztoczy A, Roka R, Molnar T, Theodorou V, Wittmann T, Bueno L, Eutamene H (2009) Fecal proteases from diarrheic-IBS and ulcerative colitis patients exert opposite effect on visceral sensitivity in mice. Pain 144:209–217

    CAS  PubMed  Google Scholar 

  • Antoniak S, Rojas M, Spring D, Bullard TA, Verrier ED, Blaxall BC, Mackman N, Pawlinski R (2010) Protease-activated receptor 2 deficiency reduces cardiac ischemia/reperfusion injury. Arterioscler Thromb Vasc Biol 30:2136–2142

    PubMed Central  CAS  PubMed  Google Scholar 

  • Antoniak S, Sparkenbaugh EM, Tencati M, Rojas M, Mackman N, Pawlinski R (2013) Protease activated receptor-2 contributes to heart failure. PLoS One 8:e81733

    PubMed Central  PubMed  Google Scholar 

  • Arizmendi NG, Abel M, Mihara K, Davidson C, Polley D, Nadeem A, El Mays T, Gilmore BF, Walker B, Gordon JR, Hollenberg MD, Vliagoftis H (2011) Mucosal allergic sensitization to cockroach allergens is dependent on proteinase activity and proteinase-activated receptor-2 activation. J Immunol 186:3164–3172

    CAS  PubMed  Google Scholar 

  • Asfaha S, Brussee V, Chapman K, Zochodne DW, Vergnolle N (2002) Proteinase-activated receptor-1 agonists attenuate nociception in response to noxious stimuli. Br J Pharmacol 135:1101–1106

    PubMed Central  CAS  PubMed  Google Scholar 

  • Asfaha S, Cenac N, Houle S, Altier C, Papez MD, Nguyen C, Steinhoff M, Chapman K, Zamponi GW, Vergnolle N (2007) Protease-activated receptor-4: a novel mechanism of inflammatory pain modulation. Br J Pharmacol 150:176–185

    PubMed Central  CAS  PubMed  Google Scholar 

  • Barnsley L, Lord SM, Wallis BJ, Bogduk N (1995) The prevalence of chronic cervical zygapophysial joint pain after whiplash. Spine (Phila Pa 1976) 20:20–25; discussion 26

    CAS  Google Scholar 

  • Barrett AJ (2001) Proteolytic enzymes: nomenclature and classification. In: Beynon R, Bond JS (eds) Proteolytic enzymes. A practical approach, 2nd edn. Oxford University Press, Oxford, pp 1–21

    Google Scholar 

  • Barrett AJ, Rawlings ND, Woessner JF Jr (eds) (2004) Handbook of proteolytic enzymes, 2nd edn. Academic, Amsterdam

    Google Scholar 

  • Barry GD, Le GT, Fairlie DP (2006) Agonists and antagonists of protease activated receptors (PARs). Curr Med Chem 13(3):243–265

    CAS  PubMed  Google Scholar 

  • Barry GD, Suen JY, Le GT, Cotterell A, Reid RC, Fairlie DP (2010) Novel agonists and antagonists for human protease activated receptor 2. J Med Chem 53:7428–7440

    CAS  PubMed  Google Scholar 

  • Beecher KL, Andersen TT, Fenton JW 2nd, Festoff BW (1994) Thrombin receptor peptides induce shape change in neonatal murine astrocytes in culture. J Neurosci Res 37:108–115

    CAS  PubMed  Google Scholar 

  • Belham CM, Tate RJ, Scott PH, Pemberton AD, Miller HR, Wadsworth RM, Gould GW, Plevin R (1996) Trypsin stimulates proteinase-activated receptor-2-dependent and -independent activation of mitogen-activated protein kinases. Biochem J 320(Pt 3):939–946

    PubMed Central  CAS  PubMed  Google Scholar 

  • Benka ML, Lee M, Wang GR, Buckman S, Burlacu A, Cole L, DePina A, Dias P, Granger A, Grant B et al (1995) The thrombin receptor in human platelets is coupled to a GTP binding protein of the G alpha q family. FEBS Lett 363:49–52

    CAS  PubMed  Google Scholar 

  • Bluteau G, Pilet P, Bourges X, Bilban M, Spaethe R, Daculsi G, Guicheux J (2006) The modulation of gene expression in osteoblasts by thrombin coated on biphasic calcium phosphate ceramic. Biomaterials 27:2934–2943

    CAS  PubMed  Google Scholar 

  • Bohm SK, Kong W, Bromme D, Smeekens SP, Anderson DC, Connolly A, Kahn M, Nelken NA, Coughlin SR, Payan DG, Bunnett NW (1996) Molecular cloning, expression and potential functions of the human proteinase-activated receptor-2. Biochem J 314(Pt 3):1009–1016

    PubMed Central  PubMed  Google Scholar 

  • Bonni A, Brunet A, West AE, Datta SR, Takasu MA, Greenberg ME (1999) Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and -independent mechanisms. Science 286:1358–1362

    CAS  PubMed  Google Scholar 

  • Busso N, Frasnelli M, Feifel R, Cenni B, Steinhoff M, Hamilton J, So A (2007) Evaluation of protease-activated receptor 2 in murine models of arthritis. Arthritis Rheum 56:101–107

    CAS  PubMed  Google Scholar 

  • Ceppa EP, Lyo V, Grady EF, Knecht W, Grahn S, Peterson A, Bunnett NW, Kirkwood KS, Cattaruzza F (2011) Serine proteases mediate inflammatory pain in acute pancreatitis. Am J Physiol Gastrointest Liver Physiol 300:G1033–G1042

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chen HS, Kuo SC, Teng CM, Lee FY, Wang JP, Lee YC, Kuo CW, Huang CC, Wu CC, Huang LJ (2008) Synthesis and antiplatelet activity of ethyl 4-(1-benzyl-1H-indazol-3-yl)benzoate (YD-3) derivatives. Bioorg Med Chem 16:1262–1278

    CAS  PubMed  Google Scholar 

  • Chen Y, Yang C, Wang ZJ (2011) Proteinase-activated receptor 2 sensitizes transient receptor potential vanilloid 1, transient receptor potential vanilloid 4, and transient receptor potential ankyrin 1 in paclitaxel-induced neuropathic pain. Neuroscience 193:440–451

    CAS  PubMed  Google Scholar 

  • Chinni C, de Niese MR, Jenkins AL, Pike RN, Bottomley SP, Mackie EJ (2000) Protease-activated receptor-2 mediates proliferative responses in skeletal myoblasts. J Cell Sci 113(Pt 24):4427–4433

    CAS  PubMed  Google Scholar 

  • Cocks TM, Fong B, Chow JM, Anderson GP, Frauman AG, Goldie RG, Henry PJ, Carr MJ, Hamilton JR, Moffatt JD (1999a) A protective role for protease-activated receptors in the airways. Nature 398:156–160

    CAS  PubMed  Google Scholar 

  • Cocks TM, Sozzi V, Moffatt JD, Selemidis S (1999b) Protease-activated receptors mediate apamin-sensitive relaxation of mouse and guinea pig gastrointestinal smooth muscle. Gastroenterology 116:586–592

    CAS  PubMed  Google Scholar 

  • Corvera CU, Dery O, McConalogue K, Bohm SK, Khitin LM, Caughey GH, Payan DG, Bunnett NW (1997) Mast cell tryptase regulates rat colonic myocytes through proteinase-activated receptor 2. J Clin Invest 100:1383–1393

    PubMed Central  CAS  PubMed  Google Scholar 

  • Coughlin SR (2000) Thrombin signalling and protease-activated receptors. Nature 407:258–264

    CAS  PubMed  Google Scholar 

  • Covic L, Misra M, Badar J, Singh C, Kuliopulos A (2002) Pepducin-based intervention of thrombin-receptor signaling and systemic platelet activation. Nat Med 8:1161–1165

    CAS  PubMed  Google Scholar 

  • DeFea KA, Zalevsky J, Thoma MS, Dery O, Mullins RD, Bunnett NW (2000) beta-arrestin-dependent endocytosis of proteinase-activated receptor 2 is required for intracellular targeting of activated ERK1/2. J Cell Biol 148:1267–1281

    PubMed Central  CAS  PubMed  Google Scholar 

  • Denadai-Souza A, Cenac N, Casatti CA, Camara PR, Yshii LM, Costa SK, Vergnolle N, Muscara MN (2010) PAR(2) and temporomandibular joint inflammation in the rat. J Dent Res 89:1123–1128

    CAS  PubMed  Google Scholar 

  • Dong L, Smith JR, Winkelstein BA (2013) Ketorolac reduces spinal astrocytic activation and PAR1 expression associated with attenuation of pain after facet joint injury. J Neurotrauma 30:818–825

    PubMed Central  PubMed  Google Scholar 

  • Duncan MB, Kalluri R (2009) Parstatin, a novel protease-activated receptor 1-derived inhibitor of angiogenesis. Mol Interv 9:168–170

    PubMed Central  CAS  PubMed  Google Scholar 

  • Eberhart CE, Dubois RN (1995) Eicosanoids and the gastrointestinal tract. Gastroenterology 109:285–301

    CAS  PubMed  Google Scholar 

  • Gingrich MB, Junge CE, Lyuboslavsky P, Traynelis SF (2000) Potentiation of NMDA receptor function by the serine protease thrombin. J Neurosci 20:4582–4595

    CAS  PubMed  Google Scholar 

  • Gustafson GT, Lerner U (1983) Thrombin, a stimulator of bone resorption. Biosci Rep 3:255–261

    CAS  PubMed  Google Scholar 

  • Helyes Z, Sandor K, Borbely E, Tekus V, Pinter E, Elekes K, Toth DM, Szolcsanyi J, McDougall JJ (2010) Involvement of transient receptor potential vanilloid 1 receptors in protease-activated receptor-2-induced joint inflammation and nociception. Eur J Pain 14:351–358

    CAS  PubMed  Google Scholar 

  • Hoffmann O, Klaushofer K, Koller K, Peterlik M, Mavreas T, Stern P (1986) Indomethacin inhibits thrombin-, but not thyroxin-stimulated resorption of fetal rat limb bones. Prostaglandins 31(4):601–608

    CAS  PubMed  Google Scholar 

  • Hollenberg MD, Compton SJ (2002) International Union of Pharmacology. XXVIII. Proteinase-activated receptors. Pharmacol Rev 54:203–217

    CAS  PubMed  Google Scholar 

  • Huang ZJ, Li HC, Cowan AA, Liu S, Zhang YK, Song XJ (2012) Chronic compression or acute dissociation of dorsal root ganglion induces cAMP-dependent neuronal hyperexcitability through activation of PAR2. Pain 153:1426–1437

    CAS  PubMed  Google Scholar 

  • Jalink K, Moolenaar WH (1992) Thrombin receptor activation causes rapid neural cell rounding and neurite retraction independent of classic second messengers. J Cell Biol 118:411–419

    CAS  PubMed  Google Scholar 

  • Jenkins AL, Bootman MD, Taylor CW, Mackie EJ, Stone SR (1993) Characterization of the receptor responsible for thrombin-induced intracellular calcium responses in osteoblast-like cells. J Biol Chem 268:21432–21437

    CAS  PubMed  Google Scholar 

  • Jin G, Hayashi T, Kawagoe J, Takizawa T, Nagata T, Nagano I, Syoji M, Abe K (2005) Deficiency of PAR-2 gene increases acute focal ischemic brain injury. J Cereb Blood Flow Metab 25:302–313

    CAS  PubMed  Google Scholar 

  • Jin C et al (2009) Protease-activated receptors in neuropathic pain: an important mediator between neuron and glia. J Med Coll PLA 24:244–249

    Google Scholar 

  • Kawabata A, Kuroda R, Nagata N, Kawao N, Masuko T, Nishikawa H, Kawai K (2001) In vivo evidence that protease-activated receptors 1 and 2 modulate gastrointestinal transit in the mouse. Br J Pharmacol 133:1213–1218

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kawabata A, Kawao N, Kuroda R, Tanaka A, Shimada C (2002) The PAR-1-activating peptide attenuates carrageenan-induced hyperalgesia in rats. Peptides 23:1181–1183

    CAS  PubMed  Google Scholar 

  • Kawabata A, Kuroda R, Kuroki N, Nishikawa H, Kawai K (2000) Dual modulation by thrombin of the motility of rat oesophageal muscularis mucosae via two distinct protease-activated receptors (PARs): a novel role for PAR-4 as opposed to PAR-1. Br J Pharmacol 131:578–584

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kawabata A, Matsunami M, Tsutsumi M, Ishiki T, Fukushima O, Sekiguchi F, Kawao N, Minami T, Kanke T, Saito N (2006) Suppression of pancreatitis-related allodynia/hyperalgesia by proteinase-activated receptor-2 in mice. Br J Pharmacol 148:54–60

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kawao N, Ikeda H, Kitano T, Kuroda R, Sekiguchi F, Kataoka K, Kamanaka Y, Kawabata A (2004) Modulation of capsaicin-evoked visceral pain and referred hyperalgesia by protease-activated receptors 1 and 2. J Pharmacol Sci 94:277–285

    CAS  PubMed  Google Scholar 

  • Kelso EB, Lockhart JC, Hembrough T, Dunning L, Plevin R, Hollenberg MD, Sommerhoff CP, McLean JS, Ferrell WR (2006) Therapeutic promise of proteinase-activated receptor-2 antagonism in joint inflammation. J Pharmacol Exp Ther 316:1017–1024

    CAS  PubMed  Google Scholar 

  • Kirilak Y, Pavlos NJ, Willers CR, Han R, Feng H, Xu J, Asokananthan N, Stewart GA, Henry P, Wood D, Zheng MH (2006) Fibrin sealant promotes migration and proliferation of human articular chondrocytes: possible involvement of thrombin and protease-activated receptors. Int J Mol Med 17:551–558

    CAS  PubMed  Google Scholar 

  • Kong W, McConalogue K, Khitin LM, Hollenberg MD, Payan DG, Bohm SK, Bunnett NW (1997) Luminal trypsin may regulate enterocytes through proteinase-activated receptor 2. Proc Natl Acad Sci U S A 94:8884–8889

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lee B, Descalzi G, Baek J, Kim JI, Lee HR, Lee K, Kaang BK, Zhuo M (2011) Genetic enhancement of behavioral itch responses in mice lacking phosphoinositide 3-kinase-gamma (PI3Kgamma). Mol Pain 7:96

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lee FY, Lien JC, Huang LJ, Huang TM, Tsai SC, Teng CM, Wu CC, Cheng FC, Kuo SC (2001) Synthesis of 1-benzyl-3-(5′-hydroxymethyl-2′-furyl)indazole analogues as novel antiplatelet agents. J Med Chem 44:3746–3749

    CAS  PubMed  Google Scholar 

  • Liu H, Miller DV, Lourenssen S, Wells RW, Blennerhassett MG, Paterson WG (2010) Proteinase-activated receptor-2 activation evokes oesophageal longitudinal smooth muscle contraction via a capsaicin-sensitive and neurokinin-2 receptor-dependent pathway. Neurogastroenterol Motil 22(2):210–216, e67

    PubMed  Google Scholar 

  • Lohman RJ, Cotterell AJ, Barry GD, Liu L, Suen JY, Vesey DA, Fairlie DP (2012) An antagonist of human protease activated receptor-2 attenuates PAR2 signaling, macrophage activation, mast cell degranulation, and collagen-induced arthritis in rats. FASEB J 26:2877–2887

    CAS  PubMed  Google Scholar 

  • Macfarlane SR, Seatter MJ, Kanke T, Hunter GD, Plevin R (2001) Proteinase-activated receptors. Pharmacol Rev 53:245–282

    CAS  PubMed  Google Scholar 

  • Mackie EJ, Loh LH, Sivagurunathan S, Uaesoontrachoon K, Yoo HJ, Wong D, Georgy SR, Pagel CN (2008) Protease-activated receptors in the musculoskeletal system. Int J Biochem Cell Biol 40:1169–1184

    CAS  PubMed  Google Scholar 

  • Martin L et al (2009) Thrombin receptor: an endogenous inhibitor of inflammatory pain, activating opioid pathways. Pain 146:121–129

    CAS  PubMed  Google Scholar 

  • McDougall JJ, Linton P (2012) Neurophysiology of arthritis pain. Curr Pain Headache Rep 16:485–491

    PubMed  Google Scholar 

  • McDougall JJ, Zhang C, Cellars L, Joubert E, Dixon CM, Vergnolle N (2009) Triggering of proteinase-activated receptor 4 leads to joint pain and inflammation in mice. Arthritis Rheum 60:728–737

    CAS  PubMed  Google Scholar 

  • Murray DB, McLarty-Williams J, Nagalla KT, Janicki JS (2012) Tryptase activates isolated adult cardiac fibroblasts via protease activated receptor-2 (PAR-2). J Cell Commun Signal 6:45–51

    PubMed Central  PubMed  Google Scholar 

  • Nakanishi-Matsui M, Zheng YW, Sulciner DJ, Weiss EJ, Ludeman MJ, Coughlin SR (2000) PAR3 is a cofactor for PAR4 activation by thrombin. Nature 404:609–613

    CAS  PubMed  Google Scholar 

  • Narita M, Usui A, Niikura K, Nozaki H, Khotib J, Nagumo Y, Yajima Y, Suzuki T (2005) Protease-activated receptor-1 and platelet-derived growth factor in spinal cord neurons are implicated in neuropathic pain after nerve injury. J Neurosci 25:10000–10009

    CAS  PubMed  Google Scholar 

  • Nelken NA, Soifer SJ, O’Keefe J, Vu TK, Charo IF, Coughlin SR (1992) Thrombin receptor expression in normal and atherosclerotic human arteries. J Clin Invest 90:1614–1621

    PubMed Central  CAS  PubMed  Google Scholar 

  • Oliveira SM, Silva CR, Ferreira J (2013) Critical role of protease-activated receptor 2 activation by mast cell tryptase in the development of postoperative pain. Anesthesiology 118:679–690

    CAS  PubMed  Google Scholar 

  • Ossovskaya VS, Bunnett NW (2004) Protease-activated receptors: contribution to physiology and disease. Physiol Rev 84:579–621

    CAS  PubMed  Google Scholar 

  • Pagel CN, de Niese MR, Abraham LA, Chinni C, Song SJ, Pike RN, Mackie EJ (2003) Inhibition of osteoblast apoptosis by thrombin. Bone 33:733–743

    CAS  PubMed  Google Scholar 

  • Pasero C (2004) Pathophysiology of neuropathic pain. Pain Manag Nurs 5:3–8

    PubMed  Google Scholar 

  • Paterson WG, Miller DV, Dilworth N, Assini JB, Lourenssen S, Blennerhassett MG (2007) Intraluminal acid induces oesophageal shortening via capsaicin-sensitive neurokinin neurons. Gut 56:1347–1352

    PubMed Central  CAS  PubMed  Google Scholar 

  • Paukert M, Osteroth R, Geisler HS, Brandle U, Glowatzki E, Ruppersberg JP, Grunder S (2001) Inflammatory mediators potentiate ATP-gated channels through the P2X(3) subunit. J Biol Chem 276:21077–21082

    CAS  PubMed  Google Scholar 

  • Ramachandran R (2012) Developing PAR1 antagonists: minding the endothelial gap. Discov Med 13(73):425–431

    PubMed  Google Scholar 

  • Ramachandran R, Mihara K, Chung H, Renaux B, Lau CS, Muruve DA, DeFea KA, Bouvier M, Hollenberg MD (2011) Neutrophil elastase acts as a biased agonist for proteinase-activated receptor-2 (PAR2). J Biol Chem 286:24638–24648

    PubMed Central  CAS  PubMed  Google Scholar 

  • Russell FA, McDougall JJ (2009) Proteinase activated receptor (PAR) involvement in mediating arthritis pain and inflammation. Inflamm Res 58:119–126

    CAS  PubMed  Google Scholar 

  • Russell FA, Schuelert N, Veldhoen VE, Hollenberg MD, McDougall JJ (2012) Activation of PAR(2) receptors sensitizes primary afferents and causes leukocyte rolling and adherence in the rat knee joint. Br J Pharmacol 167:1665–1678

    PubMed Central  CAS  PubMed  Google Scholar 

  • Russell FA, Veldhoen VE, Tchitchkan D, McDougall JJ (2010) Proteinase-activated receptor-4 (PAR4) activation leads to sensitization of rat joint primary afferents via a bradykinin B2 receptor-dependent mechanism. J Neurophysiol 103:155–163

    CAS  PubMed  Google Scholar 

  • Sabri A, Muske G, Zhang H, Pak E, Darrow A, Andrade-Gordon P, Steinberg SF (2000) Signaling properties and functions of two distinct cardiomyocyte protease-activated receptors. Circ Res 86:1054–1061

    CAS  PubMed  Google Scholar 

  • Saifeddine M, al-Ani B, Cheng CH, Wang L, Hollenberg MD (1996) Rat proteinase-activated receptor-2 (PAR-2): cDNA sequence and activity of receptor-derived peptides in gastric and vascular tissue. Br J Pharmacol 118:521–530

    PubMed Central  CAS  PubMed  Google Scholar 

  • Seminario-Vidal L, Kreda S, Jones L, O’Neal W, Trejo J, Boucher RC, Lazarowski ER (2009) Thrombin promotes release of ATP from lung epithelial cells through coordinated activation of rho- and Ca2 + -dependent signaling pathways. J Biol Chem 284:20638–20648

    PubMed Central  CAS  PubMed  Google Scholar 

  • Smith R, Ransjo M, Tatarczuch L, Song SJ, Pagel C, Morrison JR, Pike RN, Mackie EJ (2004) Activation of protease-activated receptor-2 leads to inhibition of osteoclast differentiation. J Bone Miner Res 19:507–516

    CAS  PubMed  Google Scholar 

  • Soh UJ, Dores MR, Chen B, Trejo J (2010) Signal transduction by protease-activated receptors. Br J Pharmacol 160:191–203

    PubMed Central  CAS  PubMed  Google Scholar 

  • Song SJ, Pagel CN, Campbell TM, Pike RN, Mackie EJ (2005) The role of protease-activated receptor-1 in bone healing. Am J Pathol 166:857–868

    PubMed Central  CAS  PubMed  Google Scholar 

  • Song XJ, Hu SJ, Greenquist KW, Zhang JM, LaMotte RH (1999) Mechanical and thermal hyperalgesia and ectopic neuronal discharge after chronic compression of dorsal root ganglia. J Neurophysiol 82:3347–3358

    CAS  PubMed  Google Scholar 

  • Steinberg SF (2005) The cardiovascular actions of protease-activated receptors. Mol Pharmacol 67:2–11

    CAS  PubMed  Google Scholar 

  • Steinhoff M, Vergnolle N, Young SH, Tognetto M, Amadesi S, Ennes HS, Trevisani M, Hollenberg MD, Wallace JL, Caughey GH, Mitchell SE, Williams LM, Geppetti P, Mayer EA, Bunnett NW (2000) Agonists of proteinase-activated receptor 2 induce inflammation by a neurogenic mechanism. Nat Med 6:151–158

    CAS  PubMed  Google Scholar 

  • Stoll G, Jander S, Schroeter M (1998) Inflammation and glial responses in ischemic brain lesions. Prog Neurobiol 56:149–171

    CAS  PubMed  Google Scholar 

  • Suckow SK, Anderson EM, Caudle RM (2012) Lesioning of TRPV1 expressing primary afferent neurons prevents PAR-2 induced motility, but not mechanical hypersensitivity in the rat colon. Neurogastroenterol Motil 24:e125–e135

    PubMed Central  CAS  PubMed  Google Scholar 

  • Suen JY, Barry GD, Lohman RJ, Halili MA, Cotterell AJ, Le GT, Fairlie DP (2012) Modulating human proteinase activated receptor 2 with a novel antagonist (GB88) and agonist (GB110). Br J Pharmacol 165:1413–1423

    PubMed Central  CAS  PubMed  Google Scholar 

  • Suidan HS, Niclou SP, Monard D (1996) The thrombin receptor in the nervous system. Semin Thromb Hemost 22:125–133

    CAS  PubMed  Google Scholar 

  • Takada M, Tanaka H, Yamada T, Ito O, Kogushi M, Yanagimachi M, Kawamura T, Musha T, Yoshida F, Ito M, Kobayashi H, Yoshitake S, Saito I (1998) Antibody to thrombin receptor inhibits neointimal smooth muscle cell accumulation without causing inhibition of platelet aggregation or altering hemostatic parameters after angioplasty in rat. Circ Res 82:980–987

    CAS  PubMed  Google Scholar 

  • Turk B (2006) Targeting proteases: successes, failures and future prospects. Nat Rev Drug Discov 5:785–799

    CAS  PubMed  Google Scholar 

  • Turnell AS, Brant DP, Brown GR, Finney M, Gallimore PH, Kirk CJ, Pagliuca TR, Campbell CJ, Michell RH, Grand RJ (1995) Regulation of neurite outgrowth from differentiated human neuroepithelial cells: a comparison of the activities of prothrombin and thrombin. Biochem J 308(Pt 3):965–973

    PubMed Central  CAS  PubMed  Google Scholar 

  • Vecht CJ (1989) Nociceptive nerve pain and neuropathic pain. Pain 39(2):243–244

    CAS  PubMed  Google Scholar 

  • Vergnolle N (2000) Review article: proteinase-activated receptors—novel signals for gastrointestinal pathophysiology. Aliment Pharmacol Ther 14:257–266

    CAS  PubMed  Google Scholar 

  • Vergnolle N (2003) Proteinase-activated receptors and nociceptive pathways. Drug Dev Res 59:382–385

    CAS  Google Scholar 

  • Vergnolle N, Bunnett NW, Sharkey KA, Brussee V, Compton SJ, Grady EF, Cirino G, Gerard N, Basbaum AI, Andrade-Gordon P, Hollenberg MD, Wallace JL (2001) Proteinase-activated receptor-2 and hyperalgesia: a novel pain pathway. Nat Med 7:821–826

    CAS  PubMed  Google Scholar 

  • Vu TK, Hung DT, Wheaton VI, Coughlin SR (1991) Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell 64(6):1057–1068

    CAS  PubMed  Google Scholar 

  • Wang H, Reiser G (2003) Thrombin signalling in the brain: the role of protease-activated receptors. Biol Chem 384:193–202

    CAS  PubMed  Google Scholar 

  • Wang S, Dai Y, Kobayashi K, Zhu W, Kogure Y, Yamanaka H, Wan Y, Zhang W, Noguchi K (2012) Potentiation of the P2X3 ATP receptor by PAR-2 in rat dorsal root ganglia neurons, through protein kinase-dependent mechanisms, contributes to inflammatory pain. Eur J Neurosci 36:2293–2301

    PubMed  Google Scholar 

  • Xiang Y, Masuko-Hongo K, Sekine T, Nakamura H, Yudoh K, Nishioka K, Kato T (2006) Expression of proteinase-activated receptors (PAR)-2 in articular chondrocytes is modulated by IL-1beta, TNF-alpha and TGF-beta. Osteoarthritis Cartilage 14:1163–1173

    CAS  PubMed  Google Scholar 

  • Zhu WJ, Yamanaka H, Obata K, Dai Y, Kobayashi K, Kozai T, Tokunaga A, Noguchi K (2005) Expression of mRNA for four subtypes of the proteinase-activated receptor in rat dorsal root ganglia. Brain Res 1041:205–211

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason J. McDougall .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

McDougall, J.J., Muley, M.M. (2015). The Role of Proteases in Pain. In: Schaible, HG. (eds) Pain Control. Handbook of Experimental Pharmacology, vol 227. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46450-2_12

Download citation

Publish with us

Policies and ethics