Skip to main content

Sodium Channels and Pain

  • Chapter
Pain Control

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 227))

Abstract

Human and mouse genetic studies have led to significant advances in our understanding of the role of voltage-gated sodium channels in pain pathways. In this chapter, we focus on Nav1.7, Nav1.8, Nav1.9 and Nav1.3 and describe the insights gained from the detailed analyses of global and conditional transgenic Nav knockout mice in terms of pain behaviour. The spectrum of human disorders caused by mutations in these channels is also outlined, concluding with a summary of recent progress in the development of selective Nav1.7 inhibitors for the treatment of pain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrahamsen B, Zhao J et al (2008) The cell and molecular basis of mechanical, cold, and inflammatory pain. Science 321(5889):702–705

    Article  CAS  PubMed  Google Scholar 

  • Akopian AN, Sivilotti L et al (1996) A tetrodotoxin-resistant voltage-gated sodium channel expressed by sensory neurons. Nature 379(6562):257–262

    Article  CAS  PubMed  Google Scholar 

  • Akopian AN, Souslova V et al (1999) The tetrodotoxin-resistant sodium channel SNS has a specialized function in pain pathways. Nat Neurosci 2(6):541–548

    Article  CAS  PubMed  Google Scholar 

  • Amaya F, Wang H et al (2006) The voltage-gated sodium channel Na(v)1.9 is an effector of peripheral inflammatory pain hypersensitivity. J Neurosci 26(50):12852–12860

    Article  CAS  PubMed  Google Scholar 

  • Baker MD, Chandra SY et al (2003) GTP-induced tetrodotoxin-resistant Na+ current regulates excitability in mouse and rat small diameter sensory neurones. J Physiol 548(Pt 2):373–382

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Beckh S, Noda M et al (1989) Differential regulation of three sodium channel messenger RNAs in the rat central nervous system during development. EMBO J 8(12):3611–3616

    PubMed Central  CAS  PubMed  Google Scholar 

  • Black JA, Frezel N et al (2012) Expression of Nav1.7 in DRG neurons extends from peripheral terminals in the skin to central preterminal branches and terminals in the dorsal horn. Mol Pain 8:82

    Article  PubMed Central  PubMed  Google Scholar 

  • Catterall WA (2014) 2013 Sharpey-Schafer Prize Lecture: structure and function of voltage-gated sodium channels at atomic resolution. Exp Physiol 99(1):35–51

    Article  CAS  PubMed  Google Scholar 

  • Cox JJ, Reimann F et al (2006) An SCN9A channelopathy causes congenital inability to experience pain. Nature 444(7121):894–898

    Article  CAS  PubMed  Google Scholar 

  • Cox JJ, Sheynin J et al (2010) Congenital insensitivity to pain: novel SCN9A missense and in-frame deletion mutations. Hum Mutat 31(9):E1670–E1686

    Article  CAS  PubMed  Google Scholar 

  • Cummins TR, Waxman SG (1997) Downregulation of tetrodotoxin-resistant sodium currents and upregulation of a rapidly repriming tetrodotoxin-sensitive sodium current in small spinal sensory neurons after nerve injury. J Neurosci 17(10):3503–3514

    CAS  PubMed  Google Scholar 

  • Cummins TR, Howe JR et al (1998) Slow closed-state inactivation: a novel mechanism underlying ramp currents in cells expressing the hNE/PN1 sodium channel. J Neurosci 18(23):9607–9619

    CAS  PubMed  Google Scholar 

  • Cummins TR, Dib-Hajj SD et al (1999) A novel persistent tetrodotoxin-resistant sodium current in SNS-null and wild-type small primary sensory neurons. J Neurosci 19(24):RC43

    CAS  PubMed  Google Scholar 

  • Cummins TR, Dib-Hajj SD et al (2004) Electrophysiological properties of mutant Nav1.7 sodium channels in a painful inherited neuropathy. J Neurosci 24(38):8232–8236

    Article  CAS  PubMed  Google Scholar 

  • Dib-Hajj SD, Tyrrell L et al (1998) NaN, a novel voltage-gated Na channel, is expressed preferentially in peripheral sensory neurons and down-regulated after axotomy. Proc Natl Acad Sci U S A 95(15):8963–8968

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dib-Hajj SD, Fjell J et al (1999) Plasticity of sodium channel expression in DRG neurons in the chronic constriction injury model of neuropathic pain. Pain 83(3):591–600

    Article  CAS  PubMed  Google Scholar 

  • Dib-Hajj S, Black JA et al (2002) NaN/Nav1.9: a sodium channel with unique properties. Trends Neurosci 25(5):253–259

    Article  CAS  PubMed  Google Scholar 

  • Dib-Hajj SD, Cummins TR et al (2010) Sodium channels in normal and pathological pain. Annu Rev Neurosci 33:325–347

    Article  CAS  PubMed  Google Scholar 

  • Eijkelkamp N, Linley JE et al (2012) Neurological perspectives on voltage-gated sodium channels. Brain 135(Pt 9):2585–2612

    Article  PubMed Central  PubMed  Google Scholar 

  • Estacion M, Dib-Hajj SD et al (2008) NaV1.7 gain-of-function mutations as a continuum: A1632E displays physiological changes associated with erythromelalgia and paroxysmal extreme pain disorder mutations and produces symptoms of both disorders. J Neurosci 28(43):11079–11088

    Article  CAS  PubMed  Google Scholar 

  • Faber CG, Hoeijmakers JG et al (2012a) Gain of function Nanu1.7 mutations in idiopathic small fiber neuropathy. Ann Neurol 71(1):26–39

    Article  CAS  PubMed  Google Scholar 

  • Faber CG, Lauria G et al (2012b) Gain-of-function Nav1.8 mutations in painful neuropathy. Proc Natl Acad Sci U S A 109(47):19444–19449

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fang X, Djouhri L et al (2002) The presence and role of the tetrodotoxin-resistant sodium channel Na(v)1.9 (NaN) in nociceptive primary afferent neurons. J Neurosci 22(17):7425–7433

    CAS  PubMed  Google Scholar 

  • Fertleman CR, Baker MD et al (2006) SCN9A mutations in paroxysmal extreme pain disorder: allelic variants underlie distinct channel defects and phenotypes. Neuron 52(5):767–774

    Article  CAS  PubMed  Google Scholar 

  • Goldberg YP, MacFarlane J et al (2007) Loss-of-function mutations in the Nav1.7 gene underlie congenital indifference to pain in multiple human populations. Clin Genet 71(4):311–319

    Article  CAS  PubMed  Google Scholar 

  • Goldberg Y, Pimstone S et al (2012a) Human Mendelian pain disorders: a key to discovery and validation of novel analgesics. Clin Genet 82(4):367–373

    Article  CAS  PubMed  Google Scholar 

  • Goldberg YP, Price N et al (2012b) Treatment of Na(v)1.7-mediated pain in inherited erythromelalgia using a novel sodium channel blocker. Pain 153(1):80–85

    Article  CAS  PubMed  Google Scholar 

  • Goldin AL, Barchi RL et al (2000) Nomenclature of voltage-gated sodium channels. Neuron 28(2):365–368

    Article  CAS  PubMed  Google Scholar 

  • Hayden R, Grossman M (1959) Rectal, ocular, and submaxillary pain; a familial autonomic disorder related to proctalgia fugaz: report of a family. AMA J Dis Child 97(4):479–482

    Article  CAS  PubMed  Google Scholar 

  • Herzog RI, Cummins TR et al (2001) Persistent TTX-resistant Na+ current affects resting potential and response to depolarization in simulated spinal sensory neurons. J Neurophysiol 86(3):1351–1364

    CAS  PubMed  Google Scholar 

  • Herzog RI, Cummins TR et al (2003) Distinct repriming and closed-state inactivation kinetics of Nav1.6 and Nav1.7 sodium channels in mouse spinal sensory neurons. J Physiol 551(Pt 3):741–750

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huang J, Yang Y et al (2013) Small-fiber neuropathy Nav1.8 mutation shifts activation to hyperpolarized potentials and increases excitability of dorsal root ganglion neurons. J Neurosci 33(35):14087–14097

    Article  CAS  PubMed  Google Scholar 

  • Kerr BJ, Souslova V et al (2001) A role for the TTX-resistant sodium channel Nav 1.8 in NGF-induced hyperalgesia, but not neuropathic pain. Neuroreport 12(14):3077–3080

    Article  CAS  PubMed  Google Scholar 

  • Klugbauer N, Lacinova L et al (1995) Structure and functional expression of a new member of the tetrodotoxin-sensitive voltage-activated sodium channel family from human neuroendocrine cells. EMBO J 14(6):1084–1090

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kremeyer B, Lopera F et al (2010) A gain-of-function mutation in TRPA1 causes familial episodic pain syndrome. Neuron 66(5):671–680

    Article  CAS  PubMed  Google Scholar 

  • Leipold E, Liebmann L et al (2013) A de novo gain-of-function mutation in SCN11A causes loss of pain perception. Nat Genet 45(11):1399–1404

    Article  CAS  PubMed  Google Scholar 

  • Leo S, D’Hooge R et al (2010) Exploring the role of nociceptor-specific sodium channels in pain transmission using Nav1.8 and Nav1.9 knockout mice. Behav Brain Res 208(1):149–157

    Article  CAS  PubMed  Google Scholar 

  • Lolignier S, Amsalem M et al (2011) Nav1.9 channel contributes to mechanical and heat pain hypersensitivity induced by subacute and chronic inflammation. PLoS One 6(8):e23083

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McCormack K, Santos S et al (2013) Voltage sensor interaction site for selective small molecule inhibitors of voltage-gated sodium channels. Proc Natl Acad Sci U S A 110(29):E2724–E2732

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Middleton RE, Warren VA et al (2002) Two tarantula peptides inhibit activation of multiple sodium channels. Biochemistry 41(50):14734–14747

    Article  CAS  PubMed  Google Scholar 

  • Minett MS, Quick K, Wood JN (2011) Behavioral measures of pain thresholds. In: Auwerx J, Brown SD, Justice M, Moore DD, Ackerman SL, Nadeau J (eds) Current protocols in mouse biology. Wiley, Hoboken

    Google Scholar 

  • Minett MS, Nassar MA et al (2012) Distinct Nav1.7-dependent pain sensations require different sets of sensory and sympathetic neurons. Nat Commun 3:791

    Article  PubMed Central  PubMed  Google Scholar 

  • Nassar MA, Stirling LC et al (2004) Nociceptor-specific gene deletion reveals a major role for Nav1.7 (PN1) in acute and inflammatory pain. Proc Natl Acad Sci U S A 101(34):12706–12711

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nassar MA, Levato A et al (2005) Neuropathic pain develops normally in mice lacking both Nav1.7 and Nav1.8. Mol Pain 1:24

    Article  PubMed Central  PubMed  Google Scholar 

  • Nassar MA, Baker MD et al (2006) Nerve injury induces robust allodynia and ectopic discharges in Nav1.3 null mutant mice. Mol Pain 2:33

    Article  PubMed Central  PubMed  Google Scholar 

  • Patino GA, Isom LL (2010) Electrophysiology and beyond: multiple roles of Na+ channel beta subunits in development and disease. Neurosci Lett 486(2):53–59

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Priest BT, Murphy BA et al (2005) Contribution of the tetrodotoxin-resistant voltage-gated sodium channel NaV1.9 to sensory transmission and nociceptive behavior. Proc Natl Acad Sci U S A 102(26):9382–9387

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Priest BT, Blumenthal KM et al (2007) ProTx-I and ProTx-II: gating modifiers of voltage-gated sodium channels. Toxicon 49(2):194–201

    Article  CAS  PubMed  Google Scholar 

  • Ragsdale DS, McPhee JC et al (1994) Molecular determinants of state-dependent block of Na+ channels by local anesthetics. Science 265(5179):1724–1728

    Article  CAS  PubMed  Google Scholar 

  • Ragsdale DS, McPhee JC et al (1996) Common molecular determinants of local anesthetic, antiarrhythmic, and anticonvulsant block of voltage-gated Na+ channels. Proc Natl Acad Sci U S A 93(17):9270–9275

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Reed KB, Davis MD (2009) Incidence of erythromelalgia: a population-based study in Olmsted County, Minnesota. J Eur Acad Dermatol Venereol 23(1):13–15

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Renganathan M, Cummins TR et al (2001) Contribution of Na(v)1.8 sodium channels to action potential electrogenesis in DRG neurons. J Neurophysiol 86(2):629–640

    CAS  PubMed  Google Scholar 

  • Rotthier A, Baets J et al (2012) Mechanisms of disease in hereditary sensory and autonomic neuropathies. Nat Rev Neurol 8(2):73–85

    Article  CAS  PubMed  Google Scholar 

  • Schmalhofer WA, Calhoun J et al (2008) ProTx-II, a selective inhibitor of NaV1.7 sodium channels, blocks action potential propagation in nociceptors. Mol Pharmacol 74(5):1476–1484

    Article  CAS  PubMed  Google Scholar 

  • Theile JW, Cummins TR (2011) Recent developments regarding voltage-gated sodium channel blockers for the treatment of inherited and acquired neuropathic pain syndromes. Front Pharmacol 2:54

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Toledo-Aral JJ, Moss BL et al (1997) Identification of PN1, a predominant voltage-dependent sodium channel expressed principally in peripheral neurons. Proc Natl Acad Sci U S A 94(4):1527–1532

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Waxman SG, Kocsis JD et al (1994) Type III sodium channel mRNA is expressed in embryonic but not adult spinal sensory neurons, and is reexpressed following axotomy. J Neurophysiol 72(1):466–470

    PubMed Central  CAS  PubMed  Google Scholar 

  • Weiss J, Pyrski M et al (2011) Loss-of-function mutations in sodium channel Nav1.7 cause anosmia. Nature 472(7342):186–190

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Whitaker WR, Faull RL et al (2001) Comparative distribution of voltage-gated sodium channel proteins in human brain. Brain Res Mol Brain Res 88(1–2):37–53

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Wang Y et al (2004) Mutations in SCN9A, encoding a sodium channel alpha subunit, in patients with primary erythermalgia. J Med Genet 41(3):171–174

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yang S, Xiao Y et al (2013) Discovery of a selective NaV1.7 inhibitor from centipede venom with analgesic efficacy exceeding morphine in rodent pain models. Proc Natl Acad Sci U S A 110(43):17534–17539

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yuan J, Matsuura E et al (2013) Hereditary sensory and autonomic neuropathy type IID caused by an SCN9A mutation. Neurology 80(18):1641–1649

    Article  CAS  PubMed  Google Scholar 

  • Zhang XY, Wen J et al (2013) Gain-of-function mutations in SCN11A cause familial episodic pain. Am J Hum Genet 93(5):957–966

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zimmermann K, Leffler A et al (2007) Sensory neuron sodium channel Nav1.8 is essential for pain at low temperatures. Nature 447(7146):855–858

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James J. Cox .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Habib, A.M., Wood, J.N., Cox, J.J. (2015). Sodium Channels and Pain. In: Schaible, HG. (eds) Pain Control. Handbook of Experimental Pharmacology, vol 227. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46450-2_3

Download citation

Publish with us

Policies and ethics