Skip to main content
Log in

Cost effectiveness of ultrasound and bone densitometry for osteoporosis screening in post-menopausal women

  • Original Research Article
  • Published:
Applied Health Economics and Health Policy Aims and scope Submit manuscript

Abstract

Background

According to a new German guideline, decisions about bisphosphonate treatment for post-menopausal women should be based on 10-year fracture risk, and bone density should be measured by dual x-ray absorptiometry (DXA). Recently, there has been growing interest in quantitative ultrasound (QUS) as a less expensive screening alternative.

Objective

To determine the cost effectiveness of osteoporosis screening with QUS as a pre-test for DXA and treatment with alendronate compared with (i) immediate access to DXA and (ii) no screening in women of the general population aged 50-90 years in Germany.

Methods

A cost-utility analysis and a budget impact analysis were performed from the perspective of the statutory health insurance (SHI). A Markov model with a 1-year cycle length was used to simulate costs and benefits (QALYs), discounted at 3% per annum, over a lifetime. The number of women correctly diagnosed by QUS and DXA as being above a 10-year risk of ≥30% was estimated for different age groups (50–60, 60–70, 70–80 and 80–90 years, respectively). The robustness of the results was tested by a probabilistic Monte Carlo simulation.

Results

Compared with no screening, the cost effectiveness of QUS plus DXA was found to be €3529, €9983, €4382 and €1987 per QALY for 50-, 60-, 70- and 80-year-old women, respectively (year 2006 values). This screening strategy results in annual costs of €96 million or 0.07% of the SHI’s annual budget. The cost effectiveness of DXA alone compared with DXA plus QUS is €5331, €60 804, €14943 and €3654 per QALY for 50-, 60-, 70- and 80-year-old women, respectively. DXA alone results in a higher number of QALYs in all age groups. The results were robust in the sensitivity analysis.

Conclusion

Compared with no screening, the cost effectiveness of QUS and DXA in sequence is very favourable in all age groups. However, direct access to DXA is also a cost-effective option, as it increases the number of QALYs at an acceptable cost compared with pre-testing by QUS (except for women aged 60–70 years). Therefore, QUS as a pre-test for DXA can be clearly recommended only in women aged 60–70 years. For the other age groups, the cost effectiveness of QUS as a pre-test depends on the global budget constraint and the accessibility of DXA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Table I
Table II
Table III
Fig. 4
Table IV
Fig. 5

Similar content being viewed by others

References

  1. Ribot C, Tremollieres F, Pouilles JM. Can we detect women with low bone mass using clinical risk factors? Am J Med 1995 Feb 27; 98(2A): 52S–5S

    Article  PubMed  CAS  Google Scholar 

  2. Häussler B, Gothe H, Göl D. Epidemiology, and costs of osteoporosis in Germany: the boneEVA study. Osteoporosis Int 2007; 18: 77–84

    Article  Google Scholar 

  3. Weyler EJ, Gandjour A. Socioeconomic burden of hip fractures in Germany. Gesundheitswesen 2007; 69(11): 601–6

    Article  PubMed  Google Scholar 

  4. Cummings SR, Bates D, Black DM. Clinical use of bone densitometry. JAMA 2002; 288(15): 1889–97

    Article  PubMed  Google Scholar 

  5. WHO Study Group. Assessment of fracture risk and its application to screening for post-menopausal osteoporosis. World Health Organ Tech Rep Ser 1994; 843: 1–129

    Google Scholar 

  6. Federal Joint Commitee (GBA). Osteodensitometrie. Zusammenfassender Bericht des Arbeitsausschusses “Ärztliche Behandlung” des Bundesausschusses der Ärzte und Krankenkassen über die Beratungen des Jahres 1999 zur Bewertung der Osteodensitometrie gemäߧ135 Abs. 1 SGB V (2000) [online]. Available from URL: http://www.g-ba.de [Accessed 2008 Oct 7]

  7. National Osteoporosis Foundation. Clinician’s guide to prevention and treatment of osteoporosis. Washington, DC: National Osteoporosis Foundation, 2008 [online]. Available from URL: http://www.nof.org [Accessed 2008 Apr 21]

    Google Scholar 

  8. Kanis JA, Delmas PD, Burckhardt P, et al. Guidelines for diagnosis and management of osteoporosis. The European Foundation for Osteoporosis and Bone Disease. Osteoporosis Int 1997; 7: 390–406

    Article  CAS  Google Scholar 

  9. Marshall D, Johnell O, Wedel H, et al. Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ 1996; 312: 1254–9

    Article  PubMed  CAS  Google Scholar 

  10. Kanis JA, Johnell O, Oden A, et al. 10-year risk of osteo-porotic fracture and the effect of risk factors on screening strategies. Bone 2002; 30(1): 251–8

    Article  PubMed  CAS  Google Scholar 

  11. World Health Organization (WHO). FRAX: WHO fracture risk assessment tool [online]. Available from URL: http://www.shef.ac.uk [Accessed 2008 Apr 21]

  12. German osteology umbrella organization, DVO. Prophylaxe, Diagnostik und Therapie der Osteoporose. S3-Leitlinie des Dachverbandes der deutschsprachigen wissenschaftlichen osteologischen Gesellschaften (2006) [online]. Available from URL: http://www.lutherhaus.de [Accessed 2008 Oct 7]

    Google Scholar 

  13. Müller D, Weyler EJ, Gandjour A. Cost-effectiveness of post-menopausal osteoporosis screening and treatment based on 10-year fracture risk. Pharmacoeconomics 2008; 26(6): 513–36

    Article  Google Scholar 

  14. Hans D, Dargent-Molina P, Schott AM, et al. Ultrasonographic heel measurements to predict hip fracture in elderly women: the EPIDOS prospective study. Lancet 1996; 348: 511–4

    Article  PubMed  CAS  Google Scholar 

  15. Lewiecki EM, Richmond B, Miller PD. Uses and misuses of quantitative ultrasonography in managing osteoporosis. Cleve Clin J Med 2006; 73(8): 742–6, 749-52

    Article  PubMed  Google Scholar 

  16. Huopio J, Kroger H, Honkanen R, et al. Calcaneal ultrasound predicts early post-menopausal fractures as well as axial BMD: a prospective study of 422 women. Osteoporosis Int 2004; 15(3): 190–5

    Article  CAS  Google Scholar 

  17. Khaw PK, Reeve J, Luben R, et al. Prediction of total and hip fracture risk in men and women by quantitative ultrasound of the calcaneus. Lancet 2004; 363(9404): 197–202

    Article  PubMed  Google Scholar 

  18. Nayak S, Olkin I, Liu H, et al. Meta-analysis: accuracy of quantitative ultrasound for identifying patients with osteoporosis. Ann Intern Med 2006; 144: 832–41

    PubMed  Google Scholar 

  19. Marin F, Gonzales-Macias J, Diez-Perez A, et al. Relationship between bone quantitative ultrasound and fractures: a meta-analysis. J Bone Mine Res 2006 Jul; 21(7): 1126–35

    Article  Google Scholar 

  20. US Preventive Services Task Force. Screening for osteoporosis in post-menopausal women: recommendations and rationale. 2002 Sep [online]. Available from URL: http://www.ahrq.gov [Accessed 2007 Jun 12]

    Google Scholar 

  21. Kanis JA, Johnell O, Zethraeus, et al. Intervention thresholds for osteoporosis in the UK. Bone 2005; 36: 22–32

    Article  PubMed  Google Scholar 

  22. Kanis JA, Johnell O, Oden A, et al. Intervention thresholds for osteoporosis in men and women: a study based on data from Sweden. Osteoporosis Int 2005; 16: 6–14

    Article  Google Scholar 

  23. van Staa TP, Kanis JA, Geusens P. The cost-effectiveness of bisphosphonates in post-menopausal women based on individual long-term fracture risks. Value Health 2007 Sep-Oct; 10(5): 348–57

    Article  PubMed  Google Scholar 

  24. Bundeszentrale für politische Bildung (bpb). Krankenversicherungsschutz der Bevölkerung (2003) [online]. Available from URL: http://www.bpb.de [Accessed 2007 Feb 13]

    Google Scholar 

  25. Gold MR, Siegel JE, Russell LB, et al. Cost-effectiveness in health and medicine. New York: Oxford University Press, 1996

    Google Scholar 

  26. Lu G, Ades AE. Combination of direct and indirect evidence in mixed treatment comparisons. Statist Med 2004; 23: 3105–24

    Article  CAS  Google Scholar 

  27. Federal Statistical Office Germany (DESTATIS). Sterbefälle 2005/2007 [online]. Available from URL: http://www.destatis.de [Accessed 2008 Oct 7]

  28. Kanis JA, Johnell O, DeLaet C, et al. A meta-analysis of previous fracture and subsequent fracture risk. Bone 2005; 35: 375–82

    Article  Google Scholar 

  29. Center JR, Bliuc D, Nguyen TV, et al. Risk of subsequent fracture after low-trauma fracture in men and women. JAMA 2007; 297(4): 387–94

    Article  PubMed  CAS  Google Scholar 

  30. Weinstein MC, Siegel JE, Gold MR, et al. Recommendations of the Panel on Cost-Effectiveness in Health and Medicine. JAMA 1996; 16; 276(15): 1253–8

    Article  PubMed  CAS  Google Scholar 

  31. Federal Statistical Office Germany (DESTATIS). Consumer Price Index for Germany (2006) [online]. Available from URL: http://www.destatis.de [Accessed 2008 Oct 7]

    Google Scholar 

  32. Tosteson ANA, Jönsson B, Grima DT, et al. Challenges for model-based economic evaluations of post-menopausal osteoporosis interventions. Osteoporosis Int 2001; 12: 849–57

    Article  CAS  Google Scholar 

  33. Liberman UA, Weiss SR, Broll J, et al. Effect of oral alen-dronate on bone mineral density and the incidence of fractures in post-menopausal osteoporosis. The Alen-dronate Phase III Osteoporosis Treatment Study Group. N Engl J Med 1995; 333: 1437–43

    Article  PubMed  CAS  Google Scholar 

  34. Black DM, Cummings SR, Karpf DB, et al. Randomized trial of effect of alendronate on risk of fracture in women with existing vertebral fractures. Fracture Intervention Trial Research Group. Lancet 1996; 348: 1535–41

    Article  PubMed  CAS  Google Scholar 

  35. Cummings SR, Black DM, Thompson DE, et al. Effect of alendronate on risk of fracture in women with low bone density but without vertebral fractures: results from the Fracture Intervention Trial. JAMA 1998; 80: 2077–82

    Article  Google Scholar 

  36. Greenland S, Robbins JM. Estimation of a common effect parameter from sparse follow-up data. Biometrics 1985; 41: 55–68

    Article  PubMed  CAS  Google Scholar 

  37. Woo SB, Hellstein JW, Kalmar JR. Systematic review: bisphosphonates and osteonecrosis of the jaw. Ann Intern Med 2006; 144: 753–61

    PubMed  CAS  Google Scholar 

  38. Black DM, Schwartz AV, Ensrud KE. Effects ofcontinuing or stopping alendronate after 5 years of treatment. The Fracture Intervention Trial Long-term Extension (FLEX): a randomized trial. JAMA 2006 Dec 27; 296(24): 2927–38

    Article  PubMed  CAS  Google Scholar 

  39. O’Neill TW, Felsenberg D, Varlow J, et al. The prevalence of vertebral deformity in European men and women. The European Vertebral Osteoporosis Study. J Bone Miner Res 1996; 11(7): 1010–8

    Article  PubMed  Google Scholar 

  40. van der Klift M, DeLaet CE. The incidence of vertebral fractures in men and women: The Rotterdam Study. J Bone Miner Res 2002; 17(6): 1051–6

    Article  PubMed  Google Scholar 

  41. Federal Statistical Office Germany (DESTATIS). Diagnosedaten der Krankenhauspatientinnen und -patienten (einschließlich Sterbe- und Stundenfälle) (2006) [online]. Available from URL: https://www-ec.destatis.de/csp/shop/sfg/bpm.html.cms.cBroker.cls?cmspath=struktur,Warenkorb.csp&action=basketadd&id=1021733 [Accessed 2008 Oct 7]

    Google Scholar 

  42. Felsenberg D, Silman AJ, Lunt M, et al. Incidence of vertebral fracture in Europe: results from the European Prospective Osteoporosis Study (EPOS). J Bone Miner Res 2002; 17(4): 716–23

    Article  PubMed  CAS  Google Scholar 

  43. Singer BR, McLauchlan GJ, Robinson CM, et al. Epidemiology of fractures in 15,000 adults: the influence of age and gender. J Bone Joint Surg Br 1998; 80: 243–8

    Article  PubMed  CAS  Google Scholar 

  44. Melton LJ, Thamer M, Ray NF, et al. Fractures attributable to osteoporosis: report from the National Osteoporosis Foundation. J Bone Miner Res 1997; 12(1): 16–23

    Article  PubMed  Google Scholar 

  45. De Laet C, Oden A, Johansson H, et al. The impact of the use of multiple risk indicators for fracture on case-finding strategies: a mathematical approach. Osteoporosis Int 2005; 16: 313–8

    Article  Google Scholar 

  46. Federal Statistical Office Germany (DESTATIS). Bevölk-erung nach Altersgruppen, Deutschland (2004) [online]. Available from URL: http://www.destatis.de [Accessed 2008 Oct 7]

    Google Scholar 

  47. Browner WS, Seeley DG, Vogt TM, et al. Non-trauma mortality in elderly women with low bone mineral density. Lancet 1991; 33810: 355–8

    Article  PubMed  CAS  Google Scholar 

  48. Center JR, Nguyen TV, Schneider D, et al. Mortality after all major types of osteoporotic fracture in men and women: an observational study. Lancet 1999; 353: 872–82

    Article  Google Scholar 

  49. Kado DM, Browner WS, Palermo L, et al. Vertebral fractures and mortality in older women. Arch Intern Med 1999; 159: 1215–20

    Article  PubMed  CAS  Google Scholar 

  50. Gandjour A, Weyler EJ. Cost-effectiveness of referrals to high-volume hospitals: an analysis based on a probabilistic Markov model for hip fracture surgeries. Health Care Manage Sci 2006; 9: 359–69

    Article  Google Scholar 

  51. Brazier JE, Green C, Kanis JA. A systematic review of health state utility values for osteoporosis-related conditions. Osteoporosis Int 2002; 13: 768–76

    Article  CAS  Google Scholar 

  52. Kanis JA, Johnell O, Oden A. The risk and burden of vertebral fractures in Sweden. Osteoporosis Int 2004; 15: 20–6

    Article  CAS  Google Scholar 

  53. Schousboe JT, Ensrud KE, Nyman JA, et al. Universal bone densitometry screening combined with alendronate therapy for those diagnosed with osteoporosis is highly cost-effective for elderly women. J Am Geriatr Soc 2005; 53: 1697–170

    Article  PubMed  Google Scholar 

  54. Deeks JJ. Using evaluations of diagnostic tests: understanding their limitations and making the most of available evidence. Annals of Oncology 1999; 10: 761–8

    Article  PubMed  CAS  Google Scholar 

  55. Greenhalgh T. How to read a paper: papers that report diagnostic or screening tests. BMJ 1997; 315(7107): 540–3

    Article  PubMed  CAS  Google Scholar 

  56. Valenstein PN. Evaluating diagnostic tests with imperfect standards. Am J Clin Pathol 1990; 93: 252–8

    PubMed  CAS  Google Scholar 

  57. Deutsche Gesellschaft für Allgemeinmedizin und Familienmedizin (DEGAM). Kreuzschmerzen (2003) [online]. Available from URL: http://www.degam.de [Accessed 2006 Jun 14]

    Google Scholar 

  58. Neuhauser H, Ellert U, Ziese T. Chronic back pain in the general population in Germany 2002/2003: prevalence and highly affected population groups. Gesundheitswesen 2005; 67(10): 685–93

    Article  PubMed  CAS  Google Scholar 

  59. PMV Research Group. Versorgungssituation von Patienten mit chronisch lumbalen Rückenschmerzen [online]. Available from URL: http://www.pmvforschungsgruppe.de [Accessed 2006 Dec 12]

  60. Cooper C, Atkinson EJ, O’Fallon WM, et al. Incidence of clinically diagnosed vertebral fractures: a population-based study in Rochester, Minnesota 1985-1989. J Bone Miner Res 1992; 7: 221–7

    Article  PubMed  CAS  Google Scholar 

  61. Delmas PD, van de Langerijt L, Watts NB, et al. Under-diagnosis ofvertebral fractures is a worldwide problem: the IMPACT study. J Bone Miner Res. 2005; 20(4): 557–63

    Article  PubMed  Google Scholar 

  62. National Osteoporosis Foundation (NOF). Osteoporosis: review of the evidence for prevention, diagnosis and treatment and cost-effectiveness analysis. Osteoporosis Int 1998; 8 Suppl. 4: 7–80

    Article  Google Scholar 

  63. Cummings SR, Nevitt MC, Browner WS, et al. Risk factors for hip fracture in white women. N Engl J Med 1995; 332: 767–73

    Article  PubMed  CAS  Google Scholar 

  64. Cadarette SM, Jaglal SB, Murray TM, et al. Evaluation of decision rules of referring women for bone densitometry by dual-energy x-ray absorptiometry. JAMA 2001; 286(1): 57–63

    Article  PubMed  CAS  Google Scholar 

  65. Federal Statistical Federal Statistical Office Germany (DE-STATIS). Krankheitskosten 2002, 2004 und 2006 [online]. Available from URL: https://www-ec.destatis.de/csp/shop/sfg/bpm.html.cms.cBroker.cls?cmspath=struktur,Warenkorb.csp&action=basketadd&id=1022497 [Accessed 2008 Oct 7]

  66. Kassenärztliche Bundesvereinigung. Uniform Value Scale (2006) [online]. Available from URL: http://www.ebm2000plus.de [Accessed 2008 Oct 7]

    Google Scholar 

  67. Ärztekammer. German medical fee schedule (GOÄ 2006) [online]. Available from URL: http://www.e-bis.de [Accessed 2007 Dec 12]

  68. Rote Liste Service GmbH. German red list (2006) [online]. Available from URL: http://www.rote-liste.de [Accessed 2006 Jun 9]

    Google Scholar 

  69. Zentralinstitut für Kassenärztliche Versorgung. ZI_ADT-anel Nordrhein, Patienten-/Praxisstichprobe: IV/2005 [online]. Available from URL: http://www.zi-berlin.de [Accessed 2006 Jun 13]

  70. Physio.de Informationsdienste GmbH. Catalogue of non-physician treatments (2004) [online]. Available from URL: http://www.heilmittelkatalog.de [Accessed 2006 May 19]

    Google Scholar 

  71. Physio.de Informationsdienste GmbH. Price lists (2004) [online]. Available from URL: http://www.physio.de [Accessed 2006 May 19]

    Google Scholar 

  72. Institut für das Entgeltsystem im Krankenhaus (InEK). Fallpauschalenkatalog (2006) [online]. Available fromURL: http://www.g-drg.de [Accessed 2008 Oct 7]

    Google Scholar 

  73. Institut für das Entgeltsystem im Krankenhaus (InEK). Abschlussbericht zur Weiterentwicklung des G-DRG-Systems für das Jahr 2004. Klassifikation, Katalog und Bewertungsrelationen. Band II: Fallpauschalenkatalog, klinische Profile, Kostenprofile [online]. Available from URL: http://www.g-drg.de [Accessed 2008 Oct 7]

  74. Wikipedia. Diagnosis-related group [online]. Available from URL: http://en.wikipedia.org [Accessed 2008 Apr 19]

  75. Melo M, Qiu F, Sykora K, et al. Persistence with bisphos-phonate therapy in older people. J Am Geriatr Soc 2006; 54(6): 1015–6

    Article  PubMed  Google Scholar 

  76. Bartl R, Götte S, Hadji P, et al. Adherence with daily and eekly administration of oral bisphosphonates for osteoporosis. Dtsch Med Wochenschr 2006; 131: 1257–62

    Article  PubMed  CAS  Google Scholar 

  77. Cramer JA, Amonkar MM, Hebborn A, et al. Compliance and persistence with bisphosphonate dosing regimes among women with post-menopausal osteoporosis. Curr Med Res Opin 2005; 21: 1453–60

    Article  PubMed  CAS  Google Scholar 

  78. Penning-van Beest FJ, Goettsch WG, Erkens JA, et al. Determinants of persistence with bisphosphonates: a study in women with post-menopausal osteoporosis. Clin Ther 2006; 28(2): 236–42

    Article  PubMed  CAS  Google Scholar 

  79. Fletcher RH, Fletcher SW, Wagner EH. Clinical epidemiology: the essentials. 3rd ed. Baltimore (MD): Williams & Wilkins, 1996

    Google Scholar 

  80. Frybeck DG, Chinnis JO, Ulvila JW. Bayesian cost effectiveness analysis: an example using the GUSTO trial. Int J Technol Assess Health Care 2001; 17(1): 83–97

    Article  Google Scholar 

  81. Stinnett AA, Mullahy J. Net health benefits: a new framework for the analysis of uncertainty in cost-effectiveness analysis. Med Dec Making 1998; 18 Suppl.: S65–80

    Article  Google Scholar 

  82. van Hout BA, Al MJ, Gordon GS, et al. Costs, effects and C/E-ratios alongside a clinical trial. Health Econ 1994; 3: 309–19

    Article  PubMed  Google Scholar 

  83. Federal Statistical Office Germany (DESTATIS). Health expenditures by sources of funding [online]. Available from URL: http://www.gbe-bund.de [Accessed 2008 Oct 7]

  84. Weinstein MC. Principles of cost-effective resource allocation in health care organisations. Int J Technol Assess Health Care 1990; 6(1): 93–103

    Article  PubMed  CAS  Google Scholar 

  85. Gandjour A, Stock S. A national hypertension treatment program in Germany and its estimated impact on costs, life expectancy, and cost-effectiveness. Health Policy 2007 Oct; 83(2-3): 257–67

    Article  PubMed  Google Scholar 

  86. Begg CB. Biases in the assessment of diagnostic tests. Stat Med 1987; 6(4): 411–23

    Article  PubMed  CAS  Google Scholar 

  87. Harris ST, Watts NB, Genant HK, et al. Effects of rise-dronate treatment on vertebral and nonvertebral fractures in women with postmenopausal osteoporosis: a randomized controlled trial. Vertebral Efficacy With Rise-dronate Therapy (VERT) Study Group. JAMA 1999; 282(14): 1344–52

    Article  PubMed  CAS  Google Scholar 

  88. De Laet C, van Hout B, Burger H, et al. Incremental cost of medical care after hip fracture and first vertebral fracture: the Rotterdam study. Osteoporosis Int 1999; 10: 66–72

    Article  Google Scholar 

  89. Stevenson M, Lloyd Jones M, De Nigris E, et al. A systematic review and economic evaluation of alendronate, etidronate, risedronate, raloxifene and teriparatide for the prevention and treatment of post-menopausal osteoporosis. Health Technol Assess 2005; 2005 Jun; 9(22): 1–160

    PubMed  CAS  Google Scholar 

  90. Schousboe JT. Cost-effectiveness modeling research of pharmacologic therapy to prevent osteoporosis-related fractures. Curr Rheumatol Rep 2007 Apr; 9(1): 50–6

    Article  PubMed  Google Scholar 

  91. Sim MF, Stone MD, Phillips CJ, et al. Cost effectiveness analysis of using quantitative ultrasound as a selective pre-screen for bone densitometry. Technol Health Care 2005; 13(2): 75–85

    PubMed  CAS  Google Scholar 

  92. Marin F, López-Bastida J, Diez-Pérez A, et al. Bone mineral density referral for dual-energy X-ray absorptiometry using quantitative ultrasound as a prescreening tool in post-menopausal women from the general population: a cost-effectiveness analysis. Calcif Tissue Int 2004; 74(3): 277–83

    Article  PubMed  CAS  Google Scholar 

  93. Kraemer DF, Nelson HD, Bauer DC, et al. Economic comparison of diagnostic approaches for evaluating osteoporosis in older women. Osteoporosis Int 2006; 17(1): 68–76

    Article  Google Scholar 

  94. Federal Statistical Office Germany (DESTATIS). Employment [online]. Available from URL: http://www.destatis.de [Accessed 2008 Oct 7]

  95. Kanis JA, Borgstrom F, DeLaet C, et al. Assessment of fracture risk. Osteoporosis Int 2005; 16: 581–9

    Article  Google Scholar 

Download references

Acknowledgements

No sources of funding were used to assist in the preparation of this study. The authors have no conflicts of interest that are directly relevant to the content of this article.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dirk Mueller or Afschin Gandjour.

Appendix

Appendix

Search Strategies in PubMed

Search strategy for medical interventions

  1. 1.

    Osteoporosis [MeSH]

  2. 2.

    Bone density [MeSH]

  3. 3.

    Fractures, bone [MeSH]

  4. 4.

    Alendronate [MeSH]

  5. 5.

    #1 OR #2 OR #3

  6. 6.

    #4 AND #5 (1136)

  7. 7.

    #4 AND #5 Limits: English, German, Meta-Analysis, Randomized Controlled Trial (274).

  8. 8.

    Osteoporosis [MeSH].

Search strategy for HR-QOL and fracture risks:

  1. 1.

    Osteoporosis [MeSH]

  2. 2.

    Osteoporotic fracture* [TIAB]

  3. 3.

    Spinal fractures [MeSH]

  4. 4.

    Radius fractures [MeSH]

  5. 5.

    Ulna fractures [MeSH]

  6. 6.

    Hip fractures [MeSH]

  7. 7.

    Mortality [subheading]

  8. 8.

    Increased risk [TIAB]

  9. 9.

    Quality-adjusted life years [MeSH]

  10. 10.

    #1 OR #2 OR #3 OR #4 OR #5 OR #6

  11. 11.

    #7 OR #8

  12. 12.

    #9 AND #10 (61)

  13. 13.

    #10 AND #11 (2348)

  14. 14.

    #10 AND #11 Limits: Middle Aged + Aged: 45 +years, English, German (1635).

Trials Included in the Analysis

Inclusion criteria for clinical trials are listed in table AI. Further information on the trials included in the analysis is provided in table AII.

Formulae to Calculate Average Risk

The average risk in the high-risk populations of our model was calculated using a mathematical model developed by De Laet et al.[45] The proportion of individuals (P) above the risk threshold (RT) of 30% was calculated based on the ratio of the risk threshold to the average population risk (AR) of each age group and a gradient of risk (GR) of 3.0. On the assumption that the combination of risk factors is distributed normally or close to normally in the population, the proportion of women above the threshold is (equation 2):

$$P=\Phi[z]$$
(2)

where Φ is the cumulative distribution function of the standardized normal distribution, and z is given by (equation 3):

$$\rm z=-[1n(RT/AR)+(1n(GR))^2/2]/1n(GR)$$
(3)

The average risk in women above the threshold (ART) relative to the average risk in the general population is determined by equation 4:

$$\rm AR_T={\Phi(z+1n(GR))\over \Phi(z)}$$
(4)
Table AI
figure Tab5

Inclusion criteria for clinical trials

Table All
figure Tab6

Data on clinical effectiveness (vertebral, hip and forearm fractures)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mueller, D., Gandjour, A. Cost effectiveness of ultrasound and bone densitometry for osteoporosis screening in post-menopausal women. Appl Health Econ Health Policy 6, 113–135 (2008). https://doi.org/10.1007/BF03256127

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03256127

Keywords

Navigation