Skip to main content

Advertisement

Log in

Anti-arthritic effect of GN1, a novel synthetic analog of glucosamine, in the collagen-induced arthritis model in rats

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

Glucosamine is a naturally occurring amino monosaccharide that maintains the elasticity and strength of the cartilage tissues. It has been used to treat osteoarthritis in humans; however, in severe conditions of inflammation and pain, glucosamine alone is not enough, and it is important to improve its biological activity. Our research group has recently taken an interest in the synthetic manipulation of amino sugars to develop some efficient pharmacophores, e.g., β-d-glucosamine, to combat rheumatoid arthritis, and tested its anti-arthritic effects in the collagen-induced arthritis (CIA) model in rats.

Methods

Arthritis was induced in female Sprague–Dawley rats by multiple intradermal injections of bovine type II collagen and challenged again with the same antigen preparation 7 days later. Arthritis was evaluated by arthritic score, body weight loss, paw volume measurement, and histological changes.

Results

The animals in the arthritic control group showed a gradual decrease in their body weight and concurrent increase in the paw volumes compared to the normal control group. In contrast, increased hind paw swelling was significantly suppressed with no further noticeable reduction in body weight in the glucosamine (p < 0.05) and GN1-treated (p < 0.02) arthritic animals. Histopathological evaluation of isolated knee joints by grading system and classification of the stages in arthritic lesion development revealed suppression of the inflammatory changes in the GN1-treated animals. Moreover, both the pro-inflammatory markers C-reactive protein (CRP) and low-density lipoprotein (LDL) levels were found to be significantly decreased in animals treated with GN1 (p < 0.03 for CRP and p < 0.05 for LDL) compared to the arthritic control group.

Conclusion

These results suggest that GN1 has both anti-arthritic and anti-inflammatory properties. Its effects in the CIA model suggest that it could be useful in the treatment of rheumatoid arthritis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CIA:

Collagen-induced arthritis

CRP:

C-reactive protein

LDL and HDL:

Low-density lipoprotein and high-density lipoprotein

TNF-α:

Tumor necrosis factor-α

NSAID:

Non-steroidal anti-inflammatory drug

CII:

Bovine type II collagen

IFA:

Incomplete Freund’s adjuvant

References

  1. Cai X, Wong YF, Zhou H, Xie Y, Liu ZQ, Jiang ZH, Bian ZH, Xu HX, Liu L. The comparative study of Sprague–Dawley and Lewis rats in adjuvant-induced arthritis. Naunyn Schmiedebergs Arch Pharmacol. 2006;373(2):140–7.

    Article  PubMed  CAS  Google Scholar 

  2. Williams RO. Collagen-induced arthritis in mice: a major role for tumor necrosis factor-alpha. Methods Mol Biol. 2006;361:265–84.

    Google Scholar 

  3. Remmers EF, Joe B, Griffiths MM, Dobbins DE, Dracheva SV, Hashiramoto A, Furuya T, Salstrom JL, Wang JP, Gulko PS, Cannon GW, Wilder RL. Modulation of multiple experimental arthritis models by collagen-induced arthritis quantitative trait loci isolated in congenic rat lines: different effects of non-major histocompatibility complex quantitative trait loci in males and females. Arthritis Rheum. 2002;46(8):2225–34.

    Article  PubMed  CAS  Google Scholar 

  4. Cuzzocrea S, Mazzon E, Bevilaqua C, Costantino G, Britti D, Mazzullo G, Sarro AD, Caputi AP. Cloricromene, a coumarine derivative, protects against collagen-induced arthritis in Lewis rats. Br J Pharmacol. 2000;131:1399–407.

    Article  PubMed  CAS  Google Scholar 

  5. Osterman T, Kippo K, Laurén L, Hannuniemi R, Sellman R. Effect of clodronate on established collagen-induced arthritis in rats. Inflamm Res. 1995;44(6):258–63.

    Article  PubMed  CAS  Google Scholar 

  6. Rosenthal ME, Capetola RJ. Adjuvant arthritis: immunopathological and hyperalgesic features. Fed Proc. 1982;41:2577–82.

    Google Scholar 

  7. Wooley PH, Luthra HS, Stuart JM, David CS. Type II collagen-induced arthritis in mice. I. Major histocompatibility complex (I region) linkage and antibody correlates. J Exp Med. 1981;154:688–700.

    Article  PubMed  CAS  Google Scholar 

  8. Wollheim FA. Current pharmacological treatment of osteoarthritis. Drugs. 1996;52(suppl 3):27–38.

    Article  PubMed  CAS  Google Scholar 

  9. Firestein GS. Etiology and pathogenesis of rheumatoid arthritis. In: Ruddy S, Harris JED, Sledge CB, Budd RC, Sergent JS, editors. Kelley’s textbook of rheumatology, vol. 2. Philadelphia: Saunders; 1994. p. 921–66.

    Google Scholar 

  10. Kidd BL, Mapp PI, Blake DR, Gibson SJ, Polak JM. Neurogenic influences in arthritis. Ann Rheum Dis. 1990;49:649–52.

    Article  PubMed  CAS  Google Scholar 

  11. Madland TM, Apalset EM, Johannessen AE, Rossebo B, Brun JG. Prevalence, disease manifestations, and treatment of psoriatic arthritis in Western Norway. J Rheumatol. 2005;32(10):1918–22.

    PubMed  Google Scholar 

  12. Harris ED Jr. Rheumatoid arthritis: pathophysiology and implications for therapy. N Engl J Med. 1990;322:1277–89.

    Article  PubMed  Google Scholar 

  13. Cai X, Wong YF, Zhou H, Liu ZQ, Xie Y, Jiang ZH, Bian ZX, Xu HX, Liu L. Manipulation of the induction of adjuvant arthritis in Sprague–Dawley rats. Inflamm Res. 2006;55(9):368–77.

    Article  PubMed  CAS  Google Scholar 

  14. Gouze JN, Gouze E, Popp MP, Bush ML, Dacanay EA, Kay JD, Levings PP, Patel KR, Saran JP, Watson RS, Ghivizzani SC. Exogenous glucosamine globally protects chondrocytes from the arthritogenic effects of IL-1beta. Arthritis Res Ther. 2006;8(6):R173.

    Article  PubMed  Google Scholar 

  15. Mewar D, Moore DJ. Antiferritin antibodies discovered by phage display expression cloning are associated with radiographic damage in rheumatoid arthritis. Arthritis Rheum. 2005;52(12):3868–72.

    Article  PubMed  CAS  Google Scholar 

  16. Shovman O, Gilburd B. The diagnostic utility of anti-cyclic citrullinated peptide antibodies, matrix metalloproteinase-3, rheumatoid factor, erythrocyte sedimentation rate, and C-reactive protein in patients with erosive and non-erosive rheumatoid arthritis. Clin Dev Immunol. 2005;12(3):197–202.

    Article  PubMed  CAS  Google Scholar 

  17. Lee JD, Kim SY, Kim TW, Lee SH, Yang HI, Lee DI, Lee YH. Anti-inflammatory effect of bee venom on type II collagen-induced arthritis. Am J Chin Med. 2004;32(3):361–7.

    Article  PubMed  Google Scholar 

  18. Larsson A, Bjork J, Lundberg G. Nephelometric determination of rat fibrinogen as a marker of inflammatory response. Vet Immunol Immunopathol. 1997;59(1–2):163–9.

    Article  PubMed  CAS  Google Scholar 

  19. Kitagawa S, Yamaguchi Y, Imaizumi N, Kunitomo M, Fujiwara M. A uniform alteration in serum lipid metabolism occurring during inflammation in mice. Jpn J Pharmacol. 1992;58(1):37–46.

    Article  PubMed  CAS  Google Scholar 

  20. Yamaguchi Y, Tanaka Y, Yamada K, Bando Y, Kunitomo M. Abnormal lipid metabolism in adjuvant arthritic rats. Jpn J Pharmacol. 1989;50(4):377–86.

    Article  PubMed  CAS  Google Scholar 

  21. Hassen Zrour S, Hassine Neffeti F, Sakly N, Jguirim M, Korbaa W, Younes M, Bejia I, Touzi M, Fadel NM, Bergaoui N. Lipid profile in Tunisian patients with rheumatoid arthritis. Clin Rheumatol. 2011 [Epub ahead of print].

  22. Schultz O, Oberhauser F, Saech J, Rubbert-Roth A, Hahn M, Krone W, Laudes M. Effects of inhibition of interleukin-6 signalling on insulin sensitivity and lipoprotein (a) levels in human subjects with rheumatoid diseases. PLoS One. 2010;5(12):e14328.

    Article  PubMed  CAS  Google Scholar 

  23. Wilhelm AJ, Zabalawi M, Owen JS, Shah D, Grayson JM, Major AS, Bhat S, Gibbs DP Jr, Thomas MJ, Sorci-Thomas MG. Apolipoprotein A-I modulates regulatory T cells in autoimmune LDLr−/−, ApoA-I−/− mice. J Biol Chem. 2010;285(46):6158–69.

    Article  Google Scholar 

  24. Rizzo M, Spinas GA, Cesur M, Ozbalkan Z, Rini GB, Berneis K. Atherogenic lipoprotein phenotype and LDL size and subclasses in drug-naïve patients with early rheumatoid arthritis. Atherosclerosis. 2009;207(2):502–6.

    Article  PubMed  CAS  Google Scholar 

  25. Popa C, van Tits LJ, Barrera P, Lemmers HL, van den Hoogen FH, van Riel PL, Radstake TR, Netea MG, Roest M, Stalenhoef AF. Anti-inflammatory therapy with tumour necrosis factor alpha inhibitors improves high-density lipoprotein cholesterol antioxidative capacity in rheumatoid arthritis patients. Ann Rheum Dis. 2009;68(6):868–72.

    Article  PubMed  CAS  Google Scholar 

  26. Choy E, Sattar N. Interpreting lipid levels in the context of high-grade inflammatory states with a focus on rheumatoid arthritis: a challenge to conventional cardiovascular risk actions. Ann Rheum Dis. 2009;68(4):460–9.

    Article  PubMed  CAS  Google Scholar 

  27. Kageyama Y, Torikai E, Tsujimura K, Kobayashi M. Involvement of IL-33 in the pathogenesis of rheumatoid arthritis: the effect of etanercept on the serum levels of IL-33. Mod Rheumatol. 2011 [Epub ahead of print].

  28. Rhodes B, Fürnrohr BG, Vyse TJ. C-reactive protein in rheumatology: biology and genetics. Nat Rev Rheumatol. 2011;7(5):282–9.

    Article  PubMed  CAS  Google Scholar 

  29. Varadé J, Lamas JR, Fernández-Arquero M, Jover JA, de la Concha EG, Martínez A, Fernández-Gutierrez B, Urcelay E. NO role of NOS2A susceptibility polymorphisms in rheumatoid arthritis. Nitric Oxide. 2009;21(3–4):171–4.

    Article  PubMed  Google Scholar 

  30. Prete PE, Gurakar-Osborne A, Kashyap ML. Synovial fluid lipids and apolipoproteins: a contemporary perspective. Biorheology. 1995;32:1–16.

    Article  PubMed  CAS  Google Scholar 

  31. Magaro M, Altomonte L, Zoli A, Mirone L, Ruffini MP. Serum lipid pattern and apolipoproteins (A1 and B100) in active rheumatoid arthritis. Z Rheumatol. 1991;50:168–70.

    PubMed  CAS  Google Scholar 

  32. Lakatos J, Harsagyi A. Serum total, HDL, LDL cholesterol, and triglyceride levels in patients with rheumatoid arthritis. Clin Biochem. 1988;21(2):93–6.

    Article  PubMed  CAS  Google Scholar 

  33. Severn PS, Fraser SG. Bilateral cataracts and glaucoma induced by long-term use of oral prednisolone bought over the internet. Lancet. 2006;368(9535):618.

    Article  PubMed  Google Scholar 

  34. Biskupiak JE, Brixner DI, Howard KB, Oderda GM. Gastrointestinal complications of over-the-counter nonsteroidal antiinflammatory drugs. J Pain Palliat Care Pharmacother. 2006;20(3):7–14.

    PubMed  Google Scholar 

  35. Schuna AA, Megeff C. New drugs for the treatment of rheumatoid arthritis. Am J Health Syst Pharm. 2000;57:225–34.

    PubMed  CAS  Google Scholar 

  36. Meyer-Kirchrath J, Schror K. Cyclooxygenase-2 inhibition and side-effects of non-steroidal anti-inflammatory drugs in the gastrointestinal tract. Curr Med Chem. 2000;7(11):1121–9.

    PubMed  CAS  Google Scholar 

  37. Lester RS, Knowles SR, Shear NH. The risks of systemic corticosteroid use. Dermatol Clin. 1998;16(2):277–87.

    PubMed  CAS  Google Scholar 

  38. Lanza FL. Endoscopic studies of gastric and duodenal injury after the use of ibuprofen, aspirin, and other nonsteroidal anti-inflammatory agents. Am J Med. 1984;77(1A):19–24.

    PubMed  CAS  Google Scholar 

  39. Santana-Sabagun E, Weisman MH. Nonsteroidal anti-inflammatory drugs. In: Ruddy S, Harris JED, Sledge CB, Budd RC, Sergent JS, editors. Kelly’s textbook of rheumatology, vol. 1. Philadelphia: Saunders; 2001. p. 799–822.

    Google Scholar 

  40. Newman NM, Ling RSM. Acetabular bone destruction related to non-steroidal anti-inflammatory drugs. Lancet. 1985;2:11–4.

    Article  PubMed  CAS  Google Scholar 

  41. Anastassiades T, Chopra R, Law C, Wong E. In vitro suppression of transforming growth factor-b induced stimulation of glycosaminoglycan synthesis by acetylsalicylic acid and its reversal by misoprostol. J Rheumatol. 1998;25:1962–7.

    PubMed  CAS  Google Scholar 

  42. McAlindon T, Formica M, LaValley M, Lehmer M, Kabbara K. Effectiveness of glucosamine for symptoms of knee osteoarthritis: results from an internet-based randomized double-blind controlled trial. Am J Med. 2004;117:643–9.

    Article  PubMed  CAS  Google Scholar 

  43. Muller-Fassbender H, Bach GL, Haase W, Rovati LC, Setnikar I. Glucosamine sulfate compared to ibuprofen in osteoarthritis of the knee. Osteoarthritis Cartilage. 1994;2:61–9.

    Article  PubMed  CAS  Google Scholar 

  44. Crolle G, D’Este E. Glucosamine sulphate for the management of arthrosis: a controlled clinical investigation. Curr Med Res Opin. 1980;7:104–9.

    Article  PubMed  CAS  Google Scholar 

  45. Pavelka K, Gatterova J, Olejarova M, Machacek S, Giacovelli G, Rovati LC. Glucosamine sulfate use and delay of progression of knee osteoarthritis: a 3 year, randomized, placebo-controlled, double-blind study. Arch Intern Med. 2002;162:2113–23.

    Article  PubMed  CAS  Google Scholar 

  46. McAlindon TE, LaValley MP, Gulin JP, Felson DT. Glucosamine and chondroitin for treatment of osteoarthritis: a systematic quality assessment and meta-analysis. JAMA. 2000;283:1469–75.

    Article  PubMed  CAS  Google Scholar 

  47. Reginster JY, Deroisy R, Rovati LC, Lee RL, Lejeune E, Bruyere O, et al. Long-term effects of glucosamine sulphate on osteoarthritis progression: a randomised, placebo-controlled clinical trial. Lancet. 2001;357:251–6.

    Article  PubMed  CAS  Google Scholar 

  48. Hua J, Suguro S, Hirano S, Sakamoto K, Nagaoka I. Preventive actions of a high dose of glucosamine on adjuvant arthritis in rats. Inflamm Res. 2005;54(3):127–32.

    Article  PubMed  CAS  Google Scholar 

  49. Hua J, Sakamoto K, Nagaoka I. Inhibitory actions of glucosamine, a therapeutic agent for osteoarthritis, on the functions of neutrophils. J Leukoc Biol. 2002;71:632–40.

    PubMed  CAS  Google Scholar 

  50. Ferguson A. 2005. http://www.rowingact.Org.au/SDO/Masters/Glucosamine.html.

  51. Boullanger P, Banoub J, Descotes G. N-Allyloxycarbonyl derivatives of d-glucosamine as promotors of 1, 2-trans-glucosylation in Koenigs–Knorr reactions and in Lewis acid catalyzed condensations. Can J Chem. 1987;65:1343–8.

    Article  CAS  Google Scholar 

  52. Zimmerman M. Ethical guidelines for investigations of experimental pain in conscious animals. Pain. 1983;16:109–10.

    Article  Google Scholar 

  53. Romas E, Bakharevski O, Hards DK, Kartsogiannis V, Quinn JMW, Ryan PFJ, Martin TJ, Gillespie MT. Expression of osteoclast differentiation factor at sites of bone erosion in collagen-induced arthritis. Arthritis Rheum. 2000;43:821–6.

    Article  PubMed  CAS  Google Scholar 

  54. Bakharevski O, Stein-Oakley AN, Thomson NM, Ryan NM. Collagen-induced arthritis in rats: contrasting effect of subcutaneous versus intradermal inoculation of type II collagen. J Rheumatol. 1998;25:1945–52.

    PubMed  CAS  Google Scholar 

  55. Marshall MJ, Worsfold M. Analytical micro-preparative electrophoresis: quantitation of phosphoglucose isomerase isoenzymes. Anal Biochem. 1978;91:283–92.

    Article  PubMed  CAS  Google Scholar 

  56. Capetola JR, Shriver AD, Rosenthale EM. Suprofen, a new peripheral analgesic. J Pharmacol Exp Ther. 1980;214:16–23.

    PubMed  CAS  Google Scholar 

  57. Brachertz D, Mitchell GF, MacKay IR. Antigen-induced arthritis in mice: induction of arthritis in various strains of mice. Arthritis Rheum. 1977;20:841–50.

    Article  Google Scholar 

  58. Glenn EM, Gray J. Adjuvant-induced polyarthritis in rats: biologic and histological background. Am J Vet Res. 1965;26:1180–94.

    PubMed  CAS  Google Scholar 

  59. Pearson CM, Wood FD. Studies of arthritis and other lesions induced in rats by the injection of mycobacterial adjuvant: pathological details of the arthritis and spondylitis. Am J Pathol. 1963;42:73–95.

    PubMed  CAS  Google Scholar 

  60. Bendele A, McAbee T, Sennello G, Frazier J, Chlipala E, McCabe D. Efficacy of sustained levels of interleukin-1 receptor antagonist in animal models of arthritis. Arthritis Rheum. 1999;43:498–506.

    Article  Google Scholar 

  61. Hogenmiller MS, Lozanda CJ. An update on osteoarthritis therapeutics. Curr Opin Rheumatol. 2006;18(3):256–60.

    Article  PubMed  CAS  Google Scholar 

  62. Beren J, Hill SL, Diener-West M, Rose NR. Effect of pre-loading oral glucosamine HCl/chondroitin sulfate/manganese ascorbate combination on experimental arthritis in rats. Exp Biol Med. 2001;226(2):144–51.

    CAS  Google Scholar 

  63. Nakamura H, Masuko K, Yudoh K, Kato T, Kamada T, Kawahara T. Effects of glucosamine administration on patients with rheumatoid arthritis. Rheumatol Int. 2007;27(3):213–8.

    Article  PubMed  CAS  Google Scholar 

  64. Meulyzer M, Vachon P, Beaudry F, Vinardell T, Richard H, Beauchamp G, Laverty S. Comparison of pharmacokinetics of glucosamine and synovial fluid levels following administration of glucosamine sulphate or glucosamine hydrochloride. Osteoarthritis Cartilage. 2008;16(9):973–9.

    Article  PubMed  CAS  Google Scholar 

  65. Ma L, Rudert WA, Harnaha J, Wright M, Machen J, Lakomy R, Oian S, Lu L, Robbins PD, Trucco M, Giannoukakis N. Immunosuppressive effects of glucosamine. J Biol Chem. 2002;277:39343–9.

    Article  PubMed  CAS  Google Scholar 

  66. Setnikar I, Pacinic MA, Revel L. Antiarthritic effects of glucosamine sulfate studied on animal models. Arzneimittel-Forschg. 1991;41:542–5.

    CAS  Google Scholar 

  67. Meininger CJ, Kelly KA, Li H, Haynes TE, Wu G. Glucosamine inhibits inducible nitric oxide synthesis. Biochem Biophys Res Commun. 2000;279:234–9.

    Article  PubMed  CAS  Google Scholar 

  68. Choi EJ, Bae SC, Yu R, Youn J, Sung MK. Dietary vitamin E and quercetin modulate inflammatory responses of collagen-induced arthritis in mice. J Med Food. 2009;12(4):770–5.

    Article  PubMed  CAS  Google Scholar 

  69. Gonzalez-Gay MA, Garcia-Unzueta MT, Berja A, Vazquez-Rodriguez TR, Miranda-Filloy JA, Gonzalez-Juanatey C, de Matias JM, Martin J, Dessein PH, Llorca J. Short-term effect of anti-TNF-alpha therapy on nitric oxide production in patients with severe rheumatoid arthritis. Clin Exp Rheumatol. 2009;27(3):452–8.

    PubMed  CAS  Google Scholar 

  70. Yasuda T. Hyaluronan inhibits p38 mitogen-activated protein kinase via the receptors in rheumatoid arthritis chondrocytes stimulated with fibronectin fragment. Clin Rheumatol. 2010;29(11):1259–67.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shabana U. Simjee.

Additional information

Responsible Editor: John Di Battista.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jawed, H., Anjum, S., Awan, S.I. et al. Anti-arthritic effect of GN1, a novel synthetic analog of glucosamine, in the collagen-induced arthritis model in rats. Inflamm. Res. 60, 1113–1120 (2011). https://doi.org/10.1007/s00011-011-0375-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-011-0375-9

Keywords

Navigation