Skip to main content

Advertisement

Log in

Niclosamide inhibits the inflammatory and angiogenic activation of human umbilical vein endothelial cells

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective

Niclosamide is known to have anti-cancer and anti-inflammatory activities; however, its therapeutic mechanism has not been defined. In this study, to explain the therapeutic mechanism of niclosamide, we examined the effect of niclosamide on endothelial cell activation, leukocyte integration, proliferation, migration and angiogenesis in vitro.

Methods

Endothelia-leukocyte adhesion assays were used to assess primary cultures of human umbilical vein endothelial cells’ (HUVECs) activation following TNF-α treatment. Each step of angiogenesis was evaluated in vitro, including endothelial cell proliferation, migration and tube formation. Proliferation was examined using EdU assays, while wound migration assays and transwell assays were used to evaluate cell migration; cord like structure formation assays on Matrigel were used to assess tube formation. In vivo matrigel plug assay was used to assess angiogenesis. The protein expression was measured using western blot.

Results

Niclosamide reduced the adhesion of human monocyte cells to HUVECs. Niclosamide also reduced protein expression of VCAM-1 and ICAM1 in HUVECs. Niclosamide significantly inhibited HUVEC proliferation, migration and cord-like structure formation. Niclosamide also suppresses VEGF-induced angiogenesis in vivo. Niclosamide attenuated IKK-mediated activation of NF-κB pathway in TNFα-induced endothelial cells. Niclosamide also suppresses VEGF-induced endothelial VEGFR2 activation and downstream P-AKT, P-mTOR and P-p70S6K.

Conclusions

Niclosamide exerted a potent effect on HUVECs activation, suggesting that it might function via an endothelia-based mechanism in the treatment of various diseases, including rheumatoid arthritis and cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Cines DB, Pollak ES, Buck CA, Loscalzo J, Zimmerman GA, McEver RP, et al. Endothelial cells in physiology and in the pathophysiology of vascular disorders. Blood. 1998;91:3527–61.

    CAS  PubMed  Google Scholar 

  2. Pober JS, Sessa WC. Evolving functions of endothelial cells in inflammation. Nat Rev Immunol. 2007;7:803–15.

    Article  CAS  PubMed  Google Scholar 

  3. Risau W. Mechanisms of angiogenesis. Nature. 1997;386:671–4.

    Article  CAS  PubMed  Google Scholar 

  4. Costa C, Incio J, Soares R. Angiogenesis and chronic inflammation: cause or consequence? Angiogenesis. 2007;10:149–66.

    Article  PubMed  Google Scholar 

  5. Ono M. Molecular links between tumor angiogenesis and inflammation: inflammatory stimuli of macrophages and cancer cells as targets for therapeutic strategy. Cancer Sci. 2008;99:1501–6.

    Article  CAS  PubMed  Google Scholar 

  6. Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002;420:860–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Rajashekhar G, Willuweit A, Patterson CE, Sun P, Hilbig A, Breier G, et al. Continuous endothelial cell activation increases angiogenesis: evidence for the direct role of endothelium linking angiogenesis and inflammation. J Vasc Res. 2006;43:193–204.

    Article  PubMed  Google Scholar 

  8. Gupta MK, Qin RY. Mechanism and its regulation of tumor-induced angiogenesis. World J Gastroenterol. 2003;9:1144–55.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Kalebic T, Garbisa S, Glaser B, Liotta LA. Basement membrane collagen: degradation by migrating endothelial cells. Science. 1983;221:281–3.

    Article  CAS  PubMed  Google Scholar 

  10. Bellon G, Martiny L, Robinet A. Matrix metalloproteinases and matrikines in angiogenesis. Crit Rev Oncol Hematol. 2004;49:203–20.

    Article  PubMed  Google Scholar 

  11. Tian Y, Jain S, Kelemen SE, Autieri MV. AIF-1 expression regulates endothelial cell activation, signal transduction, and vasculogenesis. Am J Physiol Cell Physiol. 2009;296:C256–66.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Ditzel J, Schwartz M. Worm cure without tears. The effect of niclosamide on taeniasis saginata in man. Acta Med Scand. 1967;182:663–4.

    Article  CAS  PubMed  Google Scholar 

  13. Osada T, Chen M, Yang XY, Spasojevic I, Vandeusen JB, Hsu D, et al. Antihelminth compound niclosamide downregulates Wnt signaling and elicits antitumor responses in tumors with activating APC mutations. Cancer Res. 2011;71:4172–82.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Jin Y, Lu Z, Ding K, Li J, Du X, Chen C, et al. Antineoplastic mechanisms of niclosamide in acute myelogenous leukemia stem cells: inactivation of the NF-kappaB pathway and generation of reactive oxygen species. Cancer Res. 2010;70:2516–27.

    Article  CAS  PubMed  Google Scholar 

  15. Wu CS, Li YR, Chen JJ, Chen YC, Chu CL, Pan IH, et al. Antihelminthic niclosamide modulates dendritic cells activation and function. Cell Immunol. 2014;288:15–23.

    Article  CAS  PubMed  Google Scholar 

  16. Liang L, Huang M, Xiao Y, Zen S, Lao M, Zou Y, et al. Inhibitory effects of niclosamide on inflammation and migration of fibroblast-like synoviocytes from patients with rheumatoid arthritis. Inflamm Res. 2015;64:225–33.

    Article  CAS  PubMed  Google Scholar 

  17. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–74.

    Article  CAS  PubMed  Google Scholar 

  18. Asahara T, Bauters C, Zheng LP, Takeshita S, Bunting S, Ferrara N, et al. Synergistic effect of vascular endothelial growth factor and basic fibroblast growth factor on angiogenesis in vivo. Circulation. 1995;92(II):365–71.

    Article  CAS  Google Scholar 

  19. Niki T, Iba S, Tokunou M, Yamada T, Matsuno Y, Hirohashi S. Expression of vascular endothelial growth factors A, B, C, and D and their relationships to lymph node status in lung adenocarcinoma. Clin Cancer Res. 2000;6:2431–9.

    CAS  PubMed  Google Scholar 

  20. Ivy SP, Wick JY, Kaufman BM. An overview of small-molecule inhibitors of VEGFR signaling. Nat Rev Clin Oncol. 2009;6:569–79.

    Article  CAS  PubMed  Google Scholar 

  21. Gupta SC, Sung B, Prasad S, Webb LJ, Aggarwal BB. Cancer drug discovery by repurposing: teaching new tricks to old dogs. Trends Pharmacol Sci. 2013;34:508–17.

    Article  CAS  PubMed  Google Scholar 

  22. Ley K, Laudanna C, Cybulsky MI, Nourshargh S. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol. 2007;7:678–89.

    Article  CAS  PubMed  Google Scholar 

  23. Pohlman TH, Stanness KA, Beatty PG, Ochs HD, Harlan JM. An endothelial cell surface factor(s) induced in vitro by lipopolysaccharide, interleukin 1, and tumor necrosis factor-alpha increases neutrophil adherence by a CDw18-dependent mechanism. J Immunol. 1986;136:4548–53.

    CAS  PubMed  Google Scholar 

  24. Pober JS, Sessa WC. Evolving functions of endothelial cells in inflammation. Nat Rev Immunol. 2007;7:803–15.

    Article  CAS  PubMed  Google Scholar 

  25. Kevil CG, Orr AW, Langston W, Mickett K, Murphy-Ullrich J, Patel RP, et al. Intercellular adhesion molecule-1 (ICAM-1) regulates endothelial cell motility through a nitric oxide-dependent pathway. J Biol Chem. 2004;279:19230–8.

    Article  CAS  PubMed  Google Scholar 

  26. Hou J, Baichwal V, Cao Z. Regulatory elements and transcription factors controlling basal and cytokine-induced expression of the gene encoding intercellular adhesion molecule 1. Proc Natl Acad Sci USA. 1994;91:11641–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Manning AM, Bell FP, Rosenbloom CL, Chosay JG, Simmons CA, Northrup JL, et al. NF-kappa B is activated during acute inflammation in vivo in association with elevated endothelial cell adhesion molecule gene expression and leukocyte recruitment. J Inflamm. 1995;45:283–96.

    CAS  PubMed  Google Scholar 

  28. Sun X, Icli B, Wara AK, Belkin N, He S, Kobzik L, et al. MicroRNA-181b regulates NF-kappaB-mediated vascular inflammation. J Clin Invest. 2012;122:1973–90.

    PubMed Central  CAS  PubMed  Google Scholar 

  29. King ML, Lindberg ME, Stodden GR, Okuda H, Ebers SD, Johnson A, et al. WNT7A/Beta-catenin signaling induces FGF1 and influences sensitivity to niclosamide in ovarian cancer. Oncogene. 2015;34(26):3452–62.

    Article  CAS  PubMed  Google Scholar 

  30. Wieland A, Trageser D, Gogolok S, Reinartz R, Hofer H, Keller M, et al. Anticancer effects of niclosamide in human glioblastoma. Clin Cancer Res. 2013;19:4124–36.

    Article  CAS  PubMed  Google Scholar 

  31. Sack U, Walther W, Scudiero D, Selby M, Kobelt D, Lemm M, et al. Novel effect of antihelminthic Niclosamide on S100A4-mediated metastatic progression in colon cancer. J Natl Cancer Inst. 2011;103:1018–36.

    Article  CAS  PubMed  Google Scholar 

  32. Ferrara N. VEGF and the quest for tumour angiogenesis factors. Nat Rev Cancer. 2002;2:795–803.

    Article  CAS  PubMed  Google Scholar 

  33. Ivy SP, Wick JY, Kaufman BM. An overview of small-molecule inhibitors of VEGFR signaling. Nat Rev Clin Oncol. 2009;6:569–79.

    Article  CAS  PubMed  Google Scholar 

  34. Xia Y, Song X, Li D, Ye T, Xu Y, Lin H, et al. YLT192, a novel, orally active bioavailable inhibitor of VEGFR2 signaling with potent antiangiogenic activity and antitumor efficacy in preclinical models. Sci Rep. 2014;4:6031.

    PubMed Central  CAS  PubMed  Google Scholar 

  35. Matsuo M, Yamada S, Koizumi K, Sakurai H, Saiki I. Tumour-derived fibroblast growth factor-2 exerts lymphangiogenic effects through Akt/mTOR/p70S6kinase pathway in rat lymphatic endothelial cells. Eur J Cancer. 2007;43:1748–54.

    Article  CAS  PubMed  Google Scholar 

  36. Li W, Tan D, Zhang Z, Liang JJ, Brown RE. Activation of Akt-mTOR-p70S6 K pathway in angiogenesis in hepatocellular carcinoma. Oncol Rep. 2008;20:713–9.

    PubMed  Google Scholar 

  37. Pang X, Yi Z, Zhang X, Sung B, Qu W, Lian X, et al. Acetyl-11-keto-beta-boswellic acid inhibits prostate tumor growth by suppressing vascular endothelial growth factor receptor 2-mediated angiogenesis. Cancer Res. 2009;69:5893–900.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Saraswati S, Kumar S, Alhaider AA. alpha-santalol inhibits the angiogenesis and growth of human prostate tumor growth by targeting vascular endothelial growth factor receptor 2-mediated AKT/mTOR/P70S6K signaling pathway. Mol Cancer. 2013;12:147.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Jinjin Fan for her technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liuqin Liang.

Ethics declarations

Conflict of interest

No conflict of interest has been declared by authors.

Funding

This work is supported by grants from National Natural Science Foundation of China (Grant Number 81373182 and U1401222), Guangdong Natural Science Foundation (Grant Number S2011020002358, S2013010015363) and Guangdong Project of Science and Technology (Grant Number 2014A020212119).

Additional information

Responsible Editor: Bernhard Gibbs.

M. Huang and Q. Qiu contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, M., Qiu, Q., Zeng, S. et al. Niclosamide inhibits the inflammatory and angiogenic activation of human umbilical vein endothelial cells. Inflamm. Res. 64, 1023–1032 (2015). https://doi.org/10.1007/s00011-015-0888-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-015-0888-8

Keywords

Navigation