Skip to main content
Log in

Alendronate reduces osteoclast precursors in osteoporosis

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

This study evaluates the effect of alendronate on osteoclastogenesis, cytokine production, and bone resorption in postmenopausal women. We suggest that it acts on mature bone resorbing osteoclasts after 3 months of treatment, whereas, after 1 year, it diminishes their formation by reducing their precursors and serum RANKL.

Introduction

Osteoclasts are the target cells of bisphosphonates, though the most drug-sensitive steps of their formation and activity have not been determined. The present study evaluates the effect of alendronate on osteoclastogenesis, cytokine production, and bone resorption in postmenopausal women.

Methods

The study was conducted on 35 osteoporotic women; 15 were pretreated with alendronate 70 mg/week, whereas, 20 were treated with calcium 1 g/day and vitamin D 800 IU/day. After 3 months, 30 received alendonate 70/mg, vitamin D 2800 IU/week, and calcium 1 g/day for 12 months (combined therapy), whereas, the other five patients remained on calcium 1 g/day and vitamin D 800 IU/day. The following parameters were assessed before and after therapy: changes in bone resorption markers, circulating osteoclast precursors, formation of osteoclasts in peripheral blood mononuclear cell cultures, their viability, and variations in cytokines production.

Results

After 3 months of alendronate, there was no significant reduction in the number of osteoclast precursors, osteoclast formation and viability, and cytokine levels, whereas, there was a significant reduction of bone resorption markers. One year of the combined therapy, on the other hand, reduced osteoclast precursors, osteoclast formation, and serum RANKL, whereas, calcium plus vitamin D alone had no effect.

Conclusions

We suggest that alendronate mainly acts on mature bone resorbing osteoclasts in the short term, whereas, its long-term administration diminishes their formation by reducing their precursors and serum RANKL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rogers MJ (2003) New insights into the molecular mechanisms of action of bisphosphonates. Curr Pharm Des 9:2643–2658

    Article  CAS  PubMed  Google Scholar 

  2. Benford HL, McGowan NW, Helfrich MH, Nuttall ME, Rogers MJ (2001) Visualization of bisphosphonate-induced caspase-3 activity in apoptotic osteoclasts in vitro. Bone 28:465–473

    Article  CAS  PubMed  Google Scholar 

  3. Sudhoff H, Jung JY, Ebmeyer J, Faddis BT, Hildmann H, Chole RA (2003) Zoledronic acid inhibits osteoclastogenesis in vitro and in a mouse model of inflammatory osteolysis. Ann Otol Rhinol Laryngol 112:780–786

    PubMed  Google Scholar 

  4. Rogers MJ, Chilton KM, Coxon FP, Lawry J, Smith MO, Suri S, Russell RG (1996) Bisphosphonates induce apoptosis in mouse macrophage-like cells in vitro by a nitric oxide-independent mechanism. J Bone Miner Res 11:1482–1491

    Article  CAS  PubMed  Google Scholar 

  5. Hughes DE, Wright KR, Uy HL, Sasaki A, Yoneda T, Roodman GD, Mundy GR, Boyce BF (1995) Bisphosphonates promote apoptosis in murine osteoclasts in vitro and in vivo. J Bone Miner Res 10:1478–1487

    Article  CAS  PubMed  Google Scholar 

  6. Cecchini MG, Felix R, Fleisch H, Cooper PH (1987) Effect of bisphosphonates on proliferation and viability of mouse bone marrow-derived macrophages. J Bone Miner Res 2:135–142

    Article  CAS  PubMed  Google Scholar 

  7. Boonekamp PM, van der Wee-Pals LJ, van Wijk-van Lennep MM, Thesing CW, Bijvoet OL (1986) Two modes of action of bisphosphonates on osteoclastic resorption of mineralized matrix. Bone Miner 1:27–39

    CAS  PubMed  Google Scholar 

  8. Rodan GA, Reszka AA (2002) Bisphosphonate mechanism of action. Curr Mol Med 2:571–577

    Article  CAS  PubMed  Google Scholar 

  9. Colucci S, Minielli V, Zambonin G, Cirulli N, Mori G, Serra M, Patella V, Zambonin Zallone A, Grano M (1998) Alendronate reduces adhesion of human osteoclast-like cells to bone and bone protein-coated surfaces. Calcif Tissue Int 63:230–235

    Article  CAS  PubMed  Google Scholar 

  10. Carano A, Teitelbaum SL, Konsek JD, Schlesinger PH, Blair HC (1990) Bisphosphonates directly inhibit the bone resorption activity of isolated avian osteoclasts in vitro. J Clin Invest 85:456–461

    Article  CAS  PubMed  Google Scholar 

  11. Sato M, Grasser W, Endo N, Akins R, Simmons H, Thompson DD, Golub E, Rodan GA (1991) Bisphosphonate action. Alendronate localization in rat bone and effects on osteoclast ultrastructure. J Clin Invest 88:2095–2105

    Article  CAS  PubMed  Google Scholar 

  12. D'Amelio P, Grimaldi A, Di Bella S, Tamone C, Brianza SZ, Ravazzoli MG, Bernabei P, Cristofaro MA, Pescarmona GP, Isaia G (2008) Risedronate reduces osteoclast precursors and cytokine production in postmenopausal osteoporotic women. J Bone Miner Res 23:373–379

    Article  PubMed  Google Scholar 

  13. Dobnig H, Hofbauer LC, Viereck V, Obermayer-Pietsch B, Fahrleitner-Pammer A (2006) Changes in the RANK ligand/osteoprotegerin system are correlated to changes in bone mineral density in bisphosphonate-treated osteoporotic patients. Osteoporos Int 17:693–703

    Article  CAS  PubMed  Google Scholar 

  14. Sauty A, Pecherstorfer M, Zimmer-Roth I, Fioroni P, Juillerat L, Markert M, Ludwig H, Leuenberger P, Burckhardt P, Thiebaud D (1996) Interleukin-6 and tumor necrosis factor alpha levels after bisphosphonates treatment in vitro and in patients with malignancy. Bone 18:133–139

    Article  CAS  PubMed  Google Scholar 

  15. Hewitt RE, Lissina A, Green AE, Slay ES, Price DA, Sewell AK (2005) The bisphosphonate acute phase response: rapid and copious production of proinflammatory cytokines by peripheral blood gd T cells in response to aminobisphosphonates is inhibited by statins. Clin Exp Immunol 139:101–111

    Article  CAS  PubMed  Google Scholar 

  16. Thompson K, Rogers MJ (2004) Statins prevent bisphosphonate-induced gamma, delta-T-cell proliferation and activation in vitro. J Bone Miner Res 19:278–288

    Article  CAS  PubMed  Google Scholar 

  17. Mossetti G, Rendina D, De Filippo G, Viceconti R, Di Domenico G, Cioffi M, Postiglione L, Nunziata V (2005) Interleukin-6 and osteoprotegerin systems in Paget's disease of bone: relationship to risedronate treatment. Bone 36:549–554

    Article  CAS  PubMed  Google Scholar 

  18. Papadaki HA, Tsatsanis C, Christoforidou A, Malliaraki N, Psyllaki M, Pontikoglou C, Miliaki M, Margioris AN, Eliopoulos GD (2004) Alendronate reduces serum TNFalpha and IL-1beta, increases neutrophil counts, and improves bone mineral density and bone metabolism indices in patients with chronic idiopathic neutropenia (CIN)-associated osteopenia/osteoporosis. J Bone Miner Metab 22:577–587

    Article  CAS  PubMed  Google Scholar 

  19. Santini D, Fratto ME, Vincenzi B, La Cesa A, Dianzani C, Tonini G (2004) Bisphosphonate effects in cancer and inflammatory diseases: in vitro and in vivo modulation of cytokine activities. BioDrugs 18:269–278

    Article  CAS  PubMed  Google Scholar 

  20. Gur A, Denli A, Cevik R, Nas K, Karakoc M, Sarac AJ (2003) The effects of alendronate and calcitonin on cytokines in postmenopausal osteoporosis: a 6-month randomized and controlled study. Yonsei Med J 44:99–109

    CAS  PubMed  Google Scholar 

  21. Sahni M, Guenther HL, Fleisch H, Collin P, Martin TJ (1993) Bisphosphonates act on rat bone resorption through the mediation of osteoblasts. J Clin Invest 91:2004–2011

    Article  CAS  PubMed  Google Scholar 

  22. Vitte C, Fleisch H, Guenther HL (1996) Bisphosphonates induce osteoblasts to secrete an inhibitor of osteoclast-mediated resorption. Endocrinology 137:2324–2333

    Article  CAS  PubMed  Google Scholar 

  23. Kanis JA (1994) Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: synopsis of a WHO report. WHO Study Group. Osteoporos Int 4:368–381

    Article  CAS  PubMed  Google Scholar 

  24. D'Amelio P, Grimaldi A, Pescarmona GP, Tamone C, Roato I, Isaia G (2005) Spontaneous osteoclast formation from peripheral blood mononuclear cells in postmenopausal osteoporosis. Faseb J 19:410–412

    PubMed  Google Scholar 

  25. Ritchlin CT, Haas-Smith SA, Li P, Hicks DG, Schwarz EM (2003) Mechanisms of TNF-alpha- and RANKL-mediated osteoclastogenesis and bone resorption in psoriatic arthritis. J Clin Invest 111:821–831

    CAS  PubMed  Google Scholar 

  26. Dalbeth N, Smith T, Nicolson B, Clark B, Callon K, Naot D, Haskard DO, McQueen FM, Reid IR, Cornish J (2008) Enhanced osteoclastogenesis in patients with tophaceous gout: urate crystals promote osteoclast development through interactions with stromal cells. Arthritis Rheum 58:1854–1865

    Article  CAS  PubMed  Google Scholar 

  27. Ramnaraine M, Pan W, Clohisy DR (2006) Osteoclasts direct bystander killing of cancer cells in vitro. Bone 38:4–12

    Article  CAS  PubMed  Google Scholar 

  28. Massey HM, Flanagan AM (1999) Human osteoclasts derive from CD14-positive monocytes. Br J Haematol 106:167–170

    Article  CAS  PubMed  Google Scholar 

  29. Shalhoub V, Elliott G, Chiu L, Manoukian R, Kelley M, Hawkins N, Davy E, Shimamoto G, Beck J, Kaufman SA, Van G, Scully S, Qi M, Grisanti M, Dunstan C, Boyle WJ, Lacey DL (2000) Characterization of osteoclast precursors in human blood. Br J Haematol 111:501–512

    Article  CAS  PubMed  Google Scholar 

  30. Faust J, Lacey DL, Hunt P, Burgess TL, Scully S, Van G, Eli A, Qian Y, Shalhoub V (1999) Osteoclast markers accumulate on cells developing from human peripheral blood mononuclear precursors. J Cell Biochem 72:67–80

    Article  CAS  PubMed  Google Scholar 

  31. Matayoshi A, Brown C, DiPersio JF, Haug J, Abu-Amer Y, Liapis H, Kuestner R, Pacifici R (1996) Human blood-mobilized hematopoietic precursors differentiate into osteoclasts in the absence of stromal cells. Proc Natl Acad Sci USA 93:10785–10790

    Article  CAS  PubMed  Google Scholar 

  32. Roato I, Grano M, Brunetti G, Colucci S, Mussa A, Bertetto O, Ferracini R (2005) Mechanisms of spontaneous osteoclastogenesis in cancer with bone involvement. Faseb J 19:228–230

    CAS  PubMed  Google Scholar 

  33. van Beek ER, Lowik CW, Papapoulos SE (1997) Effect of alendronate treatment on the osteoclastogenic potential of bone marrow cells in mice. Bone 20:335–340

    Article  PubMed  Google Scholar 

  34. Van Beek ER, Lowik CW, Papapoulos SE (2002) Bisphosphonates suppress bone resorption by a direct effect on early osteoclast precursors without affecting the osteoclastogenic capacity of osteogenic cells: the role of protein geranylgeranylation in the action of nitrogen-containing bisphosphonates on osteoclast precursors. Bone 30:64–70

    Article  PubMed  Google Scholar 

  35. Coxon FP, Thompson K, Roelofs AJ, Ebetino FH, Rogers MJ (2008) Visualizing mineral binding and uptake of bisphosphonate by osteoclasts and non-resorbing cells. Bone 42:848–860

    Article  CAS  PubMed  Google Scholar 

  36. D'Amelio P, Grimaldi A, Di Bella S, Brianza SZ, Cristofaro MA, Tamone C, Giribaldi G, Ulliers D, Pescarmona GP, Isaia G (2008) Estrogen deficiency increases osteoclastogenesis up-regulating T cells activity: a key mechanism in osteoporosis. Bone 43:92–100

    Article  PubMed  Google Scholar 

  37. Brunetti G, Colucci S, Pignataro P, Coricciati M, Mori G, Cirulli N, Zallone A, Grassi FR, Grano M (2005) T cells support osteoclastogenesis in an in vitro model derived from human periodontitis patients. J Periodontol 76:1675–1680

    Article  CAS  PubMed  Google Scholar 

  38. Olivier BJ, Schoenmaker T, Mebius RE, Everts V, Mulder CJ, van Nieuwkerk KM, de Vries TJ, van der Merwe SW (2008) Increased osteoclast formation and activity by peripheral blood mononuclear cells in chronic liver disease patients with osteopenia. Hepatology 47:259–267

    Article  CAS  PubMed  Google Scholar 

  39. Tjoa ST, de Vries TJ, Schoenmaker T, Kelder A, Loos BG, Everts V (2008) Formation of osteoclast-like cells from peripheral blood of periodontitis patients occurs without supplementation of macrophage colony-stimulating factor. J Clin Periodontol 35:568–575

    Article  CAS  PubMed  Google Scholar 

  40. Hofbauer LC, Kuhne CA, Viereck V (2004) The OPG/RANKL/RANK system in metabolic bone diseases. JMNI 4:268–275

    CAS  PubMed  Google Scholar 

  41. Roato I, Brunetti G, Gorassini E, Grano M, Colucci S, Bonello L, Buffoni L, Manfredi R, Ruffini E, Ottaviani D, Ciuffreda L, Mussa A, Ferracini R (2006) IL-7 up-regulates TNF-alpha-dependent osteoclastogenesis in patients affected by solid tumor. PLoS ONE 1:e124

    Article  PubMed  Google Scholar 

  42. De Vries TJ, Everts V (2009) Osteoclast formation from peripheral blood of patients with bone-lytic diseases

  43. Deng X, Yu Z, Funayama H, Yamaguchi K, Sasano T, Sugawara S, Endo Y (2007) Histidine decarboxylase-stimulating and inflammatory effects of alendronate in mice: involvement of mevalonate pathway, TNFalpha, macrophages, and T-cells. Int Immunopharm 7:152–161

    Article  CAS  Google Scholar 

  44. Pietschmann P, Stohlawetz P, Brosch S, Steiner G, Smolen JS, Peterlik M (1998) The effect of alendronate on cytokine production, adhesion molecule expression, and transendothelial migration of human peripheral blood mononuclear cells. Calcif Tissue Int 63:325–330

    Article  CAS  PubMed  Google Scholar 

  45. Toyras A, Ollikainen J, Taskinen M, Monkkonen J (2003) Inhibition of mevalonate pathway is involved in alendronate-induced cell growth inhibition, but not in cytokine secretion from macrophages in vitro. Eur J Pharm Sci 19:223–230

    Article  CAS  PubMed  Google Scholar 

  46. Pan B, Farrugia AN, To LB, Findlay DM, Green J, Lynch K, Zannettino AC (2004) The nitrogen-containing bisphosphonate, zoledronic acid, influences RANKL expression in human osteoblast-like cells by activating TNF-alpha converting enzyme (TACE). J Bone Miner Res 19:147–154

    Article  CAS  PubMed  Google Scholar 

  47. Russell RG, Watts NB, Ebetino FH, Rogers MJ (2008) Mechanisms of action of bisphosphonates: similarities and differences and their potential influence on clinical efficacy. Osteoporos Int 19:733–759

    Article  CAS  PubMed  Google Scholar 

  48. Russell RG, Xia Z, Dunford JE, Oppermann U, Kwaasi A, Hulley PA, Kavanagh KL, Triffitt JT, Lundy MW, Phipps RJ, Barnett BL, Coxon FP, Rogers MJ, Watts NB, Ebetino FH (2007) Bisphosphonates: an update on mechanisms of action and how these relate to clinical efficacy. Ann N Y Acad Sci 1117:209–257

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by an unconditioned grant from the Merck Sharp & Dohme SpA Italy and a grant from the Fondazione Internazionale Ricerche Medicina Sperimentale (FIRMS) Compagnia San Paolo. M.A. Cristofaro was supported by a fellowship from the Ministry for Education, University and Research (MIUR); P. D’Amelio was supported by a fellowship from the Regione Piemonte. Alendronate and alendronate plus vitamin D were kindly provided by Merck Sharp & Dohme SpA Italy; calcium and vitamin D supplements were kindly provided by Procter & Gamble.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. D’Amelio.

Electronic Supplementary Materials

Below is the link to the electronic supplementary material.

Supplemental Figure 1

Effects of therapy on PBMCs: FACS analysis of PBMCs’ subpopulation labeled with APC-conjugated anti-CD14 (monocytes), FITC-conjugated anti-CD19 (B lymphocytes), and PerCP-conjugated anti-CD3 (T lymphocytes) mAbs before and after alendronate (3 months) or with combined therapy (12 months). a Dot plots represent CD14+ cells gated on monocytes (upper panels), CD19+ cells gated on lympocytes (middle panels), and CD3+ cells gated on lympocytes (lower panels). b Graph represents the percentage of CD14+, CD19+, and CD3+ cells before and after therapy. The bars show the mean and SE for five patients (PPT 369 kb).

Rights and permissions

Reprints and permissions

About this article

Cite this article

D’Amelio, P., Grimaldi, A., Cristofaro, M.A. et al. Alendronate reduces osteoclast precursors in osteoporosis. Osteoporos Int 21, 1741–1750 (2010). https://doi.org/10.1007/s00198-009-1129-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-009-1129-1

Keywords

Navigation