Skip to main content
Log in

Balicatib, a cathepsin K inhibitor, stimulates periosteal bone formation in monkeys

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Balicatib, an inhibitor of the osteoclastic enzyme cathepsin K, was tested in ovariectomized monkeys, a model for osteoporosis. As expected, ovariectomy-induced bone mass changes were partially prevented by balicatib treatment. Bone turnover was significantly decreased at most sites, but unlike most bone resorption inhibitors, periosteal bone formation rates were increased.

Introduction

Selective inhibitors of the osteoclastic enzyme cathepsin K have potential in osteoporosis treatment. This study evaluated the efficacy of balicatib (AAE581), a novel inhibitor of human cathepsin K, on bone mass and dynamic histomorphometric endpoints in ovariectomized monkeys.

Methods

Eighty adult female Macaca fascicularis underwent bilateral ovariectomies and were dosed twice daily by oral gavage with balicatib at 0, 3, 10, and 50 mg/kg for 18 months (groups O, L, M, H, respectively). Approximately 1 month after treatment initiation, the 50 mg/kg dose was decreased to 30 mg/kg. Twenty animals underwent sham—ovariectomies (group S). Bone mass was measured at 3–6 month intervals. At 18 months, vertebra and femur were collected for histomorphometry.

Results

In both spine and femur, group O animals lost bone mineral density (BMD), and all other groups gained BMD between 0 and 18 months. In balicatib-treated animals, BMD change in the spine was intermediate between group S and O, with groups L and M significantly different from group O. In femur, all three doses of balicatib significantly increased BMD gain relative to group O, and group mean values were also higher than group S. Most histomorphometric indices of bone turnover in vertebra and femoral neck were significantly lower than group O with balicatib treatment, except that periosteal bone formation rates (Ps.BFR) were significantly higher. Ps.BFR in mid-femur was also significantly increased by treatment.

Conclusions

Balicatib partially prevented ovariectomy-induced changes in bone mass, inhibited bone turnover at most sites, and had an unexpected stimulatory effect on periosteal bone formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Borges JL, Bilezikian JP (2006) Update on osteoporosis therapy. Arq Bras Endocrinol Metabol 50:755–763

    Article  PubMed  Google Scholar 

  2. Girotra M, Rubin MR, Bilezikian JP (2006) Anabolic agents for osteoporosis: what is their likely place in therapy? Treat Endocrinol 5:347–358

    Article  PubMed  CAS  Google Scholar 

  3. McClung M (2006) Bisphosphonates. Arq Bras Endocrinol Metabol 50:735–744

    Article  PubMed  Google Scholar 

  4. Epstein S (2006) Update of current therapeutic options for the treatment of postmenopausal osteoporosis. Clin Ther 28:151–173

    Article  PubMed  CAS  Google Scholar 

  5. Marshall JK (2002) The gastrointestinal tolerability and safety of oral bisphosphonates. Exp Opin Drug Saf 1:71–78

    Article  CAS  Google Scholar 

  6. Reginster JY, Felsenberg D, Cooper C, Stakkestad JA, Miller PD, Kendler DL, Adami S, McClung MR, Bolognese MA, Civitelli R, Dumont E, Bonvoisin B, Recker RR, Delmas PD (2006) A new concept for bisphosphonate therapy: a rationale for the development of monthly oral dosing of ibandronate. Osteoporos Int 17:159–166

    Article  PubMed  CAS  Google Scholar 

  7. Reginster JY (2006) Adherence and persistence: impact on outcomes and health care resources. Bone 38:18–21

    Article  Google Scholar 

  8. Shane E, Goldring S, Christakos S, Drezner M, Eisman J, Silverman S, Pendrys D (2006) Osteonecrosis of the jaw: more research needed. J Bone Miner Res 21:1503–1505

    Article  PubMed  Google Scholar 

  9. Boyce BF, Xing L, Yao Z, Shakespeare WC, Wang Y, Metcalf CA 3rd, Sundaramoorthi R, Dalgarno DC, Iuliucci JD, Sawyer TK (2006) Future anti-catabolic therapeutic targets in bone disease. Ann NY Acad Sci 1068:447–457

    Article  PubMed  CAS  Google Scholar 

  10. Takahashi N, Udagawa M, Takami M, Suda T (2002) Cells of bone: osteoclast generation. In: Bilezikian JP, Raisz LG, Rodan GA (eds) Principles of Bone Biology, 2nd edn. Academic, San Diego, pp 109–126

    Chapter  Google Scholar 

  11. Väänänen K, Zhao H (2002) Osteoclast function: biology and mechanism. In: Bilezikian JP, Raisz LG, Rodan GA (eds) Principles of bone biology, 2nd edn. Academic, San Diego, pp 127–139

    Chapter  Google Scholar 

  12. Yasuda Y, Kaleta J, Bromme D (2005) The role of cathepsins in osteoporosis and arthritis: rationale for the design of new therapeutics. Adv Drug Deliv Rev 57:973–993

    Article  PubMed  CAS  Google Scholar 

  13. Drake FH, Dodds RA, James IE, Connor JR, Debouck C, Richardson S, Lee-Rykaczewski E, Coleman L, Rieman D, Barthlow R, Hastings G, Gowen M (1996) Cathepsin K, but not cathepsins B, L, or S, is abundantly expressed in human osteoclasts. J Biol Chem 271:12511–12516

    Article  PubMed  CAS  Google Scholar 

  14. Gowen M, Lazner F, Dodds R, Kapadia R, Feild J, Tavaria M, Bertoncello I, Drake F, Zavarselk S, Tellis I, Hertzog P, Debouck C, Kola I (1999) Cathepsin K knockout mice develop osteopetrosis due to a deficit in matrix degradation but not demineralization. J Bone Miner Res 14:1654–1663

    Article  PubMed  CAS  Google Scholar 

  15. Saftig P, Hunziker E, Wehmeyer O, Jones S, Boyde A, Rommerskirch W, Moritz JD, Schu P, von Figura K (1998) Impaired osteoclastic bone resorption leads to osteopetrosis in cathepsin-K-deficient mice. Proc Natl Acad Sci USA 95:13453–13458

    Article  PubMed  CAS  Google Scholar 

  16. Marquis RW, Ru Y, Yamashita DS, Oh HJ, Yen J, Thompson SK, Carr TJ, Levy MA, Tomaszek TA, Ijames CF, Smith WW, Zhao B, Janson CA, Abdel-Meguid SS, D’Alessio KJ, McQueney MS, Veber DF (1999) Potent dipeptidylketone inhibitors of the cysteine protease cathepsin K. Bioorg Med Chem 7:581–588

    Article  PubMed  CAS  Google Scholar 

  17. Votta BJ, Levy MA, Badger A, Bradbeer J, Dodds RA, James IE, Thompson S, Bossard MJ, Carr T, Connor JR, Tomaszek TA, Szewczuk L, Drake FH, Veber DF, Gowen M (1997) Peptide aldehyde inhibitors of cathepsin K inhibit bone resorption both in vitro and in vivo. J Bone Miner Res 12:1396–1406

    Article  PubMed  CAS  Google Scholar 

  18. Stroup GB, Lark MW, Veber DF, Bhattacharyya A, Blake S, Dare LC, Erhard KF, Hoffman SJ, James IE, Marquis RW, Ru Y, Vasko-Moser JA, Smith BR, Tomaszek T, Gowen M (2001) Potent and selective inhibition of human cathepsin K leads to inhibition of bone resorption in vivo in a nonhuman primate. J Bone Miner Res 16:1739–1746

    Article  PubMed  CAS  Google Scholar 

  19. Kumar S, Dare L, Vasko-Moser JA, James IE, Blake SM, Rickard DJ, Hwang SM, Tomaszek T, Yamashita DS, Marquis RW, Oh H, Jeong JU, Veber DF, Gowen M, Lark MW, Stroup G (2007) A highly potent inhibitor of cathepsin K (relacatib) reduces biomarkers of bone resorption both in vitro and in an acute model of elevated bone turnover in vivo in monkeys. Bone 40:122–131

    Article  PubMed  CAS  Google Scholar 

  20. Stroup GB, Kumar S, Jerome CP (2009) Treatment with a potent cathepsin K inhibitor preserves cortical and trabecular bone mass in ovariectomized monkeys. Calcif Tissue Int 85(4):344–355

    Article  PubMed  CAS  Google Scholar 

  21. Missbach M, Altmann E, Betschart C, Buhl T, Gamse R, Gasser JA, Green JR, Ishihara H, Jerome C, Kometani M, Susa M, Teno N, Toriyama K, Lattmann R (2005) AAE581, a potent and highly specific cathepsin K inhibitor, prevents bone resorption after oral treatment in rat and monkey. J Bone Miner Res 20(Suppl 1):251

    Google Scholar 

  22. Jerome CP (1998) Primate models of osteoporosis. Lab Anim Sci 48:618–622

    PubMed  CAS  Google Scholar 

  23. Bayne K (1996) Revised guide for the care and use of laboratory animals available. American Physiological Society. Physiologist 39(199):208–211

    Google Scholar 

  24. Parfitt AM, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR (1987) Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 2:595–610

    Article  PubMed  CAS  Google Scholar 

  25. Jerome CP, Power RA, Obasanjo IO, Register TC, Guidry M, Carlson CS, Weaver DS (1997) The androgenic anabolic steroid nandrolone decanoate prevents osteopenia and inhibits bone turnover in ovariectomized cynomolgus monkeys. Bone 20:355–364

    Article  PubMed  CAS  Google Scholar 

  26. Jerome CP, Burr DB, Van Bibber T, Hock JM, Brommage R (2001) Treatment with human parathyroid hormone (1–34) for 18 months increases cancellous bone volume and improves trabecular architecture in ovariectomized cynomolgus monkeys (Macaca fascicularis). Bone 28:150–159

    Article  PubMed  CAS  Google Scholar 

  27. Cusik T, Pennypacker B, Scott K, Duong L, Kimmel D (2009) Effects of odanacatib on bone mass, turnover and strength in the femoral neck of estrogen deficient adult rhesus monkeys. J Bone Miner Res 24(Suppl 1). Available at: http://www.asbmr.org/Meetings/AnnualMeeting/AbstractDetail.aspx?aid=3c062e5c-74c9-4be1-b2c9-2935ae73f57e. Accessed on: June 1, 2010

  28. Pennypacker B, Wesolowski G, Heo J, Duong L (2009) Effects of odanacatib on central femur cortical bone in estrogen deficient adult rhesus monkeys. J Bone Miner Res 24(Suppl 1). Available at: http://www.asbmr.org/Meetings/AnnualMeeting/AbstractDetail.aspx?aid=a11932a7-b4c2-4d38-9a9d-4ec165bb13f2. Accessed on: June 1, 2010

  29. Xiang A, Kanematsu M, Kumar S, Yamashita D, Kaise T, Kikkawa H, Asano S, Kinoshita M (2010) Changes in micro-CT 3D bone parameters reflect effects of a potent cathepsin K inhibitor (SB-553484) on bone resorption and cortical bone formation in ovariectomized mice. Bone 40(5):1231–1237

    Article  Google Scholar 

  30. Lees CJ, Register TC, Turner CH, Wang T, Stancill M, Jerome CP (2002) Effects of raloxifene on bone density, biomarkers, and histomorphometric and biomechanical measures in ovariectomized cynomolgus monkeys. Menopause 9:320–328

    Article  PubMed  Google Scholar 

  31. Feher A, Koivunemi A, Koivunemi M, Fuchs RK, Burr DB, Phipps RJ, Reinwald S, Allen MR (2010) Bisphosphonates do not inhibit periosteal bone formation in estrogen deficient animals and allow enhanced bone modeling in response to mechanical loading. Bone 46(1):203–207

    Article  PubMed  CAS  Google Scholar 

  32. Bare S, Recker S, Recker R, Kimmel D (2005) Influence of alendronate on periosteal and endocortical bone formation in the ilium of osteoporotic women. J Bone Miner Res 20(Suppl 1):414, Available at: http://www.abstractsonline.com/viewer/viewAbstractPrintFriendly.asp?CKey={320D85D2-5D21-4529-A15C-8B342938C99F}&SKey={BEF5BC3E-1AC0-489B-A7FB-6F4FC82D96B1}&MKey={70A6304C-A41B-49FC-A4DF-C147A5E943F0}&AKey={D0C01D4F-E23B-45E2-ACD4-0AF8AC866B8B}. Accessed on: June 10, 2010

    Google Scholar 

  33. Mashiba T, Hirano T, Turner CH, Forwood MR, Johnston CC, Burr DB (2000) Suppressed bone turnover by bisphosphonates increases microdamage accumulation and reduces some biomechanical properties in dog rib. J Bone Miner Res 15(4):613–620

    Article  PubMed  CAS  Google Scholar 

  34. Itabashi A, Kurata N, Sugita Y, Kawai Y (2006) Balicatib, a novel cathepsin K-inhibitor, increases serum intact PTH beyond diurnal patterns following 14-daily administration in Japanese postmenopausal women. J Bone Miner Res 21(suppl 1):S24

    Google Scholar 

  35. Fuller K, Lawrence KM, Ross JL, Grabowska UB, Shiroo M, Samuelsson B, Chambers TJ (2008) Cathepsin K inhibitors prevent matrix-derived growth factor degradation by human osteoclasts. Bone 42(1):200–211

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank H. Tsusaki and the staff of Shin Nippon Biomedical Laboratories for carrying out the in-life part of the study. The staff of SkeleTech Inc. is thanked for performing biomarker, biomechanical, and histomorphometric analyses as well as for documentation. We also thank J. A. Gasser and M. Kneissel for advice in designing the study and interpreting results. The extensive assistance of P. Peterson in production of this manuscript is gratefully acknowledged.

Funding source

This study is funded by Novartis Pharma AG.

Conflicts of interest

R. Gamse and M. Missbach are employees of Novartis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Jerome.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jerome, C., Missbach, M. & Gamse, R. Balicatib, a cathepsin K inhibitor, stimulates periosteal bone formation in monkeys. Osteoporos Int 22, 3001–3011 (2011). https://doi.org/10.1007/s00198-011-1529-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-011-1529-x

Keywords

Navigation