Skip to main content
Log in

Goal-directed treatment of osteoporosis in Europe

  • Position Paper
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

Despite the proven predictive ability of bone mineral density, Fracture Risk Assessment Tool (FRAX®), bone turnover markers, and fracture for osteoporotic fracture, their use as targets for treatment of osteoporosis is limited.

Introduction

Treat-to-target is a strategy applied in several fields of medicine and has recently become an area of interest in the management of osteoporosis. Its role in this setting remains controversial. This article was prepared following a European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis (ESCEO) working group meeting convened under the auspices of the International Osteoporosis Foundation (IOF) to discuss the feasibility of applying such a strategy in osteoporosis in Europe.

Methods

Potential targets range from the absence of an incident fracture to fixed levels of bone mineral density (BMD), a desired FRAX® score, a specified level of bone turnover markers or indeed changes in any one or a combination of these parameters.

Results

Despite the proven predictive ability of all of these variables for fracture (particularly BMD and FRAX), their use as targets remains limited due to low sensitivity, the influence of confounders and current lack of evidence that targets can be consistently reached.

Conclusion

ESCEO considers that it is not currently feasible to apply a treat-to-target strategy in osteoporosis, though it did identify a need to continue to improve the targeting of treatment to those at higher risk (target-to-treat strategy) and a number of issues for the research agenda. These include international consensus on intervention thresholds and definition of treatment failure, further exploration of the relationship between fracture and BMD, and FRAX and treatment efficacy and investigation of the potential of short-term targets to improve adherence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lewiecki EM, Cummings SR, Cosman F (2013) Treat-to-target for osteoporosis: is now the time? J Clin Endocrinol Metab 98:946–53

    Article  PubMed  CAS  Google Scholar 

  2. Cummings SR, Cosman F, Eastell R et al (2013) Goal-directed treatment of osteoporosis. J Bone Miner Res 28:433–8

    Article  PubMed  Google Scholar 

  3. McCloskey E, Leslie WD (2013) Goal-directed therapy in osteoporosis. J Bone Miner Res 28:439–41

    Article  PubMed  Google Scholar 

  4. (1993) Consensus development conference: diagnosis, prophylaxis, and treatment of osteoporosis. Am J Med 94:646–650

  5. Kanis JA, on behalf of the World Health Organization Scientific Group (2007) Assessment of osteoporosis at the primary health care level. World Health Organization Collaborating Centre for Metabolic Bone Diseases, University of Sheffield, UK, Sheffield, Technical Report

    Google Scholar 

  6. Staessen JA, Wang JG, Thijs L (2001) Cardiovascular protection and blood pressure reduction: a meta-analysis. Lancet 358:1305–15

    Article  PubMed  CAS  Google Scholar 

  7. Mancia G, Fagard R, Narkiewicz K et al (2013) 2013 ESH/ESC Guidelines for the management of arterial hypertension: the Task Force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur Heart J 34:2159–219

    Article  PubMed  Google Scholar 

  8. UK Prospective Diabetes Study (UKPDS) Group (1998) Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 352:837–53

    Article  Google Scholar 

  9. The Diabetes Control and Complications Trial Research Group (1993) The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 329:977–86

    Article  Google Scholar 

  10. Inzucchi SE, Bergenstal RM, Buse JB et al (2012) Management of hyperglycaemia in type 2 diabetes: a patient-centered approach. Position statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia 55:1577–96

    Article  PubMed  CAS  Google Scholar 

  11. IDF Clinical Guidelines Task Force (2013) Global Guideline for Type 2 Diabetes. www.idf.com. Accessed 17 July 2013

  12. Cannon CP (2005) The IDEAL cholesterol: lower is better. JAMA 294:2492–4

    Article  PubMed  CAS  Google Scholar 

  13. Catapano AL, Reiner Z, De BG et al (2011) ESC/EAS Guidelines for the management of dyslipidaemias: the Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and the European Atherosclerosis Society (EAS). Atherosclerosis 217(Suppl 1):S1–44

    PubMed  Google Scholar 

  14. McAlister FA, van Diepen S, Padwal RS et al (2007) How evidence-based are the recommendations in evidence-based guidelines? PLoS Med 4:e250

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hayward RA, Krumholz HM (2012) Three reasons to abandon low-density lipoprotein targets: an open letter to the Adult Treatment Panel IV of the National Institutes of Health. Circ Cardiovasc Qual Outcome 5:2–5

    Article  Google Scholar 

  16. Ledford H (2013) Cholesterol limits lose their lustre. Nature 494:410–1

    Article  PubMed  CAS  Google Scholar 

  17. Krumholz HM (2013) Target cardiovascular risk rather than cholesterol concentration. BMJ 347:f7110

    Article  PubMed  Google Scholar 

  18. National Institute for Health and Clinical Excellence (NICE)—British Hypertension Society (BHS) (2006) Hypertension: management of hypertension in adults in primary care. www.nice.org.uk/CG034guidance. Accessed 31 July 2013

  19. Zanchetti A, Grassi G, Mancia G (2009) When should antihypertensive drug treatment be initiated and to what levels should systolic blood pressure be lowered? A critical reappraisal. J Hypertens 27:923–34

    Article  PubMed  CAS  Google Scholar 

  20. National Institute for Health and Clinical Excellence (2011) Hypertension: The clinical management of primary hypertension in adults. August 2011. http://www.nice.org.uk/nicemedia/live/13561/56007/56007.pdf. Accessed 13 Jan 2012

  21. Goff DC Jr., Lloyd-Jones DM, Bennett G et al. (2013) 2013 ACC/AHA Guideline on the Assessment of Cardiovascular Risk: A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation

  22. Stone NJ, Robinson J, Lichtenstein AH et al. (2013) 2013 ACC/AHA Guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol

  23. Kane SP (2014) Pooled cohort equations to predict 10-year risk of first cardiovascular event. http://clincalc.com/Cardiology/ASCVD/PooledCohort.aspx. Accessed 7 April 2014

  24. Nathan DM, Buse JB, Davidson MB et al (2009) Medical management of hyperglycemia in type 2 diabetes: a consensus algorithm for the initiation and adjustment of therapy: a consensus statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care 32:193–203

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Smolen JS, Aletaha D, Bijlsma JW et al (2010) Treating rheumatoid arthritis to target: recommendations of an international task force. Ann Rheum Dis 69:631–7

    Article  PubMed  PubMed Central  Google Scholar 

  26. Schoels M, Wong J, Scott DL et al (2010) Economic aspects of treatment options in rheumatoid arthritis: a systematic literature review informing the EULAR recommendations for the management of rheumatoid arthritis. Ann Rheum Dis 69:995–1003

    Article  PubMed  Google Scholar 

  27. Feldmann M, Maini RN (2003) Lasker Clinical Medical Research Award. TNF defined as a therapeutic target for rheumatoid arthritis and other autoimmune diseases. Nat Med 9:1245–50

    Article  PubMed  CAS  Google Scholar 

  28. Grigor C, Capell H, Stirling A et al (2004) Effect of a treatment strategy of tight control for rheumatoid arthritis (the TICORA study): a single-blind randomised controlled trial. Lancet 364:263–9

    Article  PubMed  Google Scholar 

  29. Diez-Perez A, Adachi JD, Agnusdei D et al (2012) Treatment failure in osteoporosis. Osteoporos Int 23:2769–74

    Article  PubMed  CAS  Google Scholar 

  30. Marshall D, Johnell O, Wedel H (1996) Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ 312:1254–9

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Johnell O, Kanis JA, Oden A et al (2005) Predictive value of BMD for hip and other fractures. J Bone Miner Res 20:1185–94

    Article  PubMed  Google Scholar 

  32. Kanis JA, Johnell O, Oden A et al (2000) Risk of hip fracture derived from relative risks: an analysis applied to the population of Sweden. Osteoporos Int 11:120–7

    Article  PubMed  CAS  Google Scholar 

  33. Kanis JA, Johnell O, Oden A et al (2001) Ten year probabilities of osteoporotic fractures according to BMD and diagnostic thresholds. Osteoporos Int 12:989–95

    Article  PubMed  CAS  Google Scholar 

  34. Kanis JA, Oden A, McCloskey EV et al (2012) A systematic review of hip fracture incidence and probability of fracture worldwide. Osteoporos Int 23:2239–56

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. Kanis JA, McCloskey EV, Johansson H et al (2013) European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int 24:23–57

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Ferrari S, Adachi J, Lippuner K et al (2013) Further reductions in nonvertebral fracture rate with long-term denosumab treatment in the FREEDOM open-label extension and influence of hip bone mineral density after 3 years. Abstr J Bone Miner Res 28:1017

    Google Scholar 

  37. Hochberg MC, Greenspan S, Wasnich RD et al (2002) Changes in bone density and turnover explain the reductions in incidence of nonvertebral fractures that occur during treatment with antiresorptive agents. J Clin Endocrinol Metab 87:1586–92

    Article  PubMed  CAS  Google Scholar 

  38. Bjarnason NH, Sarkar S, Duong T et al (2001) Six and twelve month changes in bone turnover are related to reduction in vertebral fracture risk during 3 years of raloxifene treatment in postmenopausal osteoporosis. Osteoporos Int 12:922–30

    Article  PubMed  CAS  Google Scholar 

  39. Bauer DC, Black DM, Garnero P et al (2004) Change in bone turnover and hip, non-spine, and vertebral fracture in alendronate-treated women: the fracture intervention trial. J Bone Miner Res 19:1250–8

    Article  PubMed  Google Scholar 

  40. Eastell R, Barton I, Hannon RA et al (2003) Relationship of early changes in bone resorption to the reduction in fracture risk with risedronate. J Bone Miner Res 18:1051–6

    Article  PubMed  CAS  Google Scholar 

  41. Jacques RM, Boonen S, Cosman F et al (2012) Relationship of changes in total hip bone mineral density to vertebral and nonvertebral fracture risk in women with postmenopausal osteoporosis treated with once-yearly zoledronic acid 5 mg: the HORIZON-Pivotal Fracture Trial (PFT). J Bone Miner Res 27:1627–34

    Article  PubMed  CAS  Google Scholar 

  42. Austin M, Yang YC, Vittinghoff E et al (2012) Relationship between bone mineral density changes with denosumab treatment and risk reduction for vertebral and nonvertebral fractures. J Bone Miner Res 27:687–93

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  43. Bruyere O, Roux C, Detilleux J et al (2007) Relationship between bone mineral density changes and fracture risk reduction in patients treated with strontium ranelate. J Clin Endocrinol Metab 92:3076–81

    Article  PubMed  CAS  Google Scholar 

  44. Sarkar S, Mitlak BH, Wong M et al (2002) Relationships between bone mineral density and incident vertebral fracture risk with raloxifene therapy. J Bone Miner Res 17:1–10

    Article  PubMed  CAS  Google Scholar 

  45. Li Z, Meredith MP, Hoseyni MS (2001) A method to assess the proportion of treatment effect explained by a surrogate endpoint. Stat Med 20:3175–88

    Article  PubMed  CAS  Google Scholar 

  46. Chen P, Miller PD, Recker R et al (2007) Increases in BMD correlate with improvements in bone microarchitecture with teriparatide treatment in postmenopausal women with osteoporosis. J Bone Miner Res 22:1173–80

    Article  PubMed  CAS  Google Scholar 

  47. Rosen CJ, Hochberg MC, Bonnick SL et al (2005) Treatment with once-weekly alendronate 70 mg compared with once-weekly risedronate 35 mg in women with postmenopausal osteoporosis: a randomized double-blind study. J Bone Miner Res 20:141–51

    Article  PubMed  CAS  Google Scholar 

  48. Vasikaran S, Eastell R, Bruyere O et al (2011) Markers of bone turnover for the prediction of fracture risk and monitoring of osteoporosis treatment: a need for international reference standards. Osteoporos Int 22:391–420

    Article  PubMed  CAS  Google Scholar 

  49. Johansson H, Oden A, Kanis JA et al (2014) A meta-analysis of reference markers of bone turnover for prediction of fracture. Calcif Tissue Int 94:560–7

    Article  PubMed  CAS  Google Scholar 

  50. Kanis JA, Oden A, Johnell O et al (2007) The use of clinical risk factors enhances the performance of BMD in the prediction of hip and osteoporotic fractures in men and women. Osteoporos Int 18:1033–46

    Article  PubMed  CAS  Google Scholar 

  51. Arlot M, Meunier PJ, Boivin G et al (2005) Differential effects of teriparatide and alendronate on bone remodeling in postmenopausal women assessed by histomorphometric parameters. J Bone Miner Res 20:1244–53

    Article  PubMed  CAS  Google Scholar 

  52. Ettinger B, Black DM, Mitlak BH et al (1999) Reduction of vertebral fracture risk in postmenopausal women with osteoporosis treated with raloxifene. Results from a 3-year randomized clinical trial. JAMA 282:637–45

    Article  PubMed  CAS  Google Scholar 

  53. Reginster JY, Sarkar S, Zegels B et al (2004) Reduction in PINP, a marker of bone metabolism, with raloxifene treatment and its relationship with vertebral fracture risk. Bone 34:344–51

    Article  PubMed  CAS  Google Scholar 

  54. Garnero P, Hausherr E, Chapuy MC et al (1996) Markers of bone resorption predict hip fracture in elderly women: the EPIDOS Prospective Study. J Bone Miner Res 11:1531–8

    Article  PubMed  CAS  Google Scholar 

  55. Bergmann P, Body JJ, Boonen S et al (2009) Evidence-based guidelines for the use of biochemical markers of bone turnover in the selection and monitoring of bisphosphonate treatment in osteoporosis: a consensus document of the Belgian Bone Club. Int J Clin Pract 63:19–26

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  56. Marcus R, Wang O, Satterwhite J et al (2003) The skeletal response to teriparatide is largely independent of age, initial bone mineral density, and prevalent vertebral fractures in postmenopausal women with osteoporosis. J Bone Miner Res 18:18–23

    Article  PubMed  CAS  Google Scholar 

  57. Neer RM, Arnaud CD, Zanchetta JR et al (2001) Effect of parathyroid hormone (1–34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med 344:1434–41

    Article  PubMed  CAS  Google Scholar 

  58. Jiang Y, Zhao JJ, Mitlak BH et al (2003) Recombinant human parathyroid hormone (1–34) [teriparatide] improves both cortical and cancellous bone structure. J Bone Miner Res 18:1932–41

    Article  PubMed  CAS  Google Scholar 

  59. Saag KG, Shane E, Boonen S et al (2007) Teriparatide or alendronate in glucocorticoid-induced osteoporosis. N Engl J Med 357:2028–39

    Article  PubMed  CAS  Google Scholar 

  60. Arlot ME, Jiang Y, Genant HK et al (2008) Histomorphometric and microCT analysis of bone biopsies from postmenopausal osteoporotic women treated with strontium ranelate. J Bone Miner Res 23:215–22

    Article  PubMed  CAS  Google Scholar 

  61. Rizzoli R, Laroche M, Krieg MA et al (2010) Strontium ranelate and alendronate have differing effects on distal tibia bone microstructure in women with osteoporosis. Rheumatol Int 30:1341–8

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  62. Rizzoli R, Chapurlat RD, Laroche JM et al (2012) Effects of strontium ranelate and alendronate on bone microstructure in women with osteoporosis: results of a 2-year study. Osteoporos Int 23:305–15

    Article  PubMed  CAS  Google Scholar 

  63. Bala Y, Zebaze R, Ghasem-Zadeh A et al. (2014) Cortical porosity identifies women with osteopenia at increased risk for forearm fractures. J Bone Miner Res

  64. Silva BC, Leslie WD, Resch H et al (2014) Trabecular bone score: a noninvasive analytical method based upon the DXA image. J Bone Miner Res 29:518–30

    Article  PubMed  Google Scholar 

  65. Keaveny TM, Bouxsein ML (2008) Theoretical implications of the biomechanical fracture threshold. J Bone Miner Res 23:1541–7

    Article  PubMed  PubMed Central  Google Scholar 

  66. Keaveny TM, Donley DW, Hoffmann PF et al (2007) Effects of teriparatide and alendronate on vertebral strength as assessed by finite element modeling of QCT scans in women with osteoporosis. J Bone Miner Res 22:149–57

    Article  PubMed  CAS  Google Scholar 

  67. Kopperdahl DL, Aspelund T, Hoffmann PF et al (2014) Assessment of incident spine and hip fractures in women and men using finite element analysis of CT scans. J Bone Miner Res 29:570–80

    Article  PubMed  Google Scholar 

  68. Kanis JA, Borgstrom F, De Laet C et al (2005) Assessment of fracture risk. Osteoporos Int 16:581–9

    Article  PubMed  Google Scholar 

  69. Kanis JA, Johansson H, Oden A et al (2011) A meta-analysis of the effect of strontium ranelate on the risk of vertebral and non-vertebral fracture in postmenopausal osteoporosis and the interaction with FRAX((R)). Osteoporos Int 22:2347–55

    Article  PubMed  CAS  Google Scholar 

  70. McCloskey EV, Johansson H, Oden A et al (2012) Denosumab reduces the risk of osteoporotic fractures in postmenopausal women, particularly in those with moderate to high fracture risk as assessed with FRAX. J Bone Miner Res 27:1480–6

    Article  PubMed  CAS  Google Scholar 

  71. Kanis JA, Johansson H, Oden A et al (2010) A meta-analysis of the efficacy of raloxifene on all clinical and vertebral fractures and its dependency on FRAX. Bone 47:729–35

    Article  PubMed  CAS  Google Scholar 

  72. Kanis JA, Johansson H, Oden A et al (2009) Bazedoxifene reduces vertebral and clinical fractures in postmenopausal women at high risk assessed with FRAX. Bone 44:1049–54

    Article  PubMed  CAS  Google Scholar 

  73. Donaldson MG, Palermo L, Ensrud KE et al (2012) Effect of alendronate for reducing fracture by FRAX score and femoral neck bone mineral density: the Fracture Intervention Trial. J Bone Miner Res 27:1804–10

    Article  PubMed  CAS  Google Scholar 

  74. Leslie WD, Lix LM, Johansson H et al (2012) Does osteoporosis therapy invalidate FRAX for fracture prediction? J Bone Miner Res 27:1243–51

    Article  PubMed  CAS  Google Scholar 

  75. Leslie WD, Majumdar S, Lix LM et al (2014) Can Change in FRAX score be used to “treat-to-target”? A population-based cohort study. J Bone Miner Res 29:1074–1080

    Article  PubMed  Google Scholar 

  76. Canoui-Poitrine F, Jaglal S, Chapurlat R et al (2010) Has reimbursement of bone mineral density testing and anti-osteoporotic treatments improved management of osteoporosis in France? Bone 47:790–4

    Article  PubMed  CAS  Google Scholar 

  77. Jennings LA, Auerbach AD, Maselli J et al (2010) Missed opportunities for osteoporosis treatment in patients hospitalized for hip fracture. J Am Geriatr Soc 58:650–7

    Article  PubMed  PubMed Central  Google Scholar 

  78. Hernlund E, Svedbom A, Ivergard M et al (2013) Osteoporosis in the European Union: medical management, epidemiology and economic burden: a report prepared in collaboration with the International Osteoporosis Foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA). Arch Osteoporos 8:136

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  79. Kanis JA, Borgstrom F, Compston J et al (2013) SCOPE: a scorecard for osteoporosis in Europe. Arch Osteoporos 8:144

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  80. Solomon DH, Johnston SS, Boytsov NN et al. (2014) Osteoporosis medication use after hip fracture in U.S. Patients between 2002 and 2011. J Bone Miner Res

  81. Akesson K, Marsh D, Mitchell PJ et al (2013) Capture the Fracture: a Best Practice Framework and global campaign to break the fragility fracture cycle. Osteoporos Int 24:2135–52

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are grateful to the Committee of Scientific Advisors of the International Osteoporosis Foundation and the Scientific Advisory Board of the European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis for their review and endorsement of this paper.

Conflicts of interest

JA Kanis has received consulting fees, advisory board fees, lecture fees and/or grant support from the majority of companies concerned with skeletal metabolism. E McCloskey has received consultancy, lecture fees, research grant support and/or honoraria from Active Signal, Alliance for Better Bone Health, Amgen, Bayer, Consilient Healthcare, GE Lunar, Hologic, Internis Pharma, Lilly, MSD, Novartis, Pfizer, Roche, Servier, Tethys, UCB and Univadis. ML Brandi has received consulting fees, paid advisory boards, lecture fees and/or grant support from Amgen, Eli Lilly, Merck Sharp & Dohme, Novartis, Servier, Spa, Stroder and NPS. E Dennison declares lecture fees from Lilly. S Ferrari has received consulting fees, advisory board fees, lecture fees and/or grant support from Amgen, GSK, MSD, Eli Lilly, Novartis and Bioiberica. J-M Kauffman has received consulting fees, paid advisory boards, lecture fees and/or grant support from Amgen, Eli Lilly, GlaxoSmithKline, Merck, Novartis, Procter & Gamble, Roche, Sanofi Aventis, Servier and Warner Chilcott. S Papapoulos has received consulting/speaking fees from Axsome, Amgen, Eli Lilly, GlaxoSmithKlein, Merck, Novartis and Roche. J-Y Reginster on behalf of the Department of Public Health, Epidemiology and Health Economics of the University of Liège, Liège, Belgium, received consulting fees or paid advisory boards from Servier, Novartis, Negma, Lilly, Wyeth, Amgen, GlaxoSmithKline, Roche, Merckle, Nycomed, NPS, Theramex, UCB. Lecture fees when speaking at the invitation of a commercial sponsor: Merck Sharp and Dohme, Lilly, Rottapharm, IBSA, Genevrier, Novartis, Servier, Roche, GlaxoSmithKline, Teijin, Teva, Ebewee Pharma, Zodiac, Analis, Theramex, Nycomed, Novo-Nordisk. R Rizzoli received lecture fee and paid advisory boards from Merck Sharp and Dohme, Eli Lilly, Amgen, Servier, Takeda and Danone. JC Branco and JP Devogelaer have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Kanis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanis, J.A., McCloskey, E., Branco, J. et al. Goal-directed treatment of osteoporosis in Europe. Osteoporos Int 25, 2533–2543 (2014). https://doi.org/10.1007/s00198-014-2787-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-014-2787-1

Keywords

Navigation