Skip to main content
Log in

Bone quality of the newest bone formed after two years of teriparatide therapy in patients who were previously treatment-naïve or on long-term alendronate therapy

  • Original Article
  • Published:
Osteoporosis International Aims and scope Submit manuscript

Abstract

Summary

The results of the present study, involving analysis of biopsies from patients who received teriparatide for 2 years and were previously either treatment-naïve or on long-term alendronate therapy, suggest that prior alendronate use does not blunt the favorable effects of teriparatide on bone quality.

Introduction

Examine the effect of 2 years of teriparatide (TPTD) treatment on mineral and organic matrix properties of the newest formed bone in patients who were previously treatment-naïve (TN) or on long-term alendronate (ALN) therapy.

Methods

Raman and Fourier transform infrared microspectroscopic analyses were used to determine the mineral/matrix (M/M) ratio, the relative proteoglycan (PG) content, and the mineral maturity/crystallinity (MMC; determined by three methods: carbonate content, full width at half height of the v 1 PO4 band [FWHH], and wavelength at maxima of the v 1 PO4 band), as well as collagen maturity (ratio of pyridinoline/divalent cross-links), in paired iliac crest biopsies at trabecular, endosteal, and osteonal surfaces of newly formed bone in postmenopausal osteoporotic women who were previously either TN (n = 16) or receiving long-term ALN treatment (n = 24).

Results

Trabecular M/M ratio increased and matrix content decreased significantly in the ALN pretreated group. Collagen maturity decreased in both patient groups. Endosteal M/M ratio increased significantly in the TN group. Trabecular M/M ratio was higher at endpoint in the ALN pretreated group than in the TN group. Overall, no changes from baseline were observed in PG content, except that PG content was higher in the ALN pretreated group than in the TN group at endosteal surfaces at endpoint. The ability of TPTD treatment to reduce MMC in both patient groups and at the different bone surfaces depended on the measurement tool (relative carbonate content or wavelength at maxima of the v 1 PO4 band). None of the changes in MMC were different between the two patient groups.

Conclusions

The results suggest some favorable impact of TPTD on bone mineral and organic matrix properties of in situ forming bone in terms of increased initial mineralization and decreased MMC and collagen maturity. Moreover, prior long-term ALN administration may have only limited influence on these properties in bone newly formed after 2 years of TPTD treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Riggs BL, Parfitt AM (2005) Drugs used to treat osteoporosis: the critical need for a uniform nomenclature based on their action on bone remodeling. J Bone Miner Res 20:177–184

    Article  CAS  PubMed  Google Scholar 

  2. Khosla S, Burr D, Cauley J, Dempster DW, Ebeling PR, Felsenberg D, Gagel RF, Gilsanz V, Guise T, Koka S, McCauley LK, McGowan J, McKee MD, Mohla S, Pendrys DG, Raisz LG, Ruggiero SL, Shafer DM, Shum L, Silverman SL, Van Poznak CH, Watts N, Woo SB, Shane E (2007) Bisphosphonate-associated osteonecrosis of the jaw: report of a task force of the American Society for Bone and Mineral Research. J Bone Miner Res 22:1479–1491

    Article  PubMed  Google Scholar 

  3. Shane E, Burr D, Ebeling PR, Abrahamsen B, Adler RA, Brown TD, Cheung AM, Cosman F, Curtis JR, Dell R, Dempster D, Einhorn TA, Genant HK, Geusens P, Klaushofer K, Koval K, Lane JM, McKiernan F, McKinney R, Ng A, Nieves J, O’Keefe R, Papapoulos S, Sen HT, van der Meulen MC, Weinstein RS, Whyte M (2010) Atypical subtrochanteric and diaphyseal femoral fractures: Report of a task force of the American Society for Bone and Mineral Research. J Bone Miner Res 25:2267–2294

    Article  PubMed  Google Scholar 

  4. Compston J (2005) Recombinant parathyroid hormone in the management of osteoporosis. Calcif Tissue Int 77:65–71

    Article  CAS  PubMed  Google Scholar 

  5. Neer RM, Arnaud CD, Zanchetta JR, Prince R, Gaich GA, Reginster JY, Hodsman AB, Eriksen EF, Ish-Shalom S, Genant HK, Wang O, Mitlak BH (2001) Effect of parathyroid hormone (1–34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med 344:1434–1441

    Article  CAS  PubMed  Google Scholar 

  6. Pleiner-Duxneuner J, Zwettler E, Paschalis E, Roschger P, Nell-Duxneuner V, Klaushofer K (2009) Treatment of osteoporosis with parathyroid hormone and teriparatide. Calcif Tissue Int 84:159–170

    Article  CAS  PubMed  Google Scholar 

  7. Paschalis EP, Glass EV, Donley DW, Eriksen EF (2005) Bone mineral and collagen quality in iliac crest biopsies of patients given teriparatide: New results from the fracture prevention trial. J Clin Endocrinol Metab 90:4644–4649

    Article  CAS  PubMed  Google Scholar 

  8. Khan SA, Kanis JA, Vasikaran S, Kline WF, Matuszewski BK, McCloskey EV, Beneton MN, Gertz BJ, Sciberras DG, Holland SD, Orgee J, Coombes GM, Rogers SR, Porras AG (1997) Elimination and biochemical responses to intravenous alendronate in postmenopausal osteoporosis. J Bone Miner Res 12:1700–1707

    Article  CAS  PubMed  Google Scholar 

  9. Ettinger B, San Martin J, Crans G, Pavo I (2004) Differential effects of teriparatide on BMD after treatment with raloxifene or alendronate. J Bone Miner Res 19:745–751

    Article  CAS  PubMed  Google Scholar 

  10. Ma Y, Zeng Q, Chiang A, Burr D, Li J, Dobnig H, Fahrleitner-Pammer A, Michalská D, Marin F, Pavo I, Stepan J (2014) Effects of teriparatide on cortical histomorphometric variables in postmenopausal women with or without prior alendronate treatment. Bone.

  11. Stepan JJ, Burr DB, Li J, Ma YL, Petto H, Sipos A, Dobnig H, Fahrleitner-Pammer A, Michalska D, Pavo I (2010) Histomorphometric changes by teriparatide in alendronate-pretreated women with osteoporosis. Osteoporos Int 21:2027–2036

    Article  CAS  PubMed  Google Scholar 

  12. Boonen S, Marin F, Obermayer-Pietsch B, Simoes ME, Barker C, Glass EV, Hadji P, Lyritis G, Oertel H, Nickelsen T, McCloskey EV (2008) Effects of previous antiresorptive therapy on the bone mineral density response to two years of teriparatide treatment in postmenopausal women with osteoporosis. J Clin Endocrinol Metab 93:852–860

    Article  CAS  PubMed  Google Scholar 

  13. Miller PD, Delmas PD, Lindsay R, Watts NB, Luckey M, Adachi J, Saag K, Greenspan SL, Seeman E, Boonen S, Meeves S, Lang TF, Bilezikian JP (2008) Early responsiveness of women with osteoporosis to teriparatide after therapy with alendronate or risedronate. J Clin Endocrinol Metab 93:3785–3793

    Article  CAS  PubMed  Google Scholar 

  14. Fratzl P, Gupta H, Paschalis E, Roschger P (2004) Structure and mechanical quality of the collagen–mineral nano-composite in bone. J Mater Chem 14:2115–2123

    Article  CAS  Google Scholar 

  15. Gamsjaeger S, Buchinger B, Zoehrer R, Phipps R, Klaushofer K, Paschalis EP (2011) Effects of one year daily teriparatide treatment on trabecular bone material properties in postmenopausal osteoporotic women previously treated with alendronate or risedronate. Bone 49:1160–1165

    Article  CAS  PubMed  Google Scholar 

  16. Nancollas GH, Tang R, Phipps RJ, Henneman Z, Gulde S, Wu W, Mangood A, Russell RG, Ebetino FH (2006) Novel insights into actions of bisphosphonates on bone: Differences in interactions with hydroxyapatite. Bone 38:617–627

    Article  CAS  PubMed  Google Scholar 

  17. Idris AI, Rojas J, Greig IR, Van’t Hof RJ, Ralston SH (2008) Aminobisphosphonates cause osteoblast apoptosis and inhibit bone nodule formation in vitro. Calcif Tissue Int 82:191–201

    Article  CAS  PubMed  Google Scholar 

  18. Nebe B, Finke B, Luthen F, Bergemann C, Schroder K, Rychly J, Liefeith K, Ohl A (2007) Improved initial osteoblast functions on amino-functionalized titanium surfaces. Biomol Eng 24:447–454

    Article  CAS  PubMed  Google Scholar 

  19. Roelofs AJ, Coxon FP, Ebetino FH, Lundy MW, Henneman ZJ, Nancollas GH, Sun S, Blazewska KM, Bala JL, Kashemirov BA, Khalid AB, McKenna CE, Rogers MJ (2010) Fluorescent risedronate analogues reveal bisphosphonate uptake by bone marrow monocytes and localization around osteocytes in vivo. J Bone Miner Res 25:606–616

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Smith IO, Baumann MJ, Obadia L, Bouler JM (2004) Surface potential and osteoblast attraction to calcium phosphate compounds is affected by selected alkaline hydrolysis processing. J Mater Sci Mater Med 15:841–846

    Article  CAS  PubMed  Google Scholar 

  21. Gamsjaeger S, Buchinger B, Zwettler E, Recker R, Black D, Gasser JA, Eriksen EF, Klaushofer K, Paschalis EP (2010) Bone material properties in actively bone-forming trabeculae in postmenopausal women with osteoporosis after three years of treatment with once-yearly zoledronic acid. J Bone Miner Res 26:12–18

    Article  Google Scholar 

  22. Roelofs AJ, Stewart CA, Sun S, Blazewska KM, Kashemirov BA, McKenna CE, Russell RG, Rogers MJ, Lundy MW, Ebetino FH, Coxon FP (2012) Influence of bone affinity on the skeletal distribution of fluorescently labeled bisphosphonates in vivo. J Bone Miner Res 27:835–847

    Article  CAS  PubMed  Google Scholar 

  23. Dobnig H, Stepan JJ, Burr DB, Li J, Michalska D, Sipos A, Petto H, Fahrleitner-Pammer A, Pavo I (2009) Teriparatide reduces bone microdamage accumulation in postmenopausal women previously treated with alendronate. J Bone Miner Res 24:1998–2006

    Article  CAS  PubMed  Google Scholar 

  24. Gamsjaeger S, Masic A, Roschger P, Kazanci M, Dunlop JW, Klaushofer K, Paschalis EP, Fratzl P (2010) Cortical bone composition and orientation as a function of animal and tissue age in mice by Raman spectroscopy. Bone 47:392–399

    Article  PubMed  Google Scholar 

  25. Kazanci M, Wagner HD, Manjubala NI, Gupta HS, Paschalis E, Roschger P, Fratzl P (2007) Raman imaging of two orthogonal planes within cortical bone. Bone 41:456–461

    Article  CAS  PubMed  Google Scholar 

  26. Ellis R, Green E, Winlove C (2009) Structural analysis of glycosaminoglycans and proteoglycans by means of raman microspectrometry. Connect Tissue Res 50:29–36

    Article  PubMed  Google Scholar 

  27. Kazanci M, Fratzl P, Klaushofer K, Paschalis EP (2006) Complementary information on in vitro conversion of amorphous (precursor) calcium phosphate to hydroxyapatite from Raman microspectroscopy and wide-angle X-ray scattering. Calcif Tissue Int 79:354–359

    Article  CAS  PubMed  Google Scholar 

  28. Dong A, Huang P, Caughey WS (1990) Protein secondary structures in water from second-derivative amide I infrared spectra. Biochemistry 29:3303–3308

    Article  CAS  PubMed  Google Scholar 

  29. Paschalis EP, Verdelis K, Doty SB, Boskey AL, Mendelsohn R, Yamauchi M (2001) Spectroscopic characterization of collagen cross-links in bone. J Bone Miner Res 16:1821–1828

    Article  CAS  PubMed  Google Scholar 

  30. Paschalis EP, Tatakis DN, Robins S, Fratzl P, Manjubala I, Zoehrer R, Gamsjaeger S, Buchinger B, Roschger A, Phipps R, Boskey AL, Dall’ara E, Varga P, Zysset P, Klaushofer K, Roschger P (2011) Lathyrism-induced alterations in collagen cross-links influence the mechanical properties of bone material without affecting the mineral. Bone 49:1232–1241

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Bala Y, Depalle B, Farlay D, Douillard T, Meille S, Follet H, Chapurlat R, Chevalier J, Boivin G (2012) Bone micromechanical properties are compromised during long-term alendronate therapy independently of mineralization. J Bone Miner Res 27:825–834

    Article  CAS  PubMed  Google Scholar 

  32. Bala Y, Farlay D, Chapurlat RD, Boivin G (2011) Modifications of bone material properties in postmenopausal osteoporotic women long-term treated with alendronate. Eur J Endocrinol/Eur Fed Endocr Soc 165:647–655

    Article  CAS  Google Scholar 

  33. Einhorn TA (1996) The bone organ system: Form and function. In: Marcus R, Feldman D, Kelsey J (eds) Osteoporosis. Academic, New York

    Google Scholar 

  34. Morris MD, Mandair GS (2011) Raman assessment of bone quality. Clin Orthop Relat Res 469:2160–2169

    Article  PubMed Central  PubMed  Google Scholar 

  35. Paschalis EP, Mendelsohn R, Boskey AL (2011) Infrared assessment of bone quality: a review. Clin Orthop Relat Res 469:2170–2178

    Article  PubMed Central  PubMed  Google Scholar 

  36. Spevak L, Flach CR, Hunter T, Mendelsohn R, Boskey A (2013) Fourier transform infrared spectroscopic imaging parameters describing acid phosphate substitution in biologic hydroxyapatite. Calcif Tissue Int 92:418–428

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Donnelly E, Chen DX, Boskey AL, Baker SP, van der Meulen MC (2010) Contribution of mineral to bone structural behavior and tissue mechanical properties. Calcif Tissue Int 87:450–460

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Helvering LM, Liu R, Kulkarni NH, Wei T, Chen P, Huang S, Lawrence F, Halladay DL, Miles RR, Ambrose EM, Sato M, Ma YL, Frolik CA, Dow ER, Bryant HU, Onyia JE (2005) Expression profiling of rat femur revealed suppression of bone formation genes by treatment with alendronate and estrogen but not raloxifene. Mol Pharmacol 68:1225–1238

    Article  CAS  PubMed  Google Scholar 

  39. Fuchs RK, Faillace ME, Allen MR, Phipps RJ, Miller LM, Burr DB (2011) Bisphosphonates do not alter the rate of secondary mineralization. Bone 49:701–705

    Article  CAS  PubMed  Google Scholar 

  40. Aparicio S, Doty SB, Camacho NP, Paschalis EP, Spevak L, Mendelsohn R, Boskey AL (2002) Optimal methods for processing mineralized tissues for Fourier transform infrared microspectroscopy. Calcif Tissue Int 70:422–429

    Article  CAS  PubMed  Google Scholar 

  41. Paschalis EP, DiCarlo E, Betts F, Sherman P, Mendelsohn R, Boskey AL (1996) FTIR microspectroscopic analysis of human osteonal bone. Calcif Tissue Int 59:480–487

    Article  CAS  PubMed  Google Scholar 

  42. Henneman ZJ, Nancollas GH, Ebetino FH, Russell RG, Phipps RJ (2008) Bisphosphonate binding affinity as assessed by inhibition of carbonated apatite dissolution in vitro. J Biomed Mater Res A 85:993–1000

    Article  PubMed Central  PubMed  Google Scholar 

  43. Blank RD, Baldini TH, Kaufman M, Bailey S, Gupta R, Yershov Y, Boskey AL, Coppersmith SN, Demant P, Paschalis EP (2003) Spectroscopically determined collagen Pyr/deH-DHLNL cross-link ratio and crystallinity indices differ markedly in recombinant congenic mice with divergent calculated bone tissue strength. Connect Tissue Res 44:134–142

    Article  CAS  PubMed  Google Scholar 

  44. Malluche HH, Porter DS, Mawad H, Monier-Faugere MC, Pienkowski D (2013) Low-energy fractures without low T-scores characteristic of osteoporosis: a possible bone matrix disorder. J Bone Joint Surg Am 95:e1391–e1396

    Article  PubMed  Google Scholar 

  45. Misof BM, Gamsjaeger S, Cohen A, Hofstetter B, Roschger P, Stein E, Nickolas TL, Rogers HF, Dempster D, Zhou H, Recker R, Lappe J, McMahon D, Paschalis EP, Fratzl P, Shane E, Klaushofer K (2012) Bone material properties in premenopausal women with idiopathic osteoporosis. J Bone Miner Res 27:2551–2561

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Paschalis EP, Shane E, Lyritis G, Skarantavos G, Mendelsohn R, Boskey AL (2004) Bone fragility and collagen cross-links. J Bone Miner Res 19:2000–2004

    Article  PubMed Central  PubMed  Google Scholar 

  47. Boskey AL, DiCarlo E, Paschalis E, West P, Mendelsohn R (2005) Comparison of mineral quality and quantity in iliac crest biopsies from high- and low-turnover osteoporosis: an FT-IR microspectroscopic investigation. Osteoporos Int 16:2031–2038

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Boskey AL, Spevak L, Doty SB, Rosenberg L (1997) Effects of bone CS-proteoglycans, DS-decorin, and DS-biglycan on hydroxyapatite formation in a gelatin gel. Calcif Tissue Int 61:298–305

    Article  CAS  PubMed  Google Scholar 

  49. Mochida Y, Parisuthiman D, Pornprasertsuk-Damrongsri S, Atsawasuwan P, Sricholpech M, Boskey AL, Yamauchi M (2009) Decorin modulates collagen matrix assembly and mineralization. Matrix Biol 28:44–52

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Nielsen KL, Allen MR, Bloomfield SA, Andersen TL, Chen XD, Poulsen HS, Young MF, Heegaard AM (2003) Biglycan deficiency interferes with ovariectomy-induced bone loss. J Bone Miner Res 18:2152–2158

    Article  CAS  PubMed  Google Scholar 

  51. Gualeni B, de Vernejoul MC, Marty-Morieux C, De Leonardis F, Franchi M, Monti L, Forlino A, Houillier P, Rossi A, Geoffroy V (2013) Alteration of proteoglycan sulfation affects bone growth and remodeling. Bone 54:83–91

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Smith AJ, Singhrao SK, Newman GR, Waddington RJ, Embery G (1997) A biochemical and immuno-electron microscopical analysis of chondroitin sulphate-rich proteoglycans in human alveolar bone. Histochem J 29:1–9

    Article  CAS  PubMed  Google Scholar 

  53. Paschalis EP, Betts F, DiCarlo E, Mendelsohn R, Boskey AL (1997) FTIR microspectroscopic analysis of human iliac crest biopsies from untreated osteoporotic bone. Calcif Tissue Int 61:487–492

    Article  CAS  PubMed  Google Scholar 

  54. Akkus O, Adar F, Schaffler MB (2004) Age-related changes in physicochemical properties of mineral crystals are related to impaired mechanical function of cortical bone. Bone 34:443–453

    Article  CAS  PubMed  Google Scholar 

  55. Gamsjaeger S, Hofstetter B, Zwettler E, Recker R, Gasser JA, Eriksen EF, Klaushofer K, Paschalis EP (2012) Effects of 3 years treatment with once-yearly zoledronic acid on the kinetics of bone matrix maturation in osteoporotic patients. Osteoporosis International in press

  56. Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159

    Article  CAS  PubMed  Google Scholar 

  57. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Eli Lilly & Co, for provision of the biopsy samples and financial support for the present study. This study was also supported by the Allgemeine Unfallversicherungsanstalt (AUVA), research funds of the Austrian workers compensation board, and the Wiener Gebietskrankenkasse (WGKK), Viennese sickness insurance funds.

Conflicts of interest

Drs Birgit Hofstetter, Sonja Gamsjaeger, Franz Varga, Harald Dobnig, Jan J. Stepan, Klaus Klasuhofer, and Eleftherios P. Paschalis declare no conflict of interest. This study was partially supported by Eli Lilly and Co. Helmut Petto and Imre Pavo are full time employees of Eli Lilly and Co.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. P. Paschalis.

Additional information

Drs Helmut Petto and Imre Pavo are full time employees of Eli Lilly and Co.

Appendix I

Appendix I

To further verify observations concerning the reduced amount of organic matrix produced in ALN pretreated patients after 2 years of TPTD therapy (Fig. 1c), exploratory cell culture experiments were performed as follows:

MC3T3-E1 cells (kindly donated by Dr. Kumegawa, Meikai University, Japan) were cultured in α-minimum essential medium (MEM) (Biochrom AG, Germany) supplemented with 5 % fetal calf serum (Sigma), 10 μg/ml gentamycin and 50 μg/ml ascorbic acid. All cultures were maintained at 37 °C and 5 % CO2 in a humidified atmosphere. Cells were sub-cultured twice a week using 0.001 % pronase E (Roche) and 0.02 % EDTA in Ca2+ and Mg2+ free phosphate-buffered saline (PBS). To prevent phenotypic drift during repeated sub-cultures, the cells were not used more than 4 weeks after thawing. After seeding the cells for 1 day (at a density of 20,000 cells/cm2), cells were treated with ALN (supplied by Procter & Gamble Pharmaceuticals Clinical Supplies, Norwich, NY) at 10 −6 and 10 −8 M for up to 7 days, with the medium changed every 3 days. Total RNA was isolated according to the single-step method by acid guanidinium thiocyanate-phenol-chloroform extraction [56], with RNeasy columns (Qiagen Sciences, Germany) used for further RNA cleaning. First-strand cDNA was synthesized using 1 μg of total RNA in 20 μl of reverse transcription (RT) reaction mixture containing 0.2 μg of pd(N)6 random hexamer (GE Healthcare), 2 mM of each deoxynucleotide triphosphate (GE Healthcare), first-strand buffer [50 mM Tris/HCl (pH 8.3), 75 mM KCl, 3 mM MgCl2] (Invitrogen), 10 mM dithiothreitol (Hersteller), and 100 units of SuperScriptTM II RNase H RT (Hersteller). The RT reaction was performed at 42 °C for 50 min followed by a 15 min inactivation step at 70 °C. Quantitative RT polymerase chain reaction (PCR) was performed in triplicate using the Rotogene 6000 System (Corbett Research), according to the manufacturer’s instructions. Following this, mRNA expression of COL (Col1a1) was measured, using inventoried TaqMan gene expression assays (Applied Biosystems) normalized to 18S rRNA (Applied Biosystems). Real-time PCR was performed in a mixture consisting of 4 μl cDNA, 1 μl TaqMan probe, and 5 μl of the PCR 2× master mix that was based on AmpliTaq Gold DNA polymerase (Applied Biosystems). Quantification of the mRNA expression was performed with the modified 2-ΔΔC T method [57]. Experiments were performed six times. The results are presented below as the fraction difference from control cultures, per the formula (treated-control)/treated and indicate that COL (Col1a1) mRNA expression is down-regulated at both time points and with both ALN concentrations.

figure a

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hofstetter, B., Gamsjaeger, S., Varga, F. et al. Bone quality of the newest bone formed after two years of teriparatide therapy in patients who were previously treatment-naïve or on long-term alendronate therapy. Osteoporos Int 25, 2709–2719 (2014). https://doi.org/10.1007/s00198-014-2814-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00198-014-2814-2

Keywords

Navigation